Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = Sentinel-2 MSI

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8263 KiB  
Article
Evaluating the Sustainable Development Science Satellite 1 (SDGSAT-1) Multi-Spectral Data for River Water Mapping: A Comparative Study with Sentinel-2
by Duomandi Jiang, Yunmei Li, Qihang Liu and Chang Huang
Remote Sens. 2024, 16(15), 2716; https://doi.org/10.3390/rs16152716 - 24 Jul 2024
Viewed by 156
Abstract
SDGSAT-1, the first scientific satellite dedicated to advancing the United Nations 2030 Agenda for Sustainable Development, brings renewed vigor and opportunities to water resource monitoring and research. This study evaluates the effectiveness of SDGSAT-1 in extracting water bodies in comparison to Sentinel-2 multi-spectral [...] Read more.
SDGSAT-1, the first scientific satellite dedicated to advancing the United Nations 2030 Agenda for Sustainable Development, brings renewed vigor and opportunities to water resource monitoring and research. This study evaluates the effectiveness of SDGSAT-1 in extracting water bodies in comparison to Sentinel-2 multi-spectral imager (MSI) data. We applied a confidence thresholding method to delineate river water from land, utilizing the Normalized Differential Water Body Index (NDWI), Normalized Difference Water Index (MNDWI), and Shaded Water Body Index (SWI). It was found that the SWI works best for SDGSAT-1 while the NDWI works best for Sentinel-2. Specifically, the NDWI demonstrates proficiency in delineating a broader spectrum of water bodies and the MNDWI effectively mitigates the impact of shadows, while SDGSAT-1’s SWI extraction of rivers offers high precision, clear outlines, and shadow exclusion. SDGSAT-1’s SWI overall outperforms Sentinel-2’s NDWI in water extraction accuracy (overall accuracy: 90% vs. 91%, Kappa coefficient: 0.771 vs. 0.416, and F1 value: 0.844 vs. 0.651), likely due to its deep blue bands. This study highlights the comprehensive advantages of SDGSAT-1 data in extracting river water bodies, providing a theoretical basis for future research. Full article
Show Figures

Figure 1

23 pages, 12771 KiB  
Article
Harmonized Landsat and Sentinel-2 Data with Google Earth Engine
by Elias Fernando Berra, Denise Cybis Fontana, Feng Yin and Fabio Marcelo Breunig
Remote Sens. 2024, 16(15), 2695; https://doi.org/10.3390/rs16152695 - 23 Jul 2024
Viewed by 211
Abstract
Continuous and dense time series of satellite remote sensing data are needed for several land monitoring applications, including vegetation phenology, in-season crop assessments, and improving land use and land cover classification. Supporting such applications at medium to high spatial resolution may be challenging [...] Read more.
Continuous and dense time series of satellite remote sensing data are needed for several land monitoring applications, including vegetation phenology, in-season crop assessments, and improving land use and land cover classification. Supporting such applications at medium to high spatial resolution may be challenging with a single optical satellite sensor, as the frequency of good-quality observations can be low. To optimize good-quality data availability, some studies propose harmonized databases. This work aims at developing an ‘all-in-one’ Google Earth Engine (GEE) web-based workflow to produce harmonized surface reflectance data from Landsat-7 (L7) ETM+, Landsat-8 (L8) OLI, and Sentinel-2 (S2) MSI top of atmosphere (TOA) reflectance data. Six major processing steps to generate a new source of near-daily Harmonized Landsat and Sentinel (HLS) reflectance observations at 30 m spatial resolution are proposed and described: band adjustment, atmospheric correction, cloud and cloud shadow masking, view and illumination angle adjustment, co-registration, and reprojection and resampling. The HLS is applied to six equivalent spectral bands, resulting in a surface nadir BRDF-adjusted reflectance (NBAR) time series gridded to a common pixel resolution, map projection, and spatial extent. The spectrally corresponding bands and derived Normalized Difference Vegetation Index (NDVI) were compared, and their sensor differences were quantified by regression analyses. Examples of HLS time series are presented for two potential applications: agricultural and forest phenology. The HLS product is also validated against ground measurements of NDVI, achieving very similar temporal trajectories and magnitude of values (R2 = 0.98). The workflow and script presented in this work may be useful for the scientific community aiming at taking advantage of multi-sensor harmonized time series of optical data. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

