Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = RVoG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5624 KiB  
Article
A Multi-Baseline Forest Height Estimation Method Combining Analytic and Geometric Expression of the RVoG Model
by Bing Zhang, Hongbo Zhu, Weidong Song, Jianjun Zhu, Jiguang Dai, Jichao Zhang and Chengjin Li
Forests 2024, 15(9), 1496; https://doi.org/10.3390/f15091496 - 27 Aug 2024
Viewed by 340
Abstract
As an important parameter of forest biomass, forest height is of great significance for the calculation of forest carbon stock and the study of the carbon cycle in large-scale regions. The main idea of the current forest height inversion methods using multi-baseline P-band [...] Read more.
As an important parameter of forest biomass, forest height is of great significance for the calculation of forest carbon stock and the study of the carbon cycle in large-scale regions. The main idea of the current forest height inversion methods using multi-baseline P-band polarimetric interferometric synthetic aperture radar (PolInSAR) data is to select the best baseline for forest height inversion. However, the approach of selecting the optimal baseline for forest height inversion results in the process of forest height inversion being unable to fully utilize the abundant observation data. In this paper, to solve the problem, we propose a multi-baseline forest height inversion method combining analytic and geometric expression of the random volume over ground (RVoG) model, which takes into account the advantages of the selection of the optimal observation baseline and the utilization of multi-baseline information. In this approach, for any related pixel, an optimal baseline is selected according to the geometric structure of the coherence region shape and the functional model for forest height inversion is established by the RVoG model’s analytic expression. In this way, the other baseline observations are transformed into a constraint condition according to the RVoG model’s geometric expression and are also involved in the forest height inversion. PolInSAR data were used to validate the proposed multi-baseline forest height inversion method. The results show that the accuracy of the forest height inversion with the algorithm proposed in this paper in a coniferous forest area and tropical rainforest area was improved by 17% and 39%, respectively. The method proposed in this paper provides a multi-baseline PolInSAR forest height inversion scheme for exploring regional high-precision forest height distribution. The scheme is an applicable method for large-scale, high-precision forest height inversion tasks. Full article
Show Figures

Figure 1

16 pages, 498 KiB  
Article
PON1, APOE and SDF-1 Gene Polymorphisms and Risk of Retinal Vein Occlusion: A Case-Control Study
by Antonios Ragkousis, Dimitrios Kazantzis, Ilias Georgalas, Panagiotis Theodossiadis, Christos Kroupis and Irini Chatziralli
Genes 2024, 15(6), 712; https://doi.org/10.3390/genes15060712 - 30 May 2024
Viewed by 607
Abstract
Numerous studies have tried to evaluate the potential role of thrombophilia-related genes in retinal vein occlusion (RVO); however, there is limited research on genes related to different pathophysiological mechanisms involved in RVO. In view of the strong contribution of oxidative stress and inflammation [...] Read more.
Numerous studies have tried to evaluate the potential role of thrombophilia-related genes in retinal vein occlusion (RVO); however, there is limited research on genes related to different pathophysiological mechanisms involved in RVO. In view of the strong contribution of oxidative stress and inflammation to the pathogenesis of RVO, the purpose of the present study was to investigate the association of inflammation- and oxidative-stress-related polymorphisms from three different genes [apolipoprotein E (APOE), paraoxonase 1 (PON1) and stromal cell-derived factor 1 (SDF-1)] and the risk of RVO in a Greek population. Participants in this case-control study were 50 RVO patients (RVO group) and 50 healthy volunteers (control group). Blood samples were collected on EDTA tubes and genomic DNA was extracted. Genotyping of rs854560 (L55M) and rs662 (Q192R) for the PON1 gene, rs429358 and rs7412 for the APOE gene and rs1801157 [SDF1-3′G(801)A] for SDF-1 gene was performed using the polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) method. Multiple genetic models (codominant, dominant, recessive, overdominant and log-additive) and haplotype analyses were performed using the SNPStats web tool to assess the correlation between the genetic polymorphisms and the risk of RVO. Binary logistic regression analysis was used for the association analysis between APOE gene variants and RVO. Given the multifactorial nature of the disease, our statistical analysis was adjusted for the most important systemic risk factors (age, hypertension and diabetes mellitus). The dominant genetic model for the PON1 Q192R single nucleotide polymorphism (SNP) of the association analysis revealed that there was a statistically significant difference between the RVO group and the control group. Specifically, after adjusting for age and hypertension, the PON1 192 R allele (QR + RR) was found to be associated with a statistically significantly higher risk of RVO compared to the QQ genotype (OR = 2.51; 95% CI = 1.02–6.14, p = 0.04). The statistically significant results were maintained after including diabetes in the multivariate model in addition to age and hypertension (OR = 2.83; 95% CI = 1.01–7.97, p = 0.042). No statistically significant association was revealed between the other studied polymorphisms and the risk of RVO. Haplotype analysis for PON1 SNPs, L55M and Q192R, revealed no statistically significant correlation. In conclusion, PON1 192 R allele carriers (QR + RR) were associated with a statistically significantly increased risk of RVO compared to the QQ homozygotes. These findings suggest that the R allele of the PON1 Q192R is likely to play a role as a risk factor for retinal vein occlusion. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

