Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = Scikit-learn

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 15392 KiB  
Article
Evaluation and Optimization of Traditional Mountain Village Spatial Environment Performance Using Genetic and XGBoost Algorithms in the Early Design Stage—A Case Study in the Cold Regions of China
by Zhixin Xu, Xiaoming Li, Bo Sun, Yueming Wen and Peipei Tang
Buildings 2024, 14(9), 2796; https://doi.org/10.3390/buildings14092796 - 5 Sep 2024
Viewed by 341
Abstract
As urbanization advances, rural construction and resource development in China encounter significant challenges, leading to the widespread adoption of standardized planning and design methods to manage increasing population pressure. These uniform approaches often prioritize economic benefits over climate adaptability and energy efficiency. This [...] Read more.
As urbanization advances, rural construction and resource development in China encounter significant challenges, leading to the widespread adoption of standardized planning and design methods to manage increasing population pressure. These uniform approaches often prioritize economic benefits over climate adaptability and energy efficiency. This paper addresses this issue by focusing on traditional mountain villages in northern regions, particularly examining the wind and thermal environments of courtyards and street networks. This study integrates energy consumption and comfort performance analysis early in the planning and design process, utilizing Genetic and XGBoost algorithms to enhance efficiency. This study began by selecting a benchmark model based on simulations of courtyard PET (Physiological Equivalent Temperature) and MRT (mean radiant temperature). It then employed the Wallacei_X plugin, which uses the NSGA-II algorithm for multi-objective genetic optimization (MOGO) to optimize five energy consumption and comfort objectives. The resulting solutions were trained in the Scikit-learn machine learning platform. After comparing machine learning models like RandomForest and XGBoost, the highest-performing XGBoost model was selected for further training. Validation shows that the XGBoost model achieves an average accuracy of over 80% in predicting courtyard performance. In the project’s validation phase, the overall street network framework of the block was first adjusted based on street performance prediction models and related design strategies. The optimized model prototype was then integrated into the planning scheme according to functional requirements. After repeated validation and adjustments, the performance prediction of the village planning scheme was conducted. The calculations indicate that the optimized planning scheme improves overall performance by 36% compared with the original baseline. In conclusion, this study aimed to integrate performance assessment and machine learning algorithms into the decision-making process for optimizing traditional village environments, offering new approaches for sustainable rural development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

28 pages, 7207 KiB  
Article
Machine Learning Platform for Disease Diagnosis with Contrast CT Scans
by Jennifer Jin, Mira Kim, Soo Dong Kim and Daniel Jin
Appl. Sci. 2024, 14(17), 7822; https://doi.org/10.3390/app14177822 - 3 Sep 2024
Viewed by 471
Abstract
Machine learning has gained significant recognition as a powerful approach for medical diagnosis using medical images. Among various medical imaging modalities, contrast-enhanced CT (CECT) is utilized to obtain additional diagnostic information that improves visualization and evaluation of certain abnormalities in the human body, [...] Read more.
Machine learning has gained significant recognition as a powerful approach for medical diagnosis using medical images. Among various medical imaging modalities, contrast-enhanced CT (CECT) is utilized to obtain additional diagnostic information that improves visualization and evaluation of certain abnormalities in the human body, as well as to observe temporal changes in lesions and tumors across different time phases. However, developing such medical diagnostic systems presents two significant challenges: high technical complexity and substantial development effort. This paper presents a software platform that effectively addresses these challenges. Specifically, we propose a unified software process that fully automates contrast-enhanced CT (CECT)-specific disease diagnosis, with key tasks performed by leveraging task-specific machine learning models to enhance accuracy. The platform incorporates a suite of specialized machine learning models into the diagnostic process, enabling precise diagnosis of lesions, malignancies, tumors, tumor characteristics, and temporal changes over phases. Moreover, the platform has been designed according to the Open–Closed Principle, allowing it to be applicable to a wide range of CECT-based diagnostic systems. The platform has been implemented in Python using the Scikit-learn and TensorFlow libraries. To validate its applicability and reusability, a hepatocellular carcinoma (HCC) diagnosis system has been implemented. Full article
(This article belongs to the Special Issue Advances in Machine Learning for Healthcare Applications)
Show Figures

