Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,166)

Search Parameters:
Keywords = S. aureus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3281 KiB  
Article
Biocompatibility and Post-Marketing Surveillance Study of Emollient Plus Medical Device Cream Containing Oligofructans from Ophiopogon japonicus and Acetyl Heptapeptide-4 in Atopic Dermatitis Skin Care
by Michał Rachalewski, Monika Pasikowska-Piwko, Renata Dębowska, Iwona Marczak, Karolina Lendzion, Hubert Godziątkowski, Robert Czarnomysy, Katarzyna Rogiewicz and Irena Eris
Cosmetics 2024, 11(4), 136; https://doi.org/10.3390/cosmetics11040136 (registering DOI) - 10 Aug 2024
Abstract
Emollients plus are defined as topical formulations containing active ingredients with no pharmacological effect. They are designed to target multiple mechanisms in AD pathophysiology. The objective of the present study was to assess the efficacy of emollient plus medical device cream by performing [...] Read more.
Emollients plus are defined as topical formulations containing active ingredients with no pharmacological effect. They are designed to target multiple mechanisms in AD pathophysiology. The objective of the present study was to assess the efficacy of emollient plus medical device cream by performing a post-marketing surveillance study. It was carried out in cooperation with 88 members of the Polish Association for Atopic Diseases who were diagnosed with AD and voluntarily fulfilled the questionnaire after 14 days of product use. Additionally, the medical device underwent in vitro/ex vivo testing. Cytotoxicity was assessed by in vitro studies: direct MTT assay and indirect Agarose Overlay Assay. An ex vivo EpiDerm™ culture (EPI-200) was used to investigate the irritation potential, and culture medium was collected after 18 h of contact with the skin model to perform a flow cytometric for the analysis of inflammatory cytokines. A dermatological assessment with the local SCORAD was employed to confirm the efficacy of the cream. It was found that 86% of patients with AD observed an improvement in their skin condition during the two-week testing period. In vitro/ex vivo assays confirmed that the product is safe, non-irritant, and does not stimulate the production of proinflammatory cytokines. According to the local SCORAD, the symptoms of AD were alleviated. Moreover, preliminary studies indicated its efficacy in eliminating S. aureus on patients’ skin. Full article
14 pages, 3333 KiB  
Article
Discovery of Antibacterial Compounds with Potential Multi-Pharmacology against Staphylococcus Mur ligase Family Members by In Silico Structure-Based Drug Screening
by Mio Teshima, Kohei Monobe, Saya Okubo and Shunsuke Aoki
Molecules 2024, 29(16), 3792; https://doi.org/10.3390/molecules29163792 (registering DOI) - 10 Aug 2024
Abstract
Staphylococcus aureus (S. aureus) is a major bacterial infection in humans, leading to severe disease and causing death. The stagnation of antibiotic development in recent decades has made it difficult to combat drug-resistant infections. In this study, we performed an in [...] Read more.
Staphylococcus aureus (S. aureus) is a major bacterial infection in humans, leading to severe disease and causing death. The stagnation of antibiotic development in recent decades has made it difficult to combat drug-resistant infections. In this study, we performed an in silico structure-based drug screening (SBDS) targeting the S. aureus MurE (saMurE) enzyme involved in cell wall synthesis of S. aureus. saMurE is an enzyme that is essential for the survival of S. aureus but not present in humans. SBDS identified nine saMurE inhibitor candidates, Compounds 19, from a structural library of 154,118 compounds. Among them, Compound 2 showed strong antibacterial activity against Staphylococcus epidermidis (S. epidermidis) used as a model bacterium. Amino acid sequence homology between saMurE and S. epidermidis MurE is 87.4%, suggesting that Compound 2 has a similar inhibitory effect on S. aureus. Compound 2 showed an IC50 value of 301 nM for S. epidermidis in the dose-dependent growth inhibition assay. Molecular dynamics simulation showed that Compound 2 binds stably to both S. aureus MurD and S. aureus MurF, suggesting that it is a potential multi-pharmacological pharmacological inhibitor. The structural and bioactivity information of Compound 2, as well as its potential multiple-target activity, could contribute to developing new antimicrobial agents based on MurE inhibition. Full article
Show Figures