25 pages, 34314 KiB  
Article
Inversion of Boreal Forest Height Using the CRITIC Weighted Least Squares Three-Stage Temporal Decorrelation Iterative Algorithm
by Ao Sui and Wenyi Fan
Remote Sens. 2024, 16(7), 1137; https://doi.org/10.3390/rs16071137 - 25 Mar 2024
Viewed by 634
Abstract
The inversion of forest height using the RVoG (Random Volume over Ground) model is susceptible to overestimation or underestimation due to three error sources, propagating inaccuracies to the estimated forest height. Furthermore, variations in the height and density of the scenario could impact [...] Read more.
The inversion of forest height using the RVoG (Random Volume over Ground) model is susceptible to overestimation or underestimation due to three error sources, propagating inaccuracies to the estimated forest height. Furthermore, variations in the height and density of the scenario could impact how well the RVoG three-stage inversion performs. This work utilizes the L-band single-baseline full polarization interferometric dataset as its basis. It optimally applies the CRITIC (Criteria Importance Through Intercriteria Correlation) method to the first stage of a three-stage process. This approach aims to overcome the issues mentioned above and enhance the accuracy of forest parameter estimation. A CRITIC weighted least squares temporal decoherence iterative algorithm is also proposed for the characteristics of the spaceborne data, in combination with the temporal decoherence algorithm of previous research. The proposed approach is tested and applied to both simulated and actual data. The optimization approach is first assessed using four simulated datasets that simulate coniferous forests with different densities and heights. The preliminary findings suggest that optimizing the complex coherence fitting process through the weighted least squares method enhances the accuracy of ground phase estimation and, consequently, improves the accuracy of the three-stage approach for inverting forest height. The ground phase estimation results for low forest height consistently remained within 0.02 rad, with a root mean square error (RMSE) below 0.05 rad, and no saturation occurred with increasing forest density. The enhanced algorithm outperforms the traditional technique in terms of accuracy in ground phase estimation. Subsequently, the optimized approach is applied to ALOS-2 spaceborne data, proving more successful than the conventional algorithm in reducing the RMSE of forest height. The findings illustrate the method’s superior inversion performance, obtaining an accuracy exceeding 80% in both the test and validation sets. The validation set’s RMSE is approximately 2.5 m, and the mean absolute error (MAE) is within 2 m. Moreover, it is observed that to counteract the uncertainty in temporal decoherence induced by climate change, a larger temporal baseline necessitates a larger random motion compensation term and phase offset term. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