Figure 1

17 pages, 4513 KiB  
Article
Machine Learning Based Extraction of Boundary Conditions from Doppler Echo Images for Patient Specific Coarctation of the Aorta: Computational Fluid Dynamics Study
by Vincent Milimo Masilokwa Punabantu, Malebogo Ngoepe, Amit Kumar Mishra, Thomas Aldersley, John Lawrenson and Liesl Zühlke
Math. Comput. Appl. 2024, 29(5), 71; https://doi.org/10.3390/mca29050071 - 23 Aug 2024
Viewed by 452
Abstract
Patient-specific computational fluid dynamics (CFD) studies on coarctation of the aorta (CoA) in resource-constrained settings are limited by the available imaging modalities for geometry and velocity data acquisition. Doppler echocardiography is considered a suitable velocity acquisition modality due to its low cost and [...] Read more.
Patient-specific computational fluid dynamics (CFD) studies on coarctation of the aorta (CoA) in resource-constrained settings are limited by the available imaging modalities for geometry and velocity data acquisition. Doppler echocardiography is considered a suitable velocity acquisition modality due to its low cost and safety. This study aims to investigate the application of classical machine learning (ML) methods to create an adequate and robust approach to obtain boundary conditions (BCs) from Doppler echocardiography images for haemodynamic modelling using CFD. Our proposed approach combines ML and CFD to model haemodynamic flow within the region of interest. The key feature of the approach is the use of ML models to calibrate the inlet and outlet BCs of the CFD model. In the ML model, patient heart rate served as the crucial input variable due to its temporal variation across the measured vessels. ANSYS Fluent was used for the CFD component of the study, whilst the Scikit-learn Python library was used for the ML component. We validated our approach against a real clinical case of severe CoA before intervention. The maximum coarctation velocity of our simulations was compared to the measured maximum coarctation velocity obtained from the patient whose geometry was used within the study. Of the 5 mL models used to obtain BCs, the top model was within 5% of the maximum measured coarctation velocity. The framework demonstrated that it was capable of taking into account variations in the patient’s heart rate between measurements. Therefore, it allowed for the calculation of BCs that were physiologically realistic when the measurements across each vessel were scaled to the same heart rate while providing a reasonably accurate solution. Full article
Show Figures

Figure 1

11 pages, 1749 KiB  
Article
Artificial Intelligence in Chromatin Analysis: A Random Forest Model Enhanced by Fractal and Wavelet Features
by Igor Pantic and Jovana Paunovic Pantic
Fractal Fract. 2024, 8(8), 490; https://doi.org/10.3390/fractalfract8080490 - 21 Aug 2024
Viewed by 450
Abstract
In this study, we propose an innovative concept that applies an AI-based approach using the random forest algorithm integrated with fractal and discrete wavelet transform features of nuclear chromatin. This strategy could be employed to identify subtle structural changes in cells that are [...] Read more.
In this study, we propose an innovative concept that applies an AI-based approach using the random forest algorithm integrated with fractal and discrete wavelet transform features of nuclear chromatin. This strategy could be employed to identify subtle structural changes in cells that are in the early stages of programmed cell death. The code for the random forest model is developed using the Scikit-learn library in Python and includes hyperparameter tuning and cross-validation to optimize performance. The suggested input data for the model are chromatin fractal dimension, fractal lacunarity, and three wavelet coefficient energies obtained through high-pass and low-pass filtering. Additionally, the code contains several methods to assess the performance metrics of the model. This model holds potential as a starting point for designing simple yet advanced AI biosensors capable of detecting apoptotic cells that are not discernible through conventional microscopy techniques. Full article
(This article belongs to the Special Issue Fractals in Biophysics and Their Applications)
Show Figures