Graphical abstract

12 pages, 1929 KiB  
Article
Targeting N-Acetylglucosaminidase in Staphylococcus aureus with Iminosugar Inhibitors
by Janja Sluga, Tihomir Tomašič, Marko Anderluh, Martina Hrast Rambaher, Gregor Bajc, Alen Sevšek, Nathaniel I. Martin, Roland J. Pieters, Marjana Novič and Katja Venko
Antibiotics 2024, 13(8), 751; https://doi.org/10.3390/antibiotics13080751 (registering DOI) - 10 Aug 2024
Viewed by 1
Abstract
Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new [...] Read more.
Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new effective antibacterial agents is extremely important to solve the increasing problem of bacterial resistance. The bacteriolytic enzyme autolysin E (AtlE) is a promising new drug target as it plays a key role in the degradation of peptidoglycan in the bacterial cell wall. Consequently, disruption of function can have an immense impact on bacterial growth and survival. An in silico and in vitro evaluation of iminosugar derivatives as potent inhibitors of S. aureus (AtlE) was performed. Three promising hit compounds (1, 3 and 8) were identified as AtlE binders in the micromolar range as measured by surface plasmon resonance. The most potent compound among the SPR response curve hits was 1, with a KD of 19 μM. The KD value for compound 8 was 88 μM, while compound 3 had a KD value of 410 μM. Full article
(This article belongs to the Special Issue Recent Advances in Antimicrobial Drug Discovery, 2nd Edition)
Show Figures

Figure 1

21 pages, 1758 KiB  
Review
Staphylococcal Enterotoxins: Description and Importance in Food
by Mirian Yuliza Rubio Cieza, Erika Carolina Romão Bonsaglia, Vera Lucia Mores Rall, Marcos Veiga dos Santos and Nathália Cristina Cirone Silva
Pathogens 2024, 13(8), 676; https://doi.org/10.3390/pathogens13080676 (registering DOI) - 9 Aug 2024
Viewed by 138
Abstract
Staphylococcus aureus stands out as one of the most virulent pathogens in the genus Staphylococcus. This characteristic is due to its ability to produce a wide variety of staphylococcal enterotoxins (SEs) and exotoxins, which in turn can cause staphylococcal food poisoning (SFP), [...] Read more.
Staphylococcus aureus stands out as one of the most virulent pathogens in the genus Staphylococcus. This characteristic is due to its ability to produce a wide variety of staphylococcal enterotoxins (SEs) and exotoxins, which in turn can cause staphylococcal food poisoning (SFP), clinical syndromes such as skin infections, inflammation, pneumonia, and sepsis, in addition to being associated with the development of inflammation in the mammary glands of dairy cattle, which results in chronic mastitis and cell necrosis. SEs are small globular proteins that combine superantigenic and emetic activities; they are resistant to heat, low temperatures, and proteolytic enzymes and are tolerant to a wide pH range. More than 24 SE genes have been well described (SEA-SEE, SEG, SEH, SEI, SEJ, SElK, SElL, SElM, SElN, SElO, SElP, SElQ, SElR, SElS, SElT, SElU, SElV, SElW, SElX, SElY, and SElZ), being a part of different SFP outbreaks, clinical cases, and isolated animal strains. In recent years, new genes (sel26, sel27, sel28, sel31, sel32, and sel33) from SEs have been described, as well as two variants (seh-2p and ses-3p) resulting in a total of thirty-three genes from Ses, including the nine variants that are still in the process of genetic and molecular structure evaluation. SEs are encoded by genes that are located in mobile genetic elements, such as plasmids, prophages, pathogenicity islands, and the enterotoxin gene cluster (egc), and housed in the genomic island of S. aureus. Both classical SEs and SE-like toxins (SEls) share phylogenetic relationships, structure, function, and sequence homology, which are characteristics for the production of new SEs through recombination processes. Due to the epidemiological importance of SEs, their rapid assessment and detection have been crucial for food security and public health; for this reason, different methods of identification of SEs have been developed, such as liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), molecular methods, and whole-genome sequencing; providing the diagnosis of SEs and a better understanding of the occurrence, spread, and eradication of SEs. This review provides scientific information on the enterotoxins produced by S. aureus, such as structural characteristics, genetic organization, regulatory mechanisms, superantigen activity, mechanisms of action used by SEs at the time of interaction with the immune system, methods of detection of SEs, and recent biocontrol techniques used in food. Full article
(This article belongs to the Collection New Insights into Bacterial Pathogenesis)
15 pages, 747 KiB  
Article
The Etiology of Bloodstream Infections at an Italian Pediatric Tertiary Care Hospital: A 17-Year-Long Series
by Chiara Russo, Marcello Mariani, Martina Bavastro, Alessio Mesini, Carolina Saffioti, Erica Ricci, Elisabetta Ugolotti, Roberto Bandettini and Elio Castagnola
Pathogens 2024, 13(8), 675; https://doi.org/10.3390/pathogens13080675 - 9 Aug 2024
Viewed by 97
Abstract
Knowledge of epidemiology is essential for guiding correct antibiotic prescription, reducing bacteremia-associated mortality, and implementing targeted infection control programs. However, only a few studies have reported on the epidemiology of bloodstream infections (BSIs) in pediatrics. We performed a retrospective analysis of all BSIs [...] Read more.
Knowledge of epidemiology is essential for guiding correct antibiotic prescription, reducing bacteremia-associated mortality, and implementing targeted infection control programs. However, only a few studies have reported on the epidemiology of bloodstream infections (BSIs) in pediatrics. We performed a retrospective analysis of all BSIs (excluding those caused by common skin contaminants) diagnosed from 2006 to 2022 in patients younger than 18 years who were treated at an Italian pediatric tertiary care hospital. Overall, 2395 BSIs were recorded, including 2207 (92.15%) due to bacteria and 188 (7.85%) due to fungi. The incidence rate (BSIs/10,000 hospital discharges, IR) of bacterial BSIs significantly increased during the study period. In particular, BSIs caused by S. aureus (including MRSA), Enterobacterales (including ESBL and AmpC producers), Enterococcus spp., and P. aeruginosa became more common. The frequency of carbapenem-resistant strains was <1% and stable over time. Conversely, there was a significant reduction in the incidence of BSIs due to S. pneumoniae. The BSIs were stratified by patient age, and S. aureus was the most frequent cause of BSIs in all age groups, while E. coli was the most frequent in the Enterobacterales family. S. agalactiae was the third most frequent cause of neonatal early-onset BSIs. The prevalence of Enterococcus spp. increased in the subgroups from 8 days to 5 years of age, while P. aeruginosa became more prevalent in children over 5 years of age. S. aureus was also the most frequent isolate in both community- and hospital-onset BSIs, followed by E. coli. The prevalence of multidrug-resistant (MDR) pathogens was very low. It was <5% for both Gram-positive (i.e., MRSA and VRE) and Gram-negative (ESBL, AmpC, and carbapenem-resistant) pathogens, and MDR pathogens were almost exclusively detected in hospital-onset BSIs. Fungi accounted for just under 8% of BSIs. C. albicans was the most frequently isolated strain, followed by C. parapsilosis. Notably, the IR of fungemia did not change significantly during the study period, in spite of an increase in the absolute number of events. The continuous monitoring of local epidemiology is essential to identify changes in the IRs of pathogens and antibiotic susceptibility and to guide antibiotic treatments, especially in the phase when antibiograms are not yet available. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