24 pages, 8548 KiB  
Article
The Identification of Manure Spreading on Bare Soil through the Development of Multispectral Indices from Sentinel-2 Data: The Emilia-Romagna Region (Italy) Case Study
by Marco Dubbini, Maria Belluzzo, Villiam Zanni Bertelli, Alessandro Pirola, Antonella Tornato and Cinzia Alessandrini
Sensors 2024, 24(14), 4687; https://doi.org/10.3390/s24144687 - 19 Jul 2024
Viewed by 245
Abstract
Satellite remote sensing is currently an established, effective, and constantly used tool and methodology for monitoring agriculture and fertilisation. At the same time, in recent years, the need for the detection of livestock manure and digestate spreading on the soil is emerging, and [...] Read more.
Satellite remote sensing is currently an established, effective, and constantly used tool and methodology for monitoring agriculture and fertilisation. At the same time, in recent years, the need for the detection of livestock manure and digestate spreading on the soil is emerging, and the development of spectral indices and classification processes based on satellite multispectral data acquisitions is growing. However, the application of such indicators is still underutilised and, given the polluting impact of livestock manure and digestate on soil, groundwater, and air, an in-depth study is needed to improve the monitoring of this practice. Additionally, this paper aims at exposing a new spectral index capable of detecting the land affected by livestock manure and digestate spreading. This indicator was created by studying the spectral response of bare soil and livestock manure and digestate, using Copernicus Sentinel-2 MSI satellite acquisitions and ancillary datasets (e.g., soil moisture, precipitation, regional thematic maps). In particular, time series of multispectral satellite acquisitions and ancillary data were analysed, covering a survey period of 13 months between February 2022 and February 2023. As no previous indications on fertilisation practices are available, the proposed approach consists of investigating a broad-spectrum area, without investigations of specific test sites. A large area of approximately 236,344 hectares covering three provinces of the Emilia-Romagna Region (Italy) was therefore examined. A series of ground truth points were also collected for assessing accuracy by filling in the confusion matrix. Based on the definition of the spectral index, a value of the latter greater than three provides the most conservative threshold for detecting livestock manure and digestate spreading with an accuracy of 62.53%. Such results are robust to variations in the spectral response of the soil. On the basis of these very encouraging results, it is considered plausible that the proposed index could improve the techniques for detecting the spreading of livestock manure and digestate on bare ground, classifying the areas themselves with a notable saving of energy compared to the current investigation methodologies directly on the ground. Full article
(This article belongs to the Special Issue Application of Satellite Remote Sensing in Geospatial Monitoring)
Show Figures

Figure 1

18 pages, 5173 KiB  
Article
Research on the Inversion of Chlorophyll-a Concentration in the Hong Kong Coastal Area Based on Convolutional Neural Networks
by Weidong Zhu, Shuai Liu, Kuifeng Luan, Yuelin Xu, Zitao Liu, Tiantian Cao and Piao Wang
J. Mar. Sci. Eng. 2024, 12(7), 1119; https://doi.org/10.3390/jmse12071119 - 3 Jul 2024
Viewed by 615
Abstract
Chlorophyll-a (Chl-a) concentration is a key indicator for assessing the eutrophication level in water bodies. However, accurately inverting Chl-a concentrations in optically complex coastal waters presents a significant challenge for traditional models. To address this, we employed Sentinel-2 MSI sensor data and leveraged [...] Read more.
Chlorophyll-a (Chl-a) concentration is a key indicator for assessing the eutrophication level in water bodies. However, accurately inverting Chl-a concentrations in optically complex coastal waters presents a significant challenge for traditional models. To address this, we employed Sentinel-2 MSI sensor data and leveraged the power of five machine learning models, including a convolutional neural network (CNN), to enhance the inversion process in the coastal waters near Hong Kong. The CNN model demonstrated superior performance with on-site data validation, outperforming the other four models (R2 = 0.810, RMSE = 1.165 μg/L, MRE = 35.578%). The CNN model was employed to estimate Chl-a concentrations from images captured over the study area in April and October 2022, resulting in the creation of a thematic map illustrating the spatial distribution of Chl-a levels. The map indicated high Chl-a concentrations in the northeast and southwest areas of Hong Kong Island and low Chl-a concentrations in the southeast facing the open sea. Analysis of patch size effects on CNN model accuracy indicated that 7 × 7 and 9 × 9 patches yielded the most optimal results across the tested sizes. Shapley additive explanations were employed to provide post-hoc interpretations for the best-performing CNN model, highlighting that features B6, B12, and B8 were the most important during the inversion process. This study can serve as a reference for developing machine learning models to invert water quality parameters. Full article
(This article belongs to the Special Issue Remote Sensing Applications in Marine Environmental Monitoring)
Show Figures