Figure 1

20 pages, 5800 KiB  
Article
Evaluation of Scikit-Learn Machine Learning Algorithms for Improving CMA-WSP v2.0 Solar Radiation Prediction
by Dan Wang, Yanbo Shen, Dong Ye, Yanchao Yang, Xuanfang Da and Jingyue Mo
Atmosphere 2024, 15(8), 994; https://doi.org/10.3390/atmos15080994 - 19 Aug 2024
Viewed by 406
Abstract
This article aims to evaluate the performance of solar radiation forecasts produced by CMA-WSP v2.0 (version 2 of the China Meteorological Administration Wind and Solar Energy Prediction System) and to explore the application of machine learning algorithms from the scikit-learn Python library to [...] Read more.
This article aims to evaluate the performance of solar radiation forecasts produced by CMA-WSP v2.0 (version 2 of the China Meteorological Administration Wind and Solar Energy Prediction System) and to explore the application of machine learning algorithms from the scikit-learn Python library to improve the solar radiation prediction made by the CMA-WSP v2.0. It is found that the performance of the solar radiation forecasting from the CMA-WSP v2.0 is closely related to the weather conditions, with notable diurnal fluctuations. The mean absolute percentage error (MAPE) produced by the CMA-WSP v2.0 is approximately 74% between 11:00 and 13:00. However, the MAPE ranges from 193% to 242% at 07:00–08:00 and 17:00–18:00, which is greater than that observed at other daytime periods. The MAPE is relatively low (high) for both sunny and cloudy (overcast and rainy) conditions, with a high probability of an absolute percentage error below 25% (above 100%). The forecasts tend to underestimate (overestimate) the observed solar radiation in sunny and cloudy (overcast and rainy) conditions. By applying machine learning models (such as linear regression, decision trees, K-nearest neighbors, random forests regression, adaptive boosting, and gradient boosting regression) to revise the solar radiation forecasts, the MAPE produced by the CMA-WSP v2.0 is significantly reduced. The reduction in the MAPE is closely connected to the weather conditions. The models of K-nearest neighbors, random forests regression, and decision trees can reduce the MAPE in all weather conditions. The K-nearest neighbor model exhibits the most optimal performance among these models, particularly in rainy conditions. The random forest regression model demonstrates the second-best performance compared to that of the K-nearest neighbor model. The gradient boosting regression model has been observed to reduce the MAPE of the CMA-WSP v2.0 in all weather conditions except rainy. In contrast, the adaptive boosting (linear regression) model exhibited a diminished capacity to improve the CMA-WSP v2.0 solar radiation prediction, with a slight reduction in MAPE observed only in sunny (sunny and cloudy) conditions. In addition, the input feature selection has a considerable influence on the performance of the machine learning model. The incorporation of the time series data associated with the diurnal variation of solar radiation as an input feature can further improve the model’s performance. Full article
(This article belongs to the Special Issue Solar Irradiance and Wind Forecasting)
Show Figures

Figure 1

33 pages, 50318 KiB  
Technical Note
A New Open-Source Software to Help Design Models for Automatic 3D Point Cloud Classification in Coastal Studies
by Xavier Pellerin Le Bas, Laurent Froideval, Adan Mouko, Christophe Conessa, Laurent Benoit and Laurent Perez
Remote Sens. 2024, 16(16), 2891; https://doi.org/10.3390/rs16162891 - 8 Aug 2024
Viewed by 1023
Abstract
This study introduces a new software, cLASpy_T, that helps design models for the automatic 3D point cloud classification of coastal environments. This software is based on machine learning algorithms from the scikit-learn library and can classify point clouds derived from LiDAR or photogrammetry. [...] Read more.
This study introduces a new software, cLASpy_T, that helps design models for the automatic 3D point cloud classification of coastal environments. This software is based on machine learning algorithms from the scikit-learn library and can classify point clouds derived from LiDAR or photogrammetry. Input data can be imported via CSV or LAS files, providing a 3D point cloud, enhanced with geometric features or spectral information, such as colors from orthophotos or hyperspectral data. cLASpy_T lets the user run three supervised machine learning algorithms from the scikit-learn API to build automatic classification models: RandomForestClassifier, GradientBoostingClassifier and MLPClassifier. This work presents the general method for classification model design using cLASpy_T and the software’s complete workflow with an example of photogrammetry point cloud classification. Four photogrammetric models of a coastal dike were acquired on four different dates, in 2021. The aim is to classify each point according to whether it belongs to the ‘sand’ class of the beach, the ‘rock’ class of the riprap, or the ‘block’ class of the concrete blocks. This case study highlights the importance of adjusting algorithm parameters, selecting features, and the large number of tests necessary to design a classification model that can be generalized and used in production. Full article
Show Figures