16 pages, 1798 KiB  
Article
Assessment of Photoactivated Chlorophyllin Production of Singlet Oxygen and Inactivation of Foodborne Pathogens
by Cristina Pablos, Javier Marugán, Rafael van Grieken, Jeremy W. J. Hamilton, Nigel G. Ternan and Patrick S. M. Dunlop
Catalysts 2024, 14(8), 507; https://doi.org/10.3390/catal14080507 - 6 Aug 2024
Viewed by 412
Abstract
Singlet oxygen (1O2) is known to have antibacterial activity; however, production can involve complex processes with expensive chemical precursors and/or significant energy input. Recent studies have confirmed the generation of 1O2 through the activation of photosensitizer molecules [...] Read more.
Singlet oxygen (1O2) is known to have antibacterial activity; however, production can involve complex processes with expensive chemical precursors and/or significant energy input. Recent studies have confirmed the generation of 1O2 through the activation of photosensitizer molecules (PSs) with visible light in the presence of oxygen. Given the increase in the incidence of foodborne diseases associated with cross-contamination in food-processing industries, which is becoming a major concern, food-safe additives, such as chlorophyllins, have been studied for their ability to act as PSs. The fluorescent probe Singlet Oxygen Sensor Green (SOSG®) was used to estimate 1O2 formation upon the irradiation of traditional PSs (rose bengal (RB), chlorin 6 (ce6)) and novel chlorophyllins, sodium magnesium (NaChl) and sodium copper (NaCuChl), with both simulated-solar and visible light. NaChl gave rise to a similar 1O2 production rate when compared to RB and ce6. Basic mixing was shown to introduce sufficient oxygen to the PS solutions, preventing the limitation of the 1O2 production rate. The NaChl-based inactivation of Gram-positive S. aureus and Gram-negative E. coli was demonstrated with a 5-log reduction with UV–Vis light. The NaChl-based inactivation of Gram-positive S. aureus was accomplished with a 2-log reduction after 105 min of visible-light irradiation and a 3-log reduction following 150 min of exposure from an initial viable bacterial concentration of 106 CFU mL−1. CHS-NaChl-based photosensitization under visible light enhanced Gram-negative E. coli inactivation and provided a strong bacteriostatic effect preventing E. coli proliferation. The difference in the ability of NaChl and CHS-NaChl complexes to inactivate Gram-positive and Gram-negative bacteria was confirmed to result from the cell wall structure, which impacted PS–bacteria attachment and therefore the production of localized singlet oxygen. Full article
(This article belongs to the Special Issue Photocatalysis towards a Sustainable Future)
Show Figures