Figure 1

23 pages, 4995 KiB  
Article
Modeling Potential Habitats of Macrophytes in Small Lakes: A GIS and Remote Sensing-Based Approach
by Bastian Robran, Frederike Kroth, Katja Kuhwald, Thomas Schneider and Natascha Oppelt
Remote Sens. 2024, 16(13), 2339; https://doi.org/10.3390/rs16132339 - 26 Jun 2024
Viewed by 1245
Abstract
Macrophytes, which are foundational to freshwater ecosystems, face significant threats due to habitat degradation globally. Habitat suitability models are vital tools used to investigate the relationship between macrophytes and their environment. This study addresses a critical gap by developing a Geographic information system-based [...] Read more.
Macrophytes, which are foundational to freshwater ecosystems, face significant threats due to habitat degradation globally. Habitat suitability models are vital tools used to investigate the relationship between macrophytes and their environment. This study addresses a critical gap by developing a Geographic information system-based HSM tailored for small lakes, which are often overlooked in ecological studies. We included various abiotic predictors to model the potential macrophyte habitat for several small lakes in southern Bavaria (Germany). Key factors such as the distance to groundwater inflow, depth, availability of photosynthetically active radiation (PAR), and littoral slope were identified as significant predictors of macrophyte occurrence. Notably, the HSM integrates remote sensing-based data to derive PAR availability at the growing depths of the macrophytes using Sentinel-2 MSI data. Integration of an MSI-based time series of PAR availability enabled the introduction of a temporal component allowing monitoring and predicting changes in macrophyte habitats over time. The modeled habitat suitability score correlates highly (R = 0.908) with macrophyte occurrence. We see great promise in using habitat modeling for macrophytes as a tool for water management; in particular, the use of Sentinel-2 MSI data for habitat suitability modeling holds promise for advancing water management. By demonstrating the efficacy of GIS- and remote sensing-based HSM, we pave the way for future applications of this innovative approach in ecological conservation and resource management. Full article
(This article belongs to the Special Issue Remote Sensing and GIS in Freshwater Environments)
Show Figures

Figure 1

28 pages, 8365 KiB  
Article
Water Dynamics and Morphometric Parameters of Lake Sevan (Armenia) in the Summer–Autumn Period According to Satellite Data
by Anna I. Ginzburg, Andrey G. Kostianoy, Nickolay A. Sheremet and Olga Yu. Lavrova
Remote Sens. 2024, 16(13), 2285; https://doi.org/10.3390/rs16132285 - 22 Jun 2024
Viewed by 436
Abstract
Here, we explore the dynamics of the waters of eutrophicated Lake Sevan in the modern period, using MSI Sentinel-2 satellite images of different months in different years (2017–2022) and SAR Sentinel-1 images of similar dates. The main objective of the study is to [...] Read more.
Here, we explore the dynamics of the waters of eutrophicated Lake Sevan in the modern period, using MSI Sentinel-2 satellite images of different months in different years (2017–2022) and SAR Sentinel-1 images of similar dates. The main objective of the study is to investigate the spatiotemporal variability of the horizontal circulation of this lake and to establish whether the scheme of cyclonic water circulation in the deep-water part of Large Sevan, given in a number of publications, which does not imply water exchange between its littoral and deep-water zones, corresponds to the real picture of currents in the surface layer of the lake in the summer–autumn period (period of pronounced water stratification and intense phytoplankton bloom). The analysis performed convincingly showed that there is no constant cyclonic gyre on the scale of the deep-water part of Large Sevan (≈20 km) during the period under consideration. In most cases, non-stationary eddy dynamics are observed in Large Sevan, including mesoscale and submesoscale eddies, eddy dipoles (mushroom-shaped flows), and their packings. Often the entire deep-water part of Large Sevan is occupied by a two-cell (dipole) or even three-cell (cyclonic eddy with two anticyclones of similar size) water circulation. The time scale of the observed variability is several days. Such variable water circulation in different months (i.e., with different density stratification of water) of different years in a basin with a fairly homogeneous bottom and a slight indentation of the shoreline raises the assumption that the main reason for the non-stationary dynamics in Large Sevan is the variability of the wind effect on its surface layer. The cyclonic gyre in Small Sevan (8–9 km) is a permanent element of the circulation and maintains its position north of the strait between Small and Large Sevan. This gyre and attached anticyclonic eddies in the southern part of its periphery, as well as cyclonic submesoscale eddies in the northern part of Large Sevan, close to the strait, affect the water exchange between Small and Large Sevan in both directions. An additional objective of the study is a validation of the morphometric parameters of Lake Sevan (level, surface area, and water volume), contained in the near-real time HYDROWEB database, LEGOS, France (June 1995–January 2024), based on their comparison with the corresponding values of these parameters from gauging stations in Armenia. It is shown that, with a qualitative correspondence of the nature of lake level changes according to altimetric and instrumental measurements, its values in the HYDROWEB database exceed the data of gauging stations in most cases by 1–1.5 m in 1995–2012 and 0.5–0.6 m in 2013–2022, while the corresponding surface area and volume values according to HYDROWEB data turn out to be underestimated. Full article
Show Figures