Graphical abstract

27 pages, 32699 KiB  
Article
Artificial Intelligence for Computational Remote Sensing: Quantifying Patterns of Land Cover Types around Cheetham Wetlands, Port Phillip Bay, Australia
by Polina Lemenkova
J. Mar. Sci. Eng. 2024, 12(8), 1279; https://doi.org/10.3390/jmse12081279 - 29 Jul 2024
Viewed by 681
Abstract
This paper evaluates the potential of using artificial intelligence (AI) and machine learning (ML) approaches for classification of Landsat satellite imagery for environmental coastal mapping. The aim is to identify changes in patterns of land cover types in a coastal area around Cheetham [...] Read more.
This paper evaluates the potential of using artificial intelligence (AI) and machine learning (ML) approaches for classification of Landsat satellite imagery for environmental coastal mapping. The aim is to identify changes in patterns of land cover types in a coastal area around Cheetham Wetlands, Port Phillip Bay, Australia. The scripting approach of the Geographic Resources Analysis Support System (GRASS) geographic information system (GIS) uses AI-based methods of image analysis to accurately discriminate land cover types. Four ML algorithms are applied, tested and compared for supervised classification. Technical approaches are based on using the ‘r.learn.train’ module, which employs the scikit-learn library of Python. The methodology includes the following algorithms: (1) random forest (RF), (2) support vector machine (SVM), (3) an ANN-based approach using a multi-layer perceptron (MLP) classifier, and (4) a decision tree classifier (DTC). The tested methods using AI demonstrated robust results for image classification, with the highest overall accuracy exceeding 98% and reached by the SVM and RF models. The presented scripting approach for GRASS GIS accurately detected changes in land cover types in southern Victoria over the period of 2013–2024. From our findings, the use of AI and ML algorithms offers effective solutions for coastal monitoring by analysis of change detection using multi-temporal RS data. The demonstrated methods have potential applications in coastal and wetland monitoring, environmental analysis and urban planning based on Earth observation data. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

0 pages, 483 KiB  
Article
Can Economic, Geopolitical and Energy Uncertainty Indices Predict Bitcoin Energy Consumption? New Evidence from a Machine Learning Approach
by Taha Zaghdoudi, Kais Tissaoui, Mohamed Hédi Maâloul, Younès Bahou and Niazi Kammoun
Energies 2024, 17(13), 3245; https://doi.org/10.3390/en17133245 - 2 Jul 2024
Viewed by 801
Abstract
This paper explores the predictive power of economic and energy policy uncertainty indices and geopolitical risks for bitcoin’s energy consumption. Three machine learning tools, SVR (scikit-learn 1.5.0),CatBoost 1.2.5 and XGboost 2.1.0, are used to evaluate the complex relationship between uncertainty indices and bitcoin’s [...] Read more.
This paper explores the predictive power of economic and energy policy uncertainty indices and geopolitical risks for bitcoin’s energy consumption. Three machine learning tools, SVR (scikit-learn 1.5.0),CatBoost 1.2.5 and XGboost 2.1.0, are used to evaluate the complex relationship between uncertainty indices and bitcoin’s energy consumption. Results reveal that the XGboost model outperforms both SVR and CatBoost in terms of accuracy and convergence. Furthermore, the feature importance analysis performed by the Shapley additive explanation (SHAP) method indicates that all uncertainty indices exhibit a significant capacity to predict bitcoin’s future energy consumption. Moreover, SHAP values suggest that economic policy uncertainty captures valuable predictive information from the energy uncertainty indices and geopolitical risks that affect bitcoin’s energy consumption. Full article
(This article belongs to the Special Issue Energy Efficiency and Economic Uncertainty in Energy Market)
Show Figures