22 pages, 7912 KiB  
Article
Underlying Topography Estimation over Forest Using Maximum a Posteriori Inversion with Spaceborne Polarimetric SAR Interferometry
by Xiaoshuai Li, Xiaolei Lv and Zenghui Huang
Remote Sens. 2024, 16(6), 948; https://doi.org/10.3390/rs16060948 - 8 Mar 2024
Viewed by 753
Abstract
This paper presents a method for extracting the digital elevation model (DEM) of forested areas from polarimetric interferometric synthetic aperture radar (PolInSAR) data. The method models the ground phase as a Von Mises distribution, with a mean of the topographic phase computed from [...] Read more.
This paper presents a method for extracting the digital elevation model (DEM) of forested areas from polarimetric interferometric synthetic aperture radar (PolInSAR) data. The method models the ground phase as a Von Mises distribution, with a mean of the topographic phase computed from an external DEM. By combining the prior distribution of the ground phase with the complex Wishart distribution of the observation covariance matrix, we derive the maximum a posterior (MAP) inversion method based on the RVoG model and analyze its Cramer–Rao Lower Bound (CRLB). Furthermore, considering the characteristics of the objective function, this paper introduces a Four-Step Optimization (FSO) method based on gradient optimization, which solves the inefficiency problem caused by exhaustive search in solving ground phase using the MAP method. The method is validated using spaceborne L-band repeat-pass SAOCOM data from a test forest area. The test results for FSO indicate that it is approximately 5.6 times faster than traditional methods without compromising accuracy. Simultaneously, the experimental results demonstrate that the method effectively solves the problem of elevation jumps in DEM inversion when modeling the ground phase with the Gaussian distribution. ICESAT-2 data are used to evaluate the accuracy of the inverted DEM, revealing that our method improves the root mean square error (RMSE) by about 23.6% compared to the traditional methods. Full article
Show Figures

Figure 1

15 pages, 14033 KiB  
Article
A Fourier–Legendre Polynomial Forest Height Inversion Model Based on a Single-Baseline Configuration
by Bing Zhang, Hongbo Zhu, Wenxuan Xu, Sairu Xu, Xinyue Chang, Weidong Song and Jianjun Zhu
Forests 2024, 15(1), 49; https://doi.org/10.3390/f15010049 - 26 Dec 2023
Cited by 3 | Viewed by 1142
Abstract
In this article, we propose a Fourier–Legendre (FL) polynomial forest height estimation algorithm based on low-frequency single-baseline polarimetric interferometric synthetic aperture radar (PolInSAR) data. The algorithm can obtain forest height with a single-baseline PolInSAR configuration while capturing a high-resolution vertical profile for the [...] Read more.
In this article, we propose a Fourier–Legendre (FL) polynomial forest height estimation algorithm based on low-frequency single-baseline polarimetric interferometric synthetic aperture radar (PolInSAR) data. The algorithm can obtain forest height with a single-baseline PolInSAR configuration while capturing a high-resolution vertical profile for the forest volume. This is based on the consideration that the forest height remains constant within neighboring pixels. Meanwhile, we also assume that the coefficients of the FL polynomials remain unchanged within neighboring pixels, except for the last polynomial coefficient. The idea of using neighboring pixels to increase the observations provides us with the possibility to obtain high-order FL polynomials. With this approach, it is possible to obtain a high-resolution vertical profile that is suitable for forest height estimation without losing too much spatial resolution. P-band PolInSAR data acquired in Mabounie in Gabon and Krycklan in Sweden were selected for testing the proposed algorithm. The results show that the algorithm outperforms the random volume over ground (RVoG) model by 18% and 16.7% in forest height estimation for the Mabounie and Krycklan study sites, respectively. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

20 pages, 9784 KiB  
Article
Forest Height Inversion by Combining Single-Baseline TanDEM-X InSAR Data with External DTM Data
by Wenjie He, Jianjun Zhu, Juan M. Lopez-Sanchez, Cristina Gómez, Haiqiang Fu and Qinghua Xie
Remote Sens. 2023, 15(23), 5517; https://doi.org/10.3390/rs15235517 - 27 Nov 2023
Cited by 2 | Viewed by 1000
Abstract
Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). [...] Read more.
Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation. Full article
Show Figures