Figure 1

14 pages, 5294 KiB  
Article
Antimicrobial Effect of Chitosan Nanoparticles and Allium Species on Mycobacterium tuberculosis and Several Other Microorganisms
by Jocelyn Olivas-Flores, José Román Chávez-Méndez, Nydia Alejandra Castillo-Martínez, Héctor Javier Sánchez-Pérez, Aracely Serrano-Medina and José Manuel Cornejo-Bravo
Microorganisms 2024, 12(8), 1605; https://doi.org/10.3390/microorganisms12081605 - 6 Aug 2024
Viewed by 481
Abstract
This study evaluates the antimicrobial efficacy of chitosan nanoparticles (CNPs), varying in size, against clinical isolates of Mycobacterium tuberculosis (MTB), E. coli, S. aureus, E. faecalis, and C. albicans, as well as the antimicrobial effects of aqueous extracts and [...] Read more.
This study evaluates the antimicrobial efficacy of chitosan nanoparticles (CNPs), varying in size, against clinical isolates of Mycobacterium tuberculosis (MTB), E. coli, S. aureus, E. faecalis, and C. albicans, as well as the antimicrobial effects of aqueous extracts and lyophilized powders of Allium (garlic) species. CNPs were synthesized through ionotropic gelation and characterized by Z potential, hydrodynamic diameter (dynamic light scattering, DLS), and SEM. Aqueous garlic extracts were prepared via decoction. We assessed antimicrobial activity using disk diffusion and broth microdilution methods; in addition, a modified agar proportion method in blood agar was used for antimicrobial activity against MTB. CNPs inhibited MTB growth at 300 μg for 116.6 nm particles and 400 μg for 364.4 nm particles. The highest antimicrobial activity was observed against E. faecalis with nanoparticles between 200 and 280 nm. Allium sativum extract produced inhibition for C. albicans at 100 μg. The results indicate that CNPs possess significant antimicrobial properties against a range of pathogens, including MTB, at high concentrations. On the other hand, aqueous Allium sativum extracts exhibited antimicrobial activity. Nonetheless, due to their instability in solution, the use of lyophilized Allium sativum powder is preferable. Full article
(This article belongs to the Special Issue Prevention, Treatment and Diagnosis of Tuberculosis, 2nd Edition)
Show Figures