Figure 1

26 pages, 9310 KiB  
Article
Discrimination of Degraded Pastures in the Brazilian Cerrado Using the PlanetScope SuperDove Satellite Constellation
by Angela Gabrielly Pires Silva, Lênio Soares Galvão, Laerte Guimarães Ferreira Júnior, Nathália Monteiro Teles, Vinícius Vieira Mesquita and Isadora Haddad
Remote Sens. 2024, 16(13), 2256; https://doi.org/10.3390/rs16132256 - 21 Jun 2024
Viewed by 678
Abstract
Pasture degradation poses significant economic, social, and environmental impacts in the Brazilian savanna ecosystem. Despite these impacts, effectively detecting varying intensities of agronomic and biological degradation through remote sensing remains challenging. This study explores the potential of the eight-band PlanetScope SuperDove satellite constellation [...] Read more.
Pasture degradation poses significant economic, social, and environmental impacts in the Brazilian savanna ecosystem. Despite these impacts, effectively detecting varying intensities of agronomic and biological degradation through remote sensing remains challenging. This study explores the potential of the eight-band PlanetScope SuperDove satellite constellation to discriminate between five classes of pasture degradation: non-degraded pasture (NDP); pastures with low- (LID) and moderate-intensity degradation (MID); severe agronomic degradation (SAD); and severe biological degradation (SBD). Using a set of 259 cloud-free images acquired in 2022 across five sites located in central Brazil, the study aims to: (i) identify the most suitable period for discriminating between various degradation classes; (ii) evaluate the Random Forest (RF) classification performance of different SuperDove attributes; and (iii) compare metrics of accuracy derived from two predicted scenarios of pasture degradation: a more challenging one involving five classes (NDP, LID, MID, SAD, and SBD), and another considering only non-degraded and severely degraded pastures (NDP, SAD, and SBD). The study assessed individual and combined sets of SuperDove attributes, including band reflectance, vegetation indices, endmember fractions from spectral mixture analysis (SMA), and image texture variables from Gray-level Co-occurrence Matrix (GLCM). The results highlighted the effectiveness of the transition from the rainy to the dry season and the period towards the beginning of a new seasonal rainy cycle in October for discriminating pasture degradation. In comparison to the dry season, more favorable discrimination scenarios were observed during the rainy season. In the dry season, increased amounts of non-photosynthetic vegetation (NPV) complicate the differentiation between NDP and SBD, which is characterized by high soil exposure. Pastures exhibiting severe biological degradation showed greater sensitivity to water stress, manifesting earlier reflectance changes in the visible and near-infrared bands of SuperDove compared to other classes. Reflectance-based classification yielded higher overall accuracy (OA) than the approaches using endmember fractions, vegetation indices, or texture metrics. Classifications using combined attributes achieved an OA of 0.69 and 0.88 for the five-class and three-class scenarios, respectively. In the five-class scenario, the highest F1-scores were observed for NDP (0.61) and classes of agronomic (0.71) and biological (0.88) degradation, indicating the challenges in separating low and moderate stages of pasture degradation. An initial comparison of RF classification results for the five categories of degraded pastures, utilizing reflectance data from MultiSpectral Instrument (MSI)/Sentinel-2 (400–2500 nm) and SuperDove (400–900 nm), demonstrated an enhanced OA (0.79 versus 0.66) with Sentinel-2 data. This enhancement is likely to be attributed to the inclusion of shortwave infrared (SWIR) spectral bands in the data analysis. Our findings highlight the potential of satellite constellation data, acquired at high spatial resolution, for remote identification of pasture degradation. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