Graphical abstract

14 pages, 293 KiB  
Brief Report
Retinal Vein Occlusion after COVID-19 Vaccination—A Review
by Ho-Man Leung and Sunny Chi-Lik Au
Vaccines 2023, 11(8), 1281; https://doi.org/10.3390/vaccines11081281 - 26 Jul 2023
Cited by 3 | Viewed by 1591
Abstract
Background Retinal vein occlusion (RVO) occurring after COVID-19 vaccination has been reported worldwide. Such a sight-threatening condition occurring after COVID-19 vaccination is a menace to ophthalmic health. This article reviews current evidence related to post-COVID-19 vaccination RVO. Method A total of 29 relevant [...] Read more.
Background Retinal vein occlusion (RVO) occurring after COVID-19 vaccination has been reported worldwide. Such a sight-threatening condition occurring after COVID-19 vaccination is a menace to ophthalmic health. This article reviews current evidence related to post-COVID-19 vaccination RVO. Method A total of 29 relevant articles identified on PubMed in January 2023 were selected for review. Observation All cases presented to ophthalmologists with visual loss shortly after COVID-19 vaccination. Mean and median age were both 58. No sex predominance was observed. RVO was diagnosed from findings on dilated fundal examination and ophthalmic imaging. AstraZeneca and BNT vaccines accounted for most cases. Vascular risk factors, e.g., diabetes mellitus and hypertension, were common. Most laboratory tests requested came back unremarkable. Most patients responded well to standard treatment, except those with ophthalmic comorbidities. Visual prognosis was excellent on short-term follow-up. Discussion The causality between RVO and COVID-19 vaccination is undeterminable because of the nature of articles, heterogenous reporting styles, contradicting laboratory findings and co-existing vascular risk factors. Vaccine-induced immune thrombotic thrombocytopenia, retinal vasculitis and homocysteinaemia were proposed to explain post-vaccination RVO. Large-scale studies have demonstrated that the incidence of RVO following COVID vaccination is very low. Nevertheless, the effects of boosters on retinal vasculature and ophthalmic health are still unclear. Conclusions The benefits of COVID-19 vaccination are believed to outweigh its ophthalmic risks. To ensure safe vaccination, the prior optimisation of comorbidities and post-vaccination monitoring are important. COVID-19 vaccines (including boosters) should be offered with reasonable confidence. Further studies are warranted to elucidate the ophthalmic impact of vaccines. Full article
(This article belongs to the Special Issue Ophthalmic Adverse Events following SARS-CoV-2 Vaccination)
20 pages, 10204 KiB  
Article
Forest Height Inversion via RVoG Model and Its Uncertainties Analysis via Bayesian Framework—Comparisons of Different Wavelengths and Baselines
by Yongxin Zhang, Han Zhao, Yongjie Ji, Tingwei Zhang and Wangfei Zhang
Forests 2023, 14(7), 1408; https://doi.org/10.3390/f14071408 - 10 Jul 2023
Cited by 3 | Viewed by 1649
Abstract
Accurate estimation of forest height over a large area is beneficial to reduce the uncertainty of forest carbon sink estimation, which is of great significance to the terrestrial carbon cycle, global climate change, forest resource management, and forest-related scientific research. Forest height inversion [...] Read more.
Accurate estimation of forest height over a large area is beneficial to reduce the uncertainty of forest carbon sink estimation, which is of great significance to the terrestrial carbon cycle, global climate change, forest resource management, and forest-related scientific research. Forest height inversion using polarimetric interferometry synthetic aperture radar (PolInSAR) data through Random volume over ground (RVoG) models has demonstrated great potential for large-area forest height mapping. However, the wavelength and baseline length used for the PolInSAR data acquisition plays an important role during the forest height estimation procedure. In this paper, X–, C–, L–, and P–band PolInSAR datasets with four different baseline lengths were simulated and applied to explore the effects of wavelength and baseline length on forest height inversion using RVoG models. Hierarchical Bayesian models developed with a likelihood function of RVoG model were developed for estimated results uncertainty quantification and decrease. Then a similar procedure was applied in the L– and P–band airborne PolInSAR datasets with three different baselines for each band. The results showed that (1) Wavelength showed obvious effects on forest height inversion results with the RVoG model. For the simulated PolInSAR datasets, the L– and P–bands performed better than the X– and C–bands. The best performance was obtained at the P–band with a baseline combination of 10 × 4 m with an absolute error of 0.05 m and an accuracy of 97%. For the airborne PolInSAR datasets, an L–band with the longest baseline of 24 m in this study showed the best performance with R2 = 0.64, RMSE = 3.32 m, and Acc. = 77.78%. (2) It is crucial to select suitable baseline lengths to obtain accurate forest height estimation results. In the four baseline combinations of simulated PolInSAR datasets, the baseline combination of 10 × 4 m both at the L– and P–bands performed best than other baseline combinations. While for the airborne PolInSAR datasets, the longest baseline in three different baselines obtained the highest accuracy at both L– and P–bands. (3) Bayesian framework is useful for estimation results uncertainty quantification and decrease. The uncertainties related to wavelength and baseline length. The uncertainties were reduced obviously at longer wavelengths and suitable baselines. Full article
(This article belongs to the Special Issue Forestry Remote Sensing: Biomass, Changes and Ecology)
Show Figures