Figure 1

8 pages, 3075 KiB  
Article
Complete Growth Inhibition of Pseudomonas aeruginosa by Organo-Selenium-Incorporated Urinary Catheter Material
by Phat L. Tran, Caroline L. Presson, Md Nayeem Hasan Kashem, Wei Li, Ted W. Reid and Werner T. W. de Riese
Antibiotics 2024, 13(8), 736; https://doi.org/10.3390/antibiotics13080736 - 6 Aug 2024
Viewed by 355
Abstract
To further investigate the inhibition of Pseudomonas aeruginosa’s in vitro growth and biofilm formation by an organo-selenium-incorporated polyurethane (PU) catheter material. P. aeruginosa, Staphylococcus aureus, and Candida albicans were incubated in vitro with organo-selenium and control polyurethane catheter materials in [...] Read more.
To further investigate the inhibition of Pseudomonas aeruginosa’s in vitro growth and biofilm formation by an organo-selenium-incorporated polyurethane (PU) catheter material. P. aeruginosa, Staphylococcus aureus, and Candida albicans were incubated in vitro with organo-selenium and control polyurethane catheter materials in the presence of glutathione. Growth was evaluated by a colony-forming-unit (CFU) count and visualized with confocal laser scanning microscopy. Two different PU catheter materials were used. Using tin-catalyzed PU catheter material, complete inhibition of S. aureus was seen at 1% selenium (Se), whereas no inhibition was seen for P. aeruginosa at up to 3.0% Se. Whereas, using a thermoplastic PU catheter material, 1.5% Se and 2% Se organo-selenium caused several logs of growth inhibition of P. aeruginosa, and 2.5% selenium, incorporation showed complete inhibition (8 logs). Samples with lower than 1.5% selenium did not show adequate growth inhibition for P. aeruginosa. Similar in vitro growth inhibition was achieved against a multidrug-resistant C. albicans strain. It was concluded that optimal inhibition of P. aeruginosa in vitro growth and biofilm formation occurs with 2.5% selenium incorporated as organo-selenium in a thermoplastic PU catheter material. These results suggest that reduced incidence of CAUTIs (catheter associated urinary tract infections) with P. aeruginosa and other bacteria and fungi can be achieved by using organo-selenium-incorporated catheters. Full article
Show Figures

Figure 1

15 pages, 2997 KiB  
Article
Photothermal Antibacterial and Osteoinductive Polypyrrole@Cu Implants for Biological Tissue Replacement
by Tianyou Zhou, Zeyan Zhou and Yingbo Wang
Materials 2024, 17(15), 3882; https://doi.org/10.3390/ma17153882 - 5 Aug 2024
Viewed by 378
Abstract
The treatment of bone defects caused by disease or accidents through the use of implants presents significant clinical challenges. After clinical implantation, these materials attract and accumulate bacteria and hinder the integration of the implant with bone tissue due to the lack of [...] Read more.
The treatment of bone defects caused by disease or accidents through the use of implants presents significant clinical challenges. After clinical implantation, these materials attract and accumulate bacteria and hinder the integration of the implant with bone tissue due to the lack of osteoinductive properties, both of which can cause postoperative infection and even lead to the eventual failure of the operation. This work successfully prepared a novel biomaterial coating with multiple antibacterial mechanisms for potent and durable and osteoinductive biological tissue replacement by pulsed PED (electrochemical deposition). By effectively regulating PPy (polypyrrole), the uniform composite coating achieved sound physiological stability. Furthermore, the photothermal analysis showcased exceptional potent photothermal antibacterial activity. The antibacterial assessments revealed a bacterial eradication rate of 100% for the PPy@Cu/PD composite coating following a 24 h incubation. Upon the introduction of NIR (near-infrared) irradiation, the combined effects of multiple antibacterial mechanisms led to bacterial reduction rates of 99% for E. coli and 98% for S. aureus after a 6 h incubation. Additionally, the successful promotion of osteoblast proliferation was confirmed through the application of the osteoinductive drug PD (pamidronate disodium) on the composite coating’s surface. Therefore, the antimicrobial Ti-based coatings with osteoinductive properties and potent and durable antibacterial properties could serve as ideal bone implants. Full article
(This article belongs to the Special Issue Advanced Functional Nanomaterials for Biomedical Application)
Show Figures

Figure 1

16 pages, 8936 KiB  
Article
Novel Collagen-Based Emulsions Embedded with Palmarosa Essential Oil, and Chamomile and Calendula Tinctures, for Skin-Friendly Textile Materials
by Laura Chirilă, Miruna S. Stan, Sabina Olaru, Alina Popescu, Mihaela-Cristina Lite, Doina Toma and Ionela C. Voinea
Materials 2024, 17(15), 3867; https://doi.org/10.3390/ma17153867 - 5 Aug 2024
Viewed by 433
Abstract
Skin-friendly textile materials were obtained by applying oil-in-water emulsions based on palmarosa essential oil, chamomile, and calendula tinctures onto cotton fabrics. Different formulations based on these bioactive principles incorporated in collagen as polymeric matrices were prepared and immobilized on a plain weave textile [...] Read more.
Skin-friendly textile materials were obtained by applying oil-in-water emulsions based on palmarosa essential oil, chamomile, and calendula tinctures onto cotton fabrics. Different formulations based on these bioactive principles incorporated in collagen as polymeric matrices were prepared and immobilized on a plain weave textile structure from 100% cotton. The functionalized textile materials were characterized in terms of physicochemical, mechanical, antibacterial, and biocompatibility points of view. The pH values of the prepared emulsions were in the range of 4.81–5.23 and showed no significant differences after 4 h of storage. Moreover, the addition of a higher quantity of active principles (palmarosa essential oil and plant tinctures) caused slightly lower values of acidic pH. The electrical conductivity of the obtained emulsions increased with the decrease in the oil phases in the system. The highest values were obtained for the emulsion developed with the smallest volume fraction of active principle—palmarosa essential oil and plant tinctures. The emulsion that contained the least amount of collagen and the highest number of active principles exhibited the lowest stability. The textile materials treated with synthesized emulsions exerted antibacterial effects against S. aureus and E. coli strains and did not affect keratinocyte growth, spreading, and organization, highlighting the biocompatibility of these developed skin-friendly textiles. Full article
Show Figures