21 pages, 6425 KiB  
Article
Feature Selection and Regression Models for Multisource Data-Based Soil Salinity Prediction: A Case Study of Minqin Oasis in Arid China
by Sheshu Zhang, Jun Zhao, Jianxia Yang, Jinfeng Xie and Ziyun Sun
Land 2024, 13(6), 877; https://doi.org/10.3390/land13060877 - 18 Jun 2024
Viewed by 471
Abstract
(1) Monitoring salinized soil in saline–alkali land is essential, requiring regional-scale soil salinity inversion. This study aims to identify sensitive variables for predicting electrical conductivity (EC) in soil, focusing on effective feature selection methods. (2) The study systematically selects a feature subset from [...] Read more.
(1) Monitoring salinized soil in saline–alkali land is essential, requiring regional-scale soil salinity inversion. This study aims to identify sensitive variables for predicting electrical conductivity (EC) in soil, focusing on effective feature selection methods. (2) The study systematically selects a feature subset from Sentinel-1 C SAR, Sentinel-2 MSI, and SRTM DEM data. Various feature selection methods (correlation analysis, LASSO, RFE, and GRA) are employed on 79 variables. Regression models using random forest regression (RF) and partial least squares regression (PLSR) algorithms are constructed and compared. (3) The results highlight the effectiveness of the RFE algorithm in reducing model complexity. The model incorporates significant environmental factors like soil moisture, topography, and soil texture, which play an important role in modeling. Combining the method with RF improved soil salinity prediction (R2 = 0.71, RMSE = 1.47, RPD = 1.84). Overall, salinization in Minqin oasis soils was evident, especially in the unutilized land at the edge of the oasis. (4) Integrating data from different sources to construct characterization variables overcomes the limitations of a single data source. Variable selection is an effective means to address the redundancy of variable information, providing insights into feature engineering and variable selection for soil salinity estimation in arid and semi-arid regions. Full article
Show Figures

Figure 1

16 pages, 30137 KiB  
Article
Vision Transformer for Flood Detection Using Satellite Images from Sentinel-1 and Sentinel-2
by Ilias Chamatidis, Denis Istrati and Nikos D. Lagaros
Water 2024, 16(12), 1670; https://doi.org/10.3390/w16121670 - 12 Jun 2024
Viewed by 635
Abstract
Floods are devastating phenomena that occur almost all around the world and are responsible for significant losses, in terms of both human lives and economic damages. When floods occur, one of the challenges that emergency response agencies face is the identification of the [...] Read more.
Floods are devastating phenomena that occur almost all around the world and are responsible for significant losses, in terms of both human lives and economic damages. When floods occur, one of the challenges that emergency response agencies face is the identification of the flooded area so that access points and safe routes can be determined quickly. This study presents a flood detection methodology that combines transfer learning with vision transformers and satellite images from open datasets. Transformers are powerful models that have been successfully applied in Natural Language Processing (NLP). A variation of this model is the vision transformer (ViT), which can be applied to image classification tasks. The methodology is applied and evaluated for two types of satellite images: Synthetic Aperture Radar (SAR) images from Sentinel-1 and Multispectral Instrument (MSI) images from Sentinel-2. By using a pre-trained vision transformer and transfer learning, the model is fine-tuned on these two datasets to train the models to determine whether the images contain floods. It is found that the proposed methodology achieves an accuracy of 84.84% on the Sentinel-1 dataset and 83.14% on the Sentinel-2 dataset, revealing its insensitivity to the image type and applicability to a wide range of available visual data for flood detection. Moreover, this study shows that the proposed approach outperforms state-of-the-art CNN models by up to 15% on the SAR images and 9% on the MSI images. Overall, it is shown that the combination of transfer learning, vision transformers, and satellite images is a promising tool for flood risk management experts and emergency response agencies. Full article
Show Figures