Figure 1

17 pages, 13404 KiB  
Article
A Dual-Baseline PolInSAR Method for Forest Height and Vertical Profile Function Inversion Based on the Polarization Coherence Tomography Technique
by Rong Zhao, Shicheng Cao, Jianjun Zhu, Longchong Fu, Yanzhou Xie, Tao Zhang and Haiqiang Fu
Forests 2023, 14(3), 626; https://doi.org/10.3390/f14030626 - 20 Mar 2023
Cited by 2 | Viewed by 1840
Abstract
Forest height and vertical structure profile functions can be estimated using polarimetric interferometric synthetic aperture radar (PolInSAR) data based on the random volume over ground (RVoG) model and polarization coherence tomography (PCT) theory, respectively. For each resolution cell, considering different forest vertical scattering [...] Read more.
Forest height and vertical structure profile functions can be estimated using polarimetric interferometric synthetic aperture radar (PolInSAR) data based on the random volume over ground (RVoG) model and polarization coherence tomography (PCT) theory, respectively. For each resolution cell, considering different forest vertical scattering structure functions to solve the corresponding forest height, the accuracy of PolInSAR forest height inversion will be improved. In this study, a forest vertical structure profile function and forest height inversion algorithm based on PCT technology was developed by using dual-baseline PolInSAR data. Then the deviation of forest height was corrected according to the inverted forest vertical structure. Finally, the LiDAR and PolInSAR data were employed to verify the proposed method. The experimental results show that the accuracy of the proposed method (tropical forest: RMSE = 5.96 m, boreal forest: RMSE = 3.11 m) is 25.5% and 30.43% higher than that of the dual-baseline RVoG model algorithm (tropical forest: RMSE = 8 m, boreal forest: RMSE = 4.47 m). Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

26 pages, 8580 KiB  
Article
Combining Multi-Dimensional SAR Parameters to Improve RVoG Model for Coniferous Forest Height Inversion Using ALOS-2 Data
by Rula Sa, Yonghui Nei and Wenyi Fan
Remote Sens. 2023, 15(5), 1272; https://doi.org/10.3390/rs15051272 - 25 Feb 2023
Cited by 6 | Viewed by 1320
Abstract
This paper considers extinction coefficient changes with height caused by the inhomogeneous distribution of scatterers in heterogeneous forests and uses the InSAR phase center height histogram and Gaussian function to fit the normalized extinction coefficient curve so as to reflect the vertical structure [...] Read more.
This paper considers extinction coefficient changes with height caused by the inhomogeneous distribution of scatterers in heterogeneous forests and uses the InSAR phase center height histogram and Gaussian function to fit the normalized extinction coefficient curve so as to reflect the vertical structure of the heterogeneous forest. Combining polarization decomposition based on the physical model and the PolInSAR parameter inversion method, the ground and volume coherence matrices can be separated based on the polarization characteristics and interference coherence diversity. By combining the new abovementioned parameters, the semi-empirical improved RVoG inversion model can be used to both quantify the effects of temporal decorrelation on coherence and phase errors and avoid the effects of small vertical wavenumbers on the large temporal baseline of spaceborne data. The model provided robust inversion for the height of the coniferous forest and enhanced the parameter estimation of the forest structure. This study addressed the influence of vertical structure differences on the extinction coefficient, though the coherence of the ground and volume in sparse vegetation areas could not be accurately estimated, and the oversensitivity of temporal decorrelation caused by inappropriate vertical wavenumbers. According to this method we used spaceborne L-band ALOS-2 PALSAR data on the Saihanba forest in Hebei Province acquired in 2020 for the purpose of height inversion, with a temporal baseline range of 14–70 days and the vertical wavenumber range of 0.01–0.03 rad/m. The results are further validated using sample data, with R2 reaching 0.67. Full article
Show Figures