Figure 1

25 pages, 728 KiB  
Article
Quantum K-Nearest Neighbors: Utilizing QRAM and SWAP-Test Techniques for Enhanced Performance
by Alberto Maldonado-Romo, J. Yaljá Montiel-Pérez, Victor Onofre, Javier Maldonado-Romo  and Juan Humberto Sossa-Azuela 
Mathematics 2024, 12(12), 1872; https://doi.org/10.3390/math12121872 - 16 Jun 2024
Viewed by 740
Abstract
This work introduces a quantum K-Nearest Neighbor (K-NN) classifier algorithm. The algorithm utilizes angle encoding through a Quantum Random Access Memory (QRAM) using n number of qubit addresses with O(log(n)) space complexity. It incorporates Grover’s algorithm and [...] Read more.
This work introduces a quantum K-Nearest Neighbor (K-NN) classifier algorithm. The algorithm utilizes angle encoding through a Quantum Random Access Memory (QRAM) using n number of qubit addresses with O(log(n)) space complexity. It incorporates Grover’s algorithm and the quantum SWAP-Test to identify similar states and determine the nearest neighbors with high probability, achieving Om search complexity, where m is the qubit address. We implement a simulation of the algorithm using IBM’s Qiskit with GPU support, applying it to the Iris and MNIST datasets with two different angle encodings. The experiments employ multiple QRAM cell sizes (8, 16, 32, 64, 128) and perform ten trials per size. According to the performance, accuracy values in the Iris dataset range from 89.3 ± 5.78% to 94.0 ± 1.56%. The MNIST dataset’s mean binary accuracy values range from 79.45 ± 18.84% to 94.00 ± 2.11% for classes 0 and 1. Additionally, a comparison of the results of this proposed approach with different state-of-the-art versions of QK-NN and the classical K-NN using Scikit-learn. This method achieves a 96.4 ± 2.22% accuracy in the Iris dataset. Finally, this proposal contributes an experimental result to the state of the art for the MNIST dataset, achieving an accuracy of 96.55 ± 2.00%. This work presents a new implementation proposal for QK-NN and conducts multiple experiments that yield more robust results than previous implementations. Although our average performance approaches still need to surpass the classic results, an experimental increase in the size of QRAM or the amount of data to encode is not achieved due to limitations. However, our results show promising improvement when considering working with more feature numbers and accommodating more data in the QRAM. Full article
(This article belongs to the Special Issue Quantum Computing and Networking)
Show Figures

Figure 1

17 pages, 975 KiB  
Article
Proteomic Blood Profiles Obtained by Totally Blind Biological Clustering in Stable and Exacerbated COPD Patients
by Cesar Jessé Enríquez-Rodríguez, Sergi Pascual-Guardia, Carme Casadevall, Oswaldo Antonio Caguana-Vélez, Diego Rodríguez-Chiaradia, Esther Barreiro and Joaquim Gea
Cells 2024, 13(10), 866; https://doi.org/10.3390/cells13100866 - 17 May 2024
Cited by 1 | Viewed by 974
Abstract
Although Chronic Obstructive Pulmonary Disease (COPD) is highly prevalent, it is often underdiagnosed. One of the main characteristics of this heterogeneous disease is the presence of periods of acute clinical impairment (exacerbations). Obtaining blood biomarkers for either COPD as a chronic entity or [...] Read more.
Although Chronic Obstructive Pulmonary Disease (COPD) is highly prevalent, it is often underdiagnosed. One of the main characteristics of this heterogeneous disease is the presence of periods of acute clinical impairment (exacerbations). Obtaining blood biomarkers for either COPD as a chronic entity or its exacerbations (AECOPD) will be particularly useful for the clinical management of patients. However, most of the earlier studies have been characterized by potential biases derived from pre-existing hypotheses in one or more of their analysis steps: some studies have only targeted molecules already suggested by pre-existing knowledge, and others had initially carried out a blind search but later compared the detected biomarkers among well-predefined clinical groups. We hypothesized that a clinically blind cluster analysis on the results of a non-hypothesis-driven wide proteomic search would determine an unbiased grouping of patients, potentially reflecting their endotypes and/or clinical characteristics. To check this hypothesis, we included the plasma samples from 24 clinically stable COPD patients, 10 additional patients with AECOPD, and 10 healthy controls. The samples were analyzed through label-free liquid chromatography/tandem mass spectrometry. Subsequently, the Scikit-learn machine learning module and K-means were used for clustering the individuals based solely on their proteomic profiles. The obtained clusters were confronted with clinical groups only at the end of the entire procedure. Although our clusters were unable to differentiate stable COPD patients from healthy individuals, they segregated those patients with AECOPD from the patients in stable conditions (sensitivity 80%, specificity 79%, and global accuracy, 79.4%). Moreover, the proteins involved in the blind grouping process to identify AECOPD were associated with five biological processes: inflammation, humoral immune response, blood coagulation, modulation of lipid metabolism, and complement system pathways. Even though the present results merit an external validation, our results suggest that the present blinded approach may be useful to segregate AECOPD from stability in both the clinical setting and trials, favoring more personalized medicine and clinical research. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Graphical abstract