Figure 1

30 pages, 7749 KiB  
Article
Expanding the Application of Sentinel-2 Chlorophyll Monitoring across United States Lakes
by Wilson B. Salls, Blake A. Schaeffer, Nima Pahlevan, Megan M. Coffer, Bridget N. Seegers, P. Jeremy Werdell, Hannah Ferriby, Richard P. Stumpf, Caren E. Binding and Darryl J. Keith
Remote Sens. 2024, 16(11), 1977; https://doi.org/10.3390/rs16111977 - 30 May 2024
Viewed by 588
Abstract
Eutrophication of inland lakes poses various societal and ecological threats, making water quality monitoring crucial. Satellites provide a comprehensive and cost-effective supplement to traditional in situ sampling. The Sentinel-2 MultiSpectral Instrument (S2 MSI) offers unique spectral bands positioned to quantify chlorophyll a, [...] Read more.
Eutrophication of inland lakes poses various societal and ecological threats, making water quality monitoring crucial. Satellites provide a comprehensive and cost-effective supplement to traditional in situ sampling. The Sentinel-2 MultiSpectral Instrument (S2 MSI) offers unique spectral bands positioned to quantify chlorophyll a, a water-quality and trophic-state indicator, along with fine spatial resolution, enabling the monitoring of small waterbodies. In this study, two algorithms—the Maximum Chlorophyll Index (MCI) and the Normalized Difference Chlorophyll Index (NDCI)—were applied to S2 MSI data. They were calibrated and validated using in situ chlorophyll a measurements for 103 lakes across the contiguous U.S. Both algorithms were tested using top-of-atmosphere reflectances (ρt), Rayleigh-corrected reflectances (ρs), and remote sensing reflectances (Rrs). MCI slightly outperformed NDCI across all reflectance products. MCI using ρt showed the best overall performance, with a mean absolute error factor of 2.08 and a mean bias factor of 1.15. Conversion of derived chlorophyll a to trophic state improved the potential for management applications, with 82% accuracy using a binary classification. We report algorithm-to-chlorophyll-a conversions that show potential for application across the U.S., demonstrating that S2 can serve as a monitoring tool for inland lakes across broad spatial scales. Full article
Show Figures

Figure 1

19 pages, 4700 KiB  
Article
Radiometric Cross-Calibration of GF6-PMS and WFV Sensors with Sentinel 2-MSI and Landsat 9-OLI2
by Hengyang Wang, Zhaoning He, Shuang Wang, Yachao Zhang and Hongzhao Tang
Remote Sens. 2024, 16(11), 1949; https://doi.org/10.3390/rs16111949 - 29 May 2024
Viewed by 435
Abstract
A panchromatic and multispectral sensor (PMS) and a wide-field-of-view (WFV) sensor were fitted aboard the Gaofen6 (GF6) satellite, which was launched on 2 June 2018. This study used the Landsat9-Operational Land Imager 2 and Sentinel2-Multispectral Instrument as reference sensors to perform radiometric cross-calibration [...] Read more.
A panchromatic and multispectral sensor (PMS) and a wide-field-of-view (WFV) sensor were fitted aboard the Gaofen6 (GF6) satellite, which was launched on 2 June 2018. This study used the Landsat9-Operational Land Imager 2 and Sentinel2-Multispectral Instrument as reference sensors to perform radiometric cross-calibration on GF6-PMS and WFV data at the Dunhuang calibration site. The four selected sensor images were all acquired on the same day. The results indicate that: the calibration results between different reference sensors can be controlled within 3%, with the maximum difference from the official coefficients being 8.78%. A significant difference was observed between the coefficients obtained by different reference sensors when spectral band adjustment factor (SBAF) correction was not performed; from the two sets of validation results, the maximum mean relative difference in the near-infrared band was 9.46%, with the WFV sensor showing better validation results. The validation of calibration coefficients based on synchronous ground observation data and the analysis of the impact of different SBAF methods on the calibration results indicated that Landsat9 is more suitable as a reference sensor for radiometric cross-calibration of GF6-PMS and WFV. Full article
(This article belongs to the Special Issue Remote Sensing Satellites Calibration and Validation)
Show Figures