Graphical abstract

16 pages, 6626 KiB  
Article
A Method for Forest Canopy Height Inversion Based on UAVSAR and Fourier–Legendre Polynomial—Performance in Different Forest Types
by Hongbin Luo, Cairong Yue, Hua Yuan, Ning Wang and Si Chen
Drones 2023, 7(3), 152; https://doi.org/10.3390/drones7030152 - 22 Feb 2023
Viewed by 2161
Abstract
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an [...] Read more.
Mapping forest canopy height at large regional scales is of great importance for the global carbon cycle. Polarized interferometric synthetic aperture radar is an efficient and irreplaceable remote sensing tool. Developing an efficient and accurate method for forest canopy height estimation is an important issue that needs to be addressed urgently. In this paper, we propose a novel four-stage forest height inversion method based on a Fourier–Legendre polynomial (FLP) with reference to the RVoG three-stage method, using the multi-baseline UAVSAR data from the AfriSAR project as the data source. The third-order FLP is used as the vertical structure function, and a small amount of ground phase and LiDAR canopy height is used as the input to solve and fix the FLP coefficients to replace the exponential function in the RVoG three-stage method. The performance of this method was tested in different forest types (mangrove and inland tropical forests). The results show that: (1) in mangroves with homogeneous forest structure, the accuracy based on the four-stage FLP method is better than that of the RVoG three-stage method. For the four-stage FLP method, R2 is 0.82, RMSE is 6.42 m and BIAS is 0.92 m, while the R2 of the RVoG three-stage method is 0.77, RMSE is 7.33 m, and bias is −3.49 m. In inland tropical forests with complex forest structure, the inversion accuracy based on the four-stage FLP method is lower than that of the RVoG three-stage method. The R2 is 0.50, RMSE is 11.54 m, and BIAS is 6.53 m for the four-stage FLP method; the R2 of the RVoG three-stage method is 0.72, RMSE is 8.68 m, and BIAS is 1.67 m. (2) Compared to the RVoG three-stage method, the efficiency of the four-stage FLP method is improved by about tenfold, with the reduction of model parameters. The inversion time of the FLP method in a mangrove forest is 3 min, and that of the RVoG three-stage method is 33 min. In an inland tropical forest, the inversion time of the FLP method is 2.25 min, and that of the RVoG three-stage method is 21 min. With the application of large regional scale data in the future, the method proposed in this study is more efficient when conditions allow. Full article
Show Figures

Figure 1

25 pages, 7595 KiB  
Article
Forest Height Inversion Based on Time–Frequency RVoG Model Using Single-Baseline L-Band Sublook-InSAR Data
by Lei Wang, Yushan Zhou, Gaoyun Shen, Junnan Xiong and Hongtao Shi
Remote Sens. 2023, 15(1), 166; https://doi.org/10.3390/rs15010166 - 28 Dec 2022
Cited by 2 | Viewed by 4780
Abstract
The interferometric synthetic aperture radar (InSAR) technique based on time–frequency (TF) analysis has great potential for mapping the forest canopy height model (CHM) at regional and global scales, as it benefits from the additional InSAR observations provided by the sublook decomposition. Meanwhile, due [...] Read more.
The interferometric synthetic aperture radar (InSAR) technique based on time–frequency (TF) analysis has great potential for mapping the forest canopy height model (CHM) at regional and global scales, as it benefits from the additional InSAR observations provided by the sublook decomposition. Meanwhile, due to the wider swath and higher spatial resolution of single-polarization data, InSAR has a higher observation efficiency in comparison with PolInSAR. However, the accuracy of the CHM inversion obtained by the TF-InSAR method is attenuated by its inaccurate coherent scattering modeling and uncertain parameter calculation. Hence, a new approach for CHM estimation based on single-baseline InSAR data and sublook decomposition is proposed in this study. With its derivation of the coherent scattering modeling based on the scattering matrix of sublook observations, a time–frequency based random volume over ground (TF-RVoG) model is proposed to describe the relationship between the sublook coherence and the forest biophysical parameters. Then, a modified three-stage method based on the TF-RVoG model is used for CHM retrieval. Finally, the two-dimensional (2-D) ambiguous error of pure volume coherence caused by residual ground scattering and temporal decorrelation is alleviated in the complex unit circle. The performance of the proposed method was tested with airborne L-band E-SAR data at the Krycklan test site in Northern Sweden. Results show that the modified three-stage method provides a root-mean-square error (RMSE) of 5.61 m using InSAR and 14.3% improvement over the PolInSAR technique with respect to the classical three-stage inversion result. An inversion accuracy of RMSE = 2.54 m is obtained when the spatial heterogeneity of CHM is considered using the proposed method, demonstrating a noticeable improvement of 32.8% compared with results from the existing method which introduces the fixed temporal decorrelation factor. Full article
(This article belongs to the Special Issue SAR for Forest Mapping II)
Show Figures