Figure 1

16 pages, 1286 KiB  
Article
Genetic Characterization of Antibiotic-Resistant Staphylococcus spp. and Mammaliicoccus sciuri from Healthy Humans and Poultry in Nigeria
by Christiana Jesumirhewe, Tolulope Oluwadamilola Odufuye, Juliana Ukinebo Ariri, Amdallat Arike Adebiyi, Amina Tanko Sanusi, Anna Stöger, Beatriz Daza-Prieto, Franz Allerberger, Adriana Cabal-Rosel and Werner Ruppitsch
Antibiotics 2024, 13(8), 733; https://doi.org/10.3390/antibiotics13080733 - 5 Aug 2024
Viewed by 327
Abstract
Staphylococcus spp. poses a significant threat to human and animal health due to their capacity to cause a wide range of infections in both. In this study, resistance genes conferring antibiotic resistance in Staphylococcus spp. and Mammaliicoccus sciuri isolates from humans and poultry [...] Read more.
Staphylococcus spp. poses a significant threat to human and animal health due to their capacity to cause a wide range of infections in both. In this study, resistance genes conferring antibiotic resistance in Staphylococcus spp. and Mammaliicoccus sciuri isolates from humans and poultry in Edo state, Nigeria, were investigated. In April 2017, 61 Staphylococcus spp. isolates were obtained from urine, wounds, nasal and chicken fecal samples. Species identification was carried out by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Antimicrobial susceptibility testing was performed using the Kirby-Bauer method for 16 antibiotics. Whole-genome sequencing was used for characterization of the isolates. The 61 investigated isolates included Staphylococcus aureus, S. arlettae, M. sciuri, S. haemolyticus, and S. epidermidis. A total of 47 isolates (77%) belonged to human samples and 14 (23%) isolates were collected from poultry samples. All were phenotypically resistant to at least three antimicrobial(s). Multiple resistance determinants were detected in the human and poultry isolates analyzed. Phylogenetic analysis revealed close relatedness among the isolates within each species for S. arlettae, M. sciuri, and S. haemolyticus, respectively. This study delivered comprehensive genomic insights into antibiotic-resistant Staphylococcus species and M. sciuri isolates from human and poultry sources in Edo state, Nigeria, from a One Health perspective. Full article
(This article belongs to the Special Issue A One Health Approach to Antimicrobial Resistance)
Show Figures

Figure 1

24 pages, 4799 KiB  
Article
Identification, Characterization, and Antibacterial Evaluation of Five Endophytic Fungi from Psychotria poeppigiana Müll. Arg., an Amazon Plant
by Sonia Mendieta-Brito, Mahmoud Sayed, Eunjung Son, Dong-Seon Kim, Marcelo Dávila and Sang-Hyun Pyo
Microorganisms 2024, 12(8), 1590; https://doi.org/10.3390/microorganisms12081590 - 5 Aug 2024
Viewed by 450
Abstract
Endophytic fungi, residing within plants without causing disease, are known for their ability to produce bioactive metabolites with diverse properties such as antibacterial, antioxidant, and antifungal activities, while also influencing plant defense mechanisms. In this study, five novel endophytic fungi species were isolated [...] Read more.
Endophytic fungi, residing within plants without causing disease, are known for their ability to produce bioactive metabolites with diverse properties such as antibacterial, antioxidant, and antifungal activities, while also influencing plant defense mechanisms. In this study, five novel endophytic fungi species were isolated from the leaves of Psychotria poeppigiana Müll. Arg., a plant from the Rubiaceae family, collected in the tropical Amazon region of Bolivia. The endophytic fungi were identified as a Neopestalotiopsis sp., three Penicillium sp., and an Aspergillus sp. through 18S ribosomal RNA sequencing and NCBI-BLAST analysis. Chemical profiling revealed that their extracts obtained by ethyl acetate contained terpenes, flavonoids, and phenolic compounds. In a bioautography study, the terpenes showed high antimicrobial activity against Escherichia coli. Notably, extracts from the three Penicillium species exhibited potent antibacterial activity, with minimum inhibitory concentration (MIC) values ranging from 62.5 to 2000 µg/mL against all three pathogens: Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis (both Gram-positive and Gram-negative bacteria). These findings highlight the potential of these endophytic fungi, especially Penicillium species as valuable sources of secondary metabolites with significant antibacterial activities, suggesting promising applications in medicine, pharmaceuticals, agriculture, and environmental technologies. Full article
Show Figures