29 pages, 27799 KiB  
Article
Artificial Neural Networks for Mapping Coastal Lagoon of Chilika Lake, India, Using Earth Observation Data
by Polina Lemenkova
J. Mar. Sci. Eng. 2024, 12(5), 709; https://doi.org/10.3390/jmse12050709 - 25 Apr 2024
Viewed by 1091
Abstract
This study presents the environmental mapping of the Chilika Lake coastal lagoon, India, using satellite images Landsat 8-9 OLI/TIRS processed using machine learning (ML) methods. The largest brackish water coastal lagoon in Asia, Chilika Lake, is a wetland of international importance included in [...] Read more.
This study presents the environmental mapping of the Chilika Lake coastal lagoon, India, using satellite images Landsat 8-9 OLI/TIRS processed using machine learning (ML) methods. The largest brackish water coastal lagoon in Asia, Chilika Lake, is a wetland of international importance included in the Ramsar site due to its rich biodiversity, productivity, and precious habitat for migrating birds and rare species. The vulnerable ecosystems of the Chilika Lagoon are subject to climate effects (monsoon effects) and anthropogenic activities (overexploitation through fishing and pollution by microplastics). Such environmental pressure results in the eutrophication of the lake, coastal erosion, fluctuations in size, and changes in land cover types in the surrounding landscapes. The habitat monitoring of the coastal lagoons is complex and difficult to implement with conventional Geographic Information System (GIS) methods. In particular, landscape variability, patch fragmentation, and landscape dynamics play a crucial role in environmental dynamics along the eastern coasts of the Bay of Bengal, which is strongly affected by the Indian monsoon system, which controls the precipitation pattern and ecosystem structure. To improve methods of environmental monitoring of coastal areas, this study employs the methods of ML and Artificial Neural Networks (ANNs), which present a powerful tool for computer vision, image classification, and analysis of Earth Observation (EO) data. Multispectral satellite data were processed by several ML image classification methods, including Random Forest (RF), Support Vector Machine (SVM), and the ANN-based MultiLayer Perceptron (MLP) Classifier. The results are compared and discussed. The ANN-based approach outperformed the other methods in terms of accuracy and precision of mapping. Ten land cover classes around the Chilika coastal lagoon were identified via spatio-temporal variations in land cover types from 2019 until 2024. This study provides ML-based maps implemented using Geographic Resources Analysis Support System (GRASS) GIS image analysis software and aims to support ML-based mapping approach of environmental processes over the Chilika Lake coastal lagoon, India. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Marine Environmental Monitoring)
Show Figures