Figure 1

24 pages, 11126 KiB  
Article
An Improved Forest Height Model Using L-Band Single-Baseline Polarimetric InSAR Data for Various Forest Densities
by Ao Sui, Opelele Omeno Michel, Yu Mao and Wenyi Fan
Remote Sens. 2023, 15(1), 81; https://doi.org/10.3390/rs15010081 - 23 Dec 2022
Viewed by 1500
Abstract
Forest density affects the inversion of forest height by influencing the penetration and attenuation of synthetic aperture radar (SAR) signals. Traditional forest height inversion methods often fail in low-density forest areas. Based on L-band single-baseline polarimetric SAR interferometry (PolInSAR) simulation data and the [...] Read more.
Forest density affects the inversion of forest height by influencing the penetration and attenuation of synthetic aperture radar (SAR) signals. Traditional forest height inversion methods often fail in low-density forest areas. Based on L-band single-baseline polarimetric SAR interferometry (PolInSAR) simulation data and the BioSAR 2008 data, we proposed a forest height optimization model at the stand scale suitable for various forest densities. This optimization model took into account shortcomings of the three-stage inversion method by employing height errors to represent the mean penetration depth and SINC inversion method. The relationships between forest density and extinction coefficient, penetration depth, phase, and magnitude were also discussed. In the simulated data, the inversion height established by the optimization method was 17.35 m, while the RMSE value was 3.01 m when the forest density was 100 stems/ha. This addressed the drawbacks of the conventional techniques including failing at low forest density. In the real data, the maximum RMSE of the optimization method was 2.17 m as the stand density increased from 628.66 stems/ha to 1330.54 stems/ha, showing the effectiveness and robustness of the optimization model in overcoming the influence of stand density on the inversion process in realistic scenarios. This study overcame the stand density restriction on L-band single baseline PolInSAR data for forest height estimation and offered a reference for algorithm selection and optimization. The technique is expected to be extended from the stand scale to a larger area for forest ecosystem monitoring and management. Full article
(This article belongs to the Special Issue Monitoring Forest Carbon Sequestration with Remote Sensing)
Show Figures

Figure 1

27 pages, 9086 KiB  
Article
Correcting Underestimation and Overestimation in PolInSAR Forest Canopy Height Estimation Using Microwave Penetration Depth
by Hongbin Luo, Cairong Yue, Ning Wang, Guangfei Luo and Si Chen
Remote Sens. 2022, 14(23), 6145; https://doi.org/10.3390/rs14236145 - 4 Dec 2022
Cited by 1 | Viewed by 2002
Abstract
PolInSAR is an active remote sensing technique that is widely used for forest canopy height estimation, with the random volume over ground (RVoG) model being the most classic and effective forest canopy height inversion approach. However, penetration of microwave energy into the forest [...] Read more.
PolInSAR is an active remote sensing technique that is widely used for forest canopy height estimation, with the random volume over ground (RVoG) model being the most classic and effective forest canopy height inversion approach. However, penetration of microwave energy into the forest often leads to a downward shift of the canopy phase center, which leads to model underestimation of the forest canopy height. In addition, in the case of sparse and low forests, the canopy height is overestimated, owing to the large ground-to-volume amplitude ratio in the RVoG model and severe temporal decorrelation effects. To solve this problem, in this study, we conducted an experiment on forest canopy height estimation with the RVoG model using L-band multi-baseline fully polarized PolInSAR data obtained from the Lope and Pongara test areas of the AfriSAR project. We also propose various RVoG model error correction methods based on penetration depth by analyzing the model’s causes of underestimation and overestimation. The results show that: (1) In tall forest areas, there is a general underestimation of canopy height, and the value of this underestimation correlates strongly with the penetration depth, whereas in low forest areas, there is an overestimation of canopy height owing to severe temporal decorrelation; in this instance, overestimation can also be corrected by the penetration depth. (2) Based on the reference height RH100, we used training sample iterations to determine the correction thresholds to correct low canopy overestimation and tall canopy underestimation; by applying these thresholds, the inversion error of the RVoG model can be improved to some extent. The corrected R2 increased from 0.775 to 0.856, and the RMSE decreased from 7.748 m to 6.240 m in the Lope test area. (3) The results obtained using the infinite-depth volume condition p-value as the correction threshold were significantly better than the correction results for the reference height, with the corrected R2 value increasing from 0.775 to 0.914 and the RMSE decreasing from 7.748 m to 4.796 m. (4) Because p-values require a true height input, we extended the application scale of the method by predicting p-values as correction thresholds via machine learning methods and polarized interference features; accordingly, the corrected R2 increased from 0.775 to 0.845, and the RMSE decreased from 7.748 m to 6.422 m. The same pattern was obtained for the Pongara test area. Overall, the findings of this study strongly suggest that it is effective and feasible to use penetration depth to correct for RVoG model errors. Full article
(This article belongs to the Special Issue Advanced Earth Observations of Forest and Wetland Environment)
Show Figures