Figure 1

11 pages, 2961 KiB  
Article
A Bead Biofilm Reactor for High-Throughput Growth and Translational Applications
by Annika Gilmore, Marissa Badham, Winston Rudisin, Nicholas Ashton and Dustin Williams
Microorganisms 2024, 12(8), 1588; https://doi.org/10.3390/microorganisms12081588 - 5 Aug 2024
Viewed by 422
Abstract
Bacteria in natural ecosystems such as soil, dirt, or debris preferentially reside in the biofilm phenotype. When a traumatic injury, such as an open fracture, occurs, these naturally dwelling biofilms and accompanying foreign material can contaminate the injury site. Given their high tolerance [...] Read more.
Bacteria in natural ecosystems such as soil, dirt, or debris preferentially reside in the biofilm phenotype. When a traumatic injury, such as an open fracture, occurs, these naturally dwelling biofilms and accompanying foreign material can contaminate the injury site. Given their high tolerance of systemic levels of antibiotics that may be administered prophylactically, biofilms may contribute to difficult-to-treat infections. In most animal models, planktonic bacteria are used as initial inocula to cause infection, and this might not accurately mimic clinically relevant contamination and infection scenarios. Further, few approaches and systems utilize the same biofilm and accompanying substrate throughout the experimental continuum. In this study, we designed a unique reactor to grow bacterial biofilms on up to 50 silica beads that modeled environmental wound contaminants. The data obtained indicated that the reactor system repeatably produced mature Staphylococcus aureus and Pseudomonas aeruginosa biofilms on the silica beads, with an average of 5.53 and 6.21 log10 colony-forming units per mm2, respectively. The bead substrates are easily manipulable for in vitro or in vivo applications, thus improving translatability. Taken together, the bead biofilm reactor presented herein may be a useful system for repeatably growing established biofilms on silica beads that could be used for susceptibility testing and as initial inocula in future animal models of trauma-related injuries. Full article
(This article belongs to the Special Issue Advance Research on Bacterial Biofilm)
Show Figures

Figure 1

12 pages, 1521 KiB  
Article
Phytochemical Composition and Antimicrobial and Antibiofilm Effect of Myrciaria cauliflora Hydroethanolic Extract against Staphylococcus aureus and Acinetobacter baumannii
by Luciane Dias de Oliveira, Ana Luisa Monteiro Ribeiro, Sthéfani de Oliveira Dias, Geovani Moreira da Cruz, Raquel Teles de Menezes, Lara Steffany de Carvalho, Mariana Gadelho Gimenez Diamantino, Thaís Cristine Pereira, Maria Cristina Marcucci and Amjad Abu Hasna
Methods Protoc. 2024, 7(4), 60; https://doi.org/10.3390/mps7040060 - 4 Aug 2024
Viewed by 372
Abstract
Staphylococcus aureus and Acinetobacter baumannii are opportunistic pathogens, and both are involved in different oral infections. This work aimed to analyze the phytochemical composition of Myrciaria cauliflora hydroethanolic extract and to evaluate its antimicrobial and antibiofilm action against Staphylococcus aureus (ATCC 6538) and [...] Read more.
Staphylococcus aureus and Acinetobacter baumannii are opportunistic pathogens, and both are involved in different oral infections. This work aimed to analyze the phytochemical composition of Myrciaria cauliflora hydroethanolic extract and to evaluate its antimicrobial and antibiofilm action against Staphylococcus aureus (ATCC 6538) and Acinetobacter baumannii (ATCC 19606; multi-resistant clinical strains 58004, 50098, 566006, and H557). Myrciaria cauliflora hydroethanolic extract was prepared, and the content of soluble solids, flavonoids, and phenols was quantified. High-performance liquid chromatography (HPLC) was performed later. The minimum inhibitory concentration was determined using the broth microdilution method according to the Clinical and Laboratory Standards Institute, standard M7-A6, and subsequently, its minimum bactericidal concentration was determined. Then, the most effective concentrations were analyzed against biofilms. Statistical analysis was performed using the ANOVA method with Tukey’s test. The soluble solids content in the prepared hydroethanolic extract of M. cauliflora was 2.22%. Additionally, the total flavonoid content, measured using the quercetin standard curve, was 0.040 mg/mL. Furthermore, the total phenol content, determined using the gallic acid standard curve, was 0.729 mg/mL. HPLC analysis presented peaks of gallic acid (11.80 m), p-coumaric acid (12.09 m), cinnamic acid derivative (19.02 m), and ellagic acid (29.83 m). The extract demonstrated antimicrobial and antibiofilm action against all tested strains. However, the most effective antibacterial concentration against all the tested bacteria was 5.55 mg/mL. Therefore, these chemical components justify that M. cauliflora hydroethanolic extract is effective in reducing biofilm formation in S. aureus (standard strain) and A. baumannii (standard and clinical strains). Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Figure 1