Figure 1

14 pages, 2568 KiB  
Article
Development of New Predictive Equations for the Resting Metabolic Rate (RMR) of Women with Lipedema
by Małgorzata Jeziorek, Jakub Wronowicz, Łucja Janek, Krzysztof Kujawa and Andrzej Szuba
Metabolites 2024, 14(4), 235; https://doi.org/10.3390/metabo14040235 - 19 Apr 2024
Viewed by 1076
Abstract
This study aimed to develop a novel predictive equation for calculating resting metabolic rate (RMR) in women with lipedema. We recruited 119 women diagnosed with lipedema from the Angiology Outpatient Clinic at Wroclaw Medical University, Poland. RMR was assessed using indirect calorimetry, while [...] Read more.
This study aimed to develop a novel predictive equation for calculating resting metabolic rate (RMR) in women with lipedema. We recruited 119 women diagnosed with lipedema from the Angiology Outpatient Clinic at Wroclaw Medical University, Poland. RMR was assessed using indirect calorimetry, while body composition and anthropometric measurements were conducted using standardized protocols. Due to multicollinearity among predictors, classical multiple regression was deemed inadequate for developing the new equation. Therefore, we employed machine learning techniques, utilizing principal component analysis (PCA) for dimensionality reduction and predictor selection. Regression models, including support vector regression (SVR), random forest regression (RFR), and k-nearest neighbor (kNN) were evaluated in Python’s scikit-learn framework, with hyperparameter tuning via GridSearchCV. Model performance was assessed through mean absolute percentage error (MAPE) and cross-validation, complemented by Bland–Altman plots for method comparison. A novel equation incorporating body composition parameters was developed, addressing a gap in accurate RMR prediction methods. By incorporating measurements of body circumference and body composition parameters alongside traditional predictors, the model’s accuracy was improved. The segmented regression model outperformed others, achieving an MAPE of 10.78%. The proposed predictive equation for RMR offers a practical tool for personalized treatment planning in patients with lipedema. Full article
(This article belongs to the Special Issue Epidemiology, Nutrition and Metabolism)
Show Figures

Figure 1

28 pages, 5284 KiB  
Article
IoT-Based Intrusion Detection System Using New Hybrid Deep Learning Algorithm
by Sami Yaras and Murat Dener
Electronics 2024, 13(6), 1053; https://doi.org/10.3390/electronics13061053 - 12 Mar 2024
Cited by 6 | Viewed by 3374
Abstract
The most significant threat that networks established in IoT may encounter is cyber attacks. The most commonly encountered attacks among these threats are DDoS attacks. After attacks, the communication traffic of the network can be disrupted, and the energy of sensor nodes can [...] Read more.
The most significant threat that networks established in IoT may encounter is cyber attacks. The most commonly encountered attacks among these threats are DDoS attacks. After attacks, the communication traffic of the network can be disrupted, and the energy of sensor nodes can quickly deplete. Therefore, the detection of occurring attacks is of great importance. Considering numerous sensor nodes in the established network, analyzing the network traffic data through traditional methods can become impossible. Analyzing this network traffic in a big data environment is necessary. This study aims to analyze the obtained network traffic dataset in a big data environment and detect attacks in the network using a deep learning algorithm. This study is conducted using PySpark with Apache Spark in the Google Colaboratory (Colab) environment. Keras and Scikit-Learn libraries are utilized in the study. ‘CICIoT2023’ and ‘TON_IoT’ datasets are used for training and testing the model. The features in the datasets are reduced using the correlation method, ensuring the inclusion of significant features in the tests. A hybrid deep learning algorithm is designed using one-dimensional CNN and LSTM. The developed method was compared with ten machine learning and deep learning algorithms. The model’s performance was evaluated using accuracy, precision, recall, and F1 parameters. Following the study, an accuracy rate of 99.995% for binary classification and 99.96% for multiclassification is achieved in the ‘CICIoT2023’ dataset. In the ‘TON_IoT’ dataset, a binary classification success rate of 98.75% is reached. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