Figure 1

19 pages, 4294 KiB  
Article
A Method for Forest Canopy Height Inversion Based on Machine Learning and Feature Mining Using UAVSAR
by Hongbin Luo, Cairong Yue, Fuming Xie, Bodong Zhu and Si Chen
Remote Sens. 2022, 14(22), 5849; https://doi.org/10.3390/rs14225849 - 18 Nov 2022
Cited by 2 | Viewed by 2376
Abstract
The mapping of tropical rainforest forest structure parameters plays an important role in biodiversity and carbon stock estimation. The current mechanism models based on PolInSAR for forest height inversion (e.g., the RVoG model) are physical process models, and realistic conditions for model parameterization [...] Read more.
The mapping of tropical rainforest forest structure parameters plays an important role in biodiversity and carbon stock estimation. The current mechanism models based on PolInSAR for forest height inversion (e.g., the RVoG model) are physical process models, and realistic conditions for model parameterization are often difficult to establish for practical applications, resulting in large forest height estimation errors. As an alternative, machine learning approaches offer the benefit of model simplicity, but these tools provide limited capabilities for interpretation and generalization. To explore the forest height estimation method combining the mechanism model and the empirical model, we utilized UAVSAR multi-baseline PolInSAR L-band data from the AfriSAR project and propose a solution of a mechanism model combined with machine learning. In this paper, two mechanism models were used as controls, the RVoG three-phase method and the RVoG phase-coherence amplitude method. The vertical structure parameters of the forest obtained from the mechanism model were used as the independent variables of the machine learning model. Random forest (RF) and partial least squares (PLS) regression models were used to invert the forest canopy height. Results show that the inversion accuracy of the machine learning method, combined with the mechanism model, is significantly better than that of the single-mechanism model method. The most influential independent variables were penetration depth, volume coherence phase center height, coherence separation, and baseline selection. With the precondition that the cumulative contribution of the independent variables was greater than 90%, the number of independent variables in the two study areas was reduced from 19 to 4, and the accuracy of the RF-RVoG-DEP model was higher than that of the PLS-RVoG-DEP model. For the Lope test area, the R2 of the RVoG phase coherence amplitude method is 0.723, the RMSE is 8.583 m, and the model bias is −2.431 m; the R2 of the RVoG three-stage method is 0.775, the RMSE is 7.748, and the bias is 1.120 m, the R2 of the PLS-RVoG-DEP model is 0.850, the RMSE is 6.320 m, and the bias is 0.002 m; and the R2 of the RF-RVoG-DEP model is 0.900, the RMSE is 5.154 m, and the bias is −0.061 m. The results for the Pongara test area are consistent with the pattern for the Lope test area. The combined “fusion model” offers a substantial improvement in forest height estimation from the traditional mechanism modeling method. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Figure 1

Back to TopTop