17 pages, 1394 KiB  
Article
Microbiological and Molecular Investigation of Antimicrobial Resistance in Staphylococcus aureus Isolates from Western Romanian Dairy Farms: An Epidemiological Approach
by Ioan Hutu, Bianca Cornelia Lungu, Ioana Irina Spataru, Iuliu Torda, Tiberiu Iancu, Paul Andrew Barrow and Calin Mircu
Animals 2024, 14(15), 2266; https://doi.org/10.3390/ani14152266 - 4 Aug 2024
Viewed by 329
Abstract
Antimicrobial therapy is the most frequently used medical intervention for bovine mastitis in the dairy industry. This study aims to monitor the extent of the antimicrobial resistance (AMR) problem in Staphylococcus aureus in the dairy industry in Western Romania. Twenty farms were selected [...] Read more.
Antimicrobial therapy is the most frequently used medical intervention for bovine mastitis in the dairy industry. This study aims to monitor the extent of the antimicrobial resistance (AMR) problem in Staphylococcus aureus in the dairy industry in Western Romania. Twenty farms were selected by random sampling in a transverse epidemiological study conducted across four counties in Western Romania and divided into livestock units. This study assessed the association between the resistance genes to phenotypic expression of resistance and susceptibility. Isolates of S. aureus were identified and q-PCR reactions were used to detect antibiotic resistance genes. One hundred and fifty bovine and 20 human samples were positive for S. aureus. Twenty five percent of bovine isolates (30/120) and none(0/30) of the human isolates were methicillin-resistant S. aureus (MRSA). All isolates were susceptible to fosfomycin, ciprofloxacin, netilmicin, and resistant to ampicillin and penicillin. S. aureus isolates regarded as phenotypically resistant (R) were influenced by the origin of the samples (human versus bovine, χ2 = 36.510, p = 0.013), whether they were methicillin-resistant S. aureus (χ2 = 108.891, p < 0.000), the county (χ2 = 103.282, p < 0.000) and farm of isolation (χ2 = 740.841, p < 0.000), but not by the size of the farm (χ2 = 65.036, p = 0.306). The multiple antibiotic resistance index was calculated for each sample as the number regarded as phenotypically resistant (R)/total antibiotics tested (MARI = 0.590 ± 0.023) was significantly higher (p < 0.000) inmethicillin-resistant S. aureus (0.898 ± 0.019) than non-methicillin-resistant S. aureus (0.524 ± 0.024) isolates. For the antibiotics tested, the total penetrance (P%) of the resistance genes was 59%, 83% for blaZ, 56% for cfr, 50% for erm(B), 53% for erm(C), 57% for mecA and 32% for tet(K). Penetrance can be used as a parameter for guidance towards a more accurate targeting of chemotherapy. P% in S. aureus was strongly positively correlated with the multiple antibiotic resistance index (r = +0.878, p < 0.000) with the potential to use the same limit value as an antibiotic management decision criterion. Considering cow mastitis, the penetrance value combined with the multiple antibiotic resistance index suggests that penetrance could serve as a useful parameter for more precise targeting of chemotherapy for S. aureus. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

Back to TopTop