Figure 1

18 pages, 11407 KiB  
Article
Estimation of Rice Plant Coverage Using Sentinel-2 Based on UAV-Observed Data
by Yuki Sato, Takeshi Tsuji and Masayuki Matsuoka
Remote Sens. 2024, 16(9), 1628; https://doi.org/10.3390/rs16091628 - 2 May 2024
Viewed by 808
Abstract
Vegetation coverage is a crucial parameter in agriculture, as it offers essential insight into crop growth and health conditions. The spatial resolution of spaceborne sensors is limited, hindering the precise measurement of vegetation coverage. Consequently, fine-resolution ground observation data are indispensable for establishing [...] Read more.
Vegetation coverage is a crucial parameter in agriculture, as it offers essential insight into crop growth and health conditions. The spatial resolution of spaceborne sensors is limited, hindering the precise measurement of vegetation coverage. Consequently, fine-resolution ground observation data are indispensable for establishing correlations between remotely sensed reflectance and plant coverage. We estimated rice plant coverage per pixel using time-series Sentinel-2 Multispectral Instrument (MSI) data, enabling the monitoring of rice growth conditions over a wide area. Coverage was calculated using unmanned aerial vehicle (UAV) data with a spatial resolution of 3 cm with the spectral unmixing method. Coverage maps were generated every 2–3 weeks throughout the rice-growing season. Subsequently, crop growth was estimated at 10 m resolution through multiple linear regression utilizing Sentinel-2 MSI reflectance data and coverage maps. In this process, a geometric registration of MSI and UAV data was conducted to improve their spatial agreement. The coefficients of determination (R2) of the multiple linear regression models were 0.92 and 0.94 for the Level-1C and Level-2A products of Sentinel-2 MSI, respectively. The root mean square errors of estimated rice plant coverage were 10.77% and 9.34%, respectively. This study highlights the promise of satellite time-series models for accurate estimation of rice plant coverage. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

28 pages, 6586 KiB  
Article
Comparative Analysis of Earth Observation Methodologies for Irrigation Water Accounting in the Bekaa Valley of Lebanon
by Gabriel Moujabber, Marie Therese Abi Saab, Salim Roukoz, Daniela D’Agostino, Oscar Rosario Belfiore and Guido D’Urso
Remote Sens. 2024, 16(9), 1598; https://doi.org/10.3390/rs16091598 - 30 Apr 2024
Viewed by 812
Abstract
This study extensively examines the estimation of irrigation water requirements using different methodologies based on Earth Observation data. Specifically, two distinct methods inspired by recent remote sensing and satellite technology developments are examined and compared. The first methodology, as outlined by Maselli et [...] Read more.
This study extensively examines the estimation of irrigation water requirements using different methodologies based on Earth Observation data. Specifically, two distinct methods inspired by recent remote sensing and satellite technology developments are examined and compared. The first methodology, as outlined by Maselli et al. (2020), focuses on using Sentinel-2 MSI data and a water stress scalar to estimate the levels of actual evapotranspiration and net irrigation water (NIW). The second methodology derives from the work of D’Urso et al. (2021), which includes the application of the Penman–Monteith equation in conjunction with Sentinel-2 data for estimating key parameters, such as crop evapotranspiration and NIW. In the context of the Bekaa Valley in Lebanon, this study explores the suitability of both methodologies for irrigated potato crops (nine potato fields for the early season and eight for the late season). The obtained NIW value was compared with measured field data, and the root mean square errors were calculated. The results of the comparison showed that the effectiveness of these methods varies depending on the growing season. Notably, the Maselli method exhibited better performance during the late season, while the D’Urso method proved more accurate during the early season. This comparative assessment provided valuable insights for effective agricultural water management in the Bekaa Valley when estimating NIW in potato cultivation. Full article
(This article belongs to the Special Issue Irrigation Mapping Using Satellite Remote Sensing II)
Show Figures