15 pages, 1784 KiB  
Article
Acoustic Detection of Vaccine Reactions in Hens for Assessing Anti-Inflammatory Product Efficacy
by Gerardo José Ginovart-Panisello, Ignasi Iriondo, Tesa Panisello Monjo, Silvia Riva, Jordi Casadó Cancer and Rosa Ma Alsina-Pagès
Appl. Sci. 2024, 14(5), 2156; https://doi.org/10.3390/app14052156 - 5 Mar 2024
Cited by 1 | Viewed by 936
Abstract
Acoustic studies on poultry show that chicken vocalizations can be a real-time indicator of the health conditions of the birds and can improve animal welfare and farm management. In this study, hens vaccinated against infectious laryngotracheitis (ILT) were acoustically recorded for 3 days [...] Read more.
Acoustic studies on poultry show that chicken vocalizations can be a real-time indicator of the health conditions of the birds and can improve animal welfare and farm management. In this study, hens vaccinated against infectious laryngotracheitis (ILT) were acoustically recorded for 3 days before vaccine administration (pre-reaction period) and also from vaccination onwards, with the first 5 days being identified as the “reaction period” and the 5 following days as “post reaction”. The raw audio was pre-processed to isolate hen calls and the 13 Mel-frequency cepstral coefficients; then, the spectral centroid and the number of vocalizations were extracted to build the acoustic dataset. The experiment was carried out on the same farm but in two different houses. The hens from one house were assigned to the control group, without administration of the anti-inflammatory product, and the other formed the treatment group. Both acoustic data sets were recorded and processed in the same way. The control group was used to acoustically model the animal reaction to the vaccine and we automatically detected the hens’ vaccine reactions and side effects through acoustics. From Scikit-Learn algorithms, Gaussian Naive Bayes was the best performing model, with a balanced accuracy of 80% for modeling the reactions and non-reactions caused by ILT in the control group. Furthermore, the importance of algorithm permutation highlighted that the centroid and MFCC4 were the most important features in acoustically detecting the ILT vaccine reaction. The fitted Gaussian Naive Bayes model allowed us to evaluate the treatment group to determine if the vocalizations after vaccine administration were detected as non-reactions, due to the anti-inflammatory product’s effectiveness. Of the sample, 99% of vocalizations were classified as non-reactions, due to the anti-inflammatory properties of the product, which reduced vaccine reactions and side effects. The non-invasive detection of hens’ responses to vaccination to prevent respiratory problems in hens described in this paper is an innovative method of measuring and detecting avian welfare. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

21 pages, 47072 KiB  
Article
Flood Susceptibility Mapping Using SAR Data and Machine Learning Algorithms in a Small Watershed in Northwestern Morocco
by Sliman Hitouri, Meriame Mohajane, Meriam Lahsaini, Sk Ajim Ali, Tadesual Asamin Setargie, Gaurav Tripathi, Paola D’Antonio, Suraj Kumar Singh and Antonietta Varasano
Remote Sens. 2024, 16(5), 858; https://doi.org/10.3390/rs16050858 - 29 Feb 2024
Cited by 3 | Viewed by 3372
Abstract
Flood susceptibility mapping plays a crucial role in flood risk assessment and management. Accurate identification of areas prone to flooding is essential for implementing effective mitigation measures and informing decision-making processes. In this regard, the present study used high-resolution remote sensing products, i.e., [...] Read more.
Flood susceptibility mapping plays a crucial role in flood risk assessment and management. Accurate identification of areas prone to flooding is essential for implementing effective mitigation measures and informing decision-making processes. In this regard, the present study used high-resolution remote sensing products, i.e., synthetic aperture radar (SAR) images for flood inventory preparation and integrated four machine learning models (Random Forest: RF, Classification and Regression Trees: CART, Support Vector Machine: SVM, and Extreme Gradient Boosting: XGBoost) to predict flood susceptibility in Metlili watershed, Morocco. Initially, 12 independent variables (elevation, slope angle, aspect, plan curvature, topographic wetness index, stream power index, distance from streams, distance from roads, lithology, rainfall, land use/land cover, and normalized vegetation index) were used as conditioning factors. The flood inventory dataset was divided into 70% and 30% for training and validation purposes using a popular library, scikit-learn (i.e., train_test_split) in Python programming language. Additionally, the area under the curve (AUC) was used to evaluate the performance of the models. The accuracy assessment results showed that RF, CART, SVM, and XGBoost models predicted flood susceptibility with AUC values of 0.807, 0.780, 0.756, and 0.727, respectively. However, the RF model performed better at flood susceptibility prediction compared to the other models applied. As per this model, 22.49%, 16.02%, 12.67%, 18.10%, and 31.70% areas of the watershed are estimated as being very low, low, moderate, high, and very highly susceptible to flooding, respectively. Therefore, this study showed that the integration of machine learning models with radar data could have promising results in predicting flood susceptibility in the study area and other similar environments. Full article
Show Figures

Graphical abstract

Back to TopTop