Figure 1

27 pages, 19690 KiB  
Article
Optimizing Optical Coastal Remote-Sensing Products: Recommendations for Regional Algorithm Calibration
by Rafael Simão, Juliana Távora, Mhd. Suhyb Salama and Elisa Fernandes
Remote Sens. 2024, 16(9), 1497; https://doi.org/10.3390/rs16091497 - 24 Apr 2024
Viewed by 814
Abstract
The remote sensing of turbidity and suspended particulate matter (SPM) relies on atmospheric corrections and bio-optical algorithms, but there is no one method that has better accuracy than the others for all satellites, bands, study areas, and purposes. Here, we evaluated different combinations [...] Read more.
The remote sensing of turbidity and suspended particulate matter (SPM) relies on atmospheric corrections and bio-optical algorithms, but there is no one method that has better accuracy than the others for all satellites, bands, study areas, and purposes. Here, we evaluated different combinations of satellites (Landsat-8, Sentinel-2, and Sentinel-3), atmospheric corrections (ACOLITE and POLYMER), algorithms (single- and multiband; empirical and semi-analytical), and bands (665 and 865 nm) to estimate turbidity and SPM in Patos Lagoon (Brazil). The region is suitable for a case study of the regionality of remote-sensing algorithms, which we addressed by regionally recalibrating the coefficients of the algorithms using a method for geophysical observation models (GeoCalVal). Additionally, we examined the results associated with the use of different statistical parameters for classifying algorithms and introduced a new metric (GoF) that reflects performance. The best performance was achieved via POLYMER atmospheric correction and the use of single-band algorithms. Regarding SPM, the recalibrated coefficients yielded a better performance, but, for turbidity, a tradeoff between two statistical parameters occurred. Therefore, the uncertainties in the atmospheric corrections and algorithms used were analyzed based on previous studies. In the future, we suggest the use of in situ radiometric data to better evaluate atmospheric corrections, radiative transfer modeling to bridge data gaps, and multisensor data merging for compiling climate records. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Graphical abstract

17 pages, 32322 KiB  
Article
Automatic Detection of Floating Ulva prolifera Bloom from Optical Satellite Imagery
by Hailong Zhang, Quan Qin, Deyong Sun, Xiaomin Ye, Shengqiang Wang and Zhixin Zong
J. Mar. Sci. Eng. 2024, 12(4), 680; https://doi.org/10.3390/jmse12040680 - 19 Apr 2024
Viewed by 869
Abstract
Annual outbreaks of floating Ulva prolifera blooms in the Yellow Sea have caused serious local environmental and economic problems. Rapid and effective monitoring of Ulva blooms from satellite observations with wide spatial-temporal coverage can greatly enhance disaster response efforts. Various satellite sensors and [...] Read more.
Annual outbreaks of floating Ulva prolifera blooms in the Yellow Sea have caused serious local environmental and economic problems. Rapid and effective monitoring of Ulva blooms from satellite observations with wide spatial-temporal coverage can greatly enhance disaster response efforts. Various satellite sensors and remote sensing methods have been employed for Ulva detection, yet automatic and rapid Ulva detection remains challenging mainly due to complex observation scenarios present in different satellite images, and even within a single satellite image. Here, a reliable and fully automatic method was proposed for the rapid extraction of Ulva features using the Tasseled-Cap Greenness (TCG) index from satellite top-of-atmosphere reflectance (RTOA) data. Based on the TCG characteristics of Ulva and Ulva-free targets, a local adaptive threshold (LAT) approach was utilized to automatically select a TCG threshold for moving pixel windows. When tested on HY1C/D-Coastal Zone Imager (CZI) images, the proposed method, termed the TCG-LAT method, achieved over 95% Ulva detection accuracy though cross-comparison with the TCG and VBFAH indexes with a visually determined threshold. It exhibited robust performance even against complex water backgrounds and under non-optimal observing conditions with sun glint and cloud cover. The TCG-LAT method was further applied to multiple HY1C/D-CZI images for automatic Ulva bloom monitoring in the Yellow Sea in 2023. Moreover, promising results were obtained by applying the TCG-LAT method to multiple optical satellite sensors, including GF-Wide Field View Camera (GF-WFV), HJ-Charge Coupled Device (HJ-CCD), Sentinel2B-Multispectral Imager (S2B-MSI), and the Geostationary Ocean Color Imager (GOCI-II). The TCG-LAT method is poised for integration into operational systems for disaster monitoring to enable the rapid monitoring of Ulva blooms in nearshore waters, facilitated by the availability of near-real-time satellite images. Full article
(This article belongs to the Special Issue New Advances in Marine Remote Sensing Applications)
Show Figures

Figure 1

Back to TopTop