Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Sinopodophyllum hexandrum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 1910 KiB  
Review
Anthriscus sylvestris—Noxious Weed or Sustainable Source of Bioactive Lignans?
by Sanja Berežni, Neda Mimica-Dukić, Gianniantonio Domina, Francesco Maria Raimondo and Dejan Orčić
Plants 2024, 13(8), 1087; https://doi.org/10.3390/plants13081087 - 12 Apr 2024
Viewed by 833
Abstract
Anthriscus sylvestris (L.) Hoffm. (Apiaceae), commonly known as wild chervil, has gained scientific interest owing to its diverse phytochemical profile and potential therapeutic applications. The plant, despite being categorized as a noxious weed, is traditionally used in treating various conditions like headaches, dressing [...] Read more.
Anthriscus sylvestris (L.) Hoffm. (Apiaceae), commonly known as wild chervil, has gained scientific interest owing to its diverse phytochemical profile and potential therapeutic applications. The plant, despite being categorized as a noxious weed, is traditionally used in treating various conditions like headaches, dressing wounds, and as a tonic, antitussive, antipyretic, analgesic, and diuretic. Its pharmacological importance stems from containing diverse bioactive lignans, especially aryltetralins and dibenzylbutyrolactones. One of the main compounds of A. sylvestris, deoxypodophyllotoxin, among its wide-ranging effects, including antitumor, antiproliferative, antiplatelet aggregation, antiviral, anti-inflammatory, and insecticidal properties, serves as a pivotal precursor to epipodophyllotoxin, crucial in the semisynthesis of cytostatic agents like etoposide and teniposide. The main starting compound for these anticancer medicines was podophyllotoxin, intensively isolated from Sinopodophyllum hexandrum, now listed as an endangered species due to overexploitation. Since new species are being investigated as potential sources, A. sylvestris emerges as a highly promising candidate owing to its abundant lignan content. This review summarizes the current knowledge on A. sylvestris, investigating its biological and morphological characteristics, and pharmacological properties. Emphasizing the biological activities and structure–activity relationship, this review underscores its therapeutic potential, thus encouraging further exploration and utilization of this valuable plant resource. Full article
Show Figures

Figure 1

12 pages, 2742 KiB  
Article
Polycarbonate-Based Copolymer Micelles as Biodegradable Carriers of Anticancer Podophyllotoxin or Juniper Extracts
by Radostina G. Kalinova, Ivaylo V. Dimitrov, Diana I. Ivanova, Yana E. Ilieva, Alexander N. Tashev, Maya M. Zaharieva, George Angelov and Hristo M. Najdenski
J. Funct. Biomater. 2024, 15(3), 53; https://doi.org/10.3390/jfb15030053 - 21 Feb 2024
Cited by 1 | Viewed by 1675
Abstract
Podophyllotoxin (PPT) is used in the industrial production of efficient anticancer, antiviral and other drugs. Sinopodophyllum hexandrum or Podophyllum peltatum are natural sources of PPT, but at present they are considered as endangered species. Their PPT content is variable, depending on the growing [...] Read more.
Podophyllotoxin (PPT) is used in the industrial production of efficient anticancer, antiviral and other drugs. Sinopodophyllum hexandrum or Podophyllum peltatum are natural sources of PPT, but at present they are considered as endangered species. Their PPT content is variable, depending on the growing conditions. Searching for new sources of PPT, some representatives of the genus Juniperus were found to exhibit efficient PPT biosynthesis. However, PPT is highly toxic and poorly soluble in water compound, which limits its clinical applications. In this connection, amphiphilic polymer micelles are considered to be suitable PPT carriers, aimed at increase in water solubility and decrease in toxicity. The present research deals with the evaluation of MPEG–polycarbonate block copolymer micelles loaded with PPT or juniper extracts. The active component-loaded polymer nanocarriers were characterized by dynamic and electrophoretic light scattering, as well as by transmission electron microscopy. The active component loading efficiency and loading capacity were also determined. Highly efficient antiproliferative activity of the loaded micelles was determined in a panel of cancer cell lines. The obtained amphiphilic nanocarriers, loaded with PPT-containing bioactive components, have application in future in vivo preclinical trials of their pharmacokinetics and pharmacodynamics as potential therapeutical agents in the prospective nanomedicine. Full article
(This article belongs to the Special Issue Synthetic Polymers for the Delivery of Vaccines and Therapeutics)
Show Figures

Figure 1

17 pages, 2983 KiB  
Article
Anticancer Podophyllotoxin Recovery from Juniper Leaves at Atmospheric and High Pressure Using Eco-Friendly Solvents
by Diana Ivanova, Paraskev Nedialkov, Alexander Tashev, Zlatina Kokanova-Nedialkova, Marta Olech, Renata Nowak, Stanislava Boyadzhieva, George Angelov and Dragomir Yankov
Plants 2023, 12(7), 1526; https://doi.org/10.3390/plants12071526 - 31 Mar 2023
Cited by 3 | Viewed by 1232
Abstract
Podophyllotoxin (PPT) is a precursor for the synthesis of drugs against cancer and other diseases. The present sources of PPT (Sinopodophyllum hexandrum and Podophyllum peltatum) are endangered species, with PPT production highly dependent on their growing conditions. In connection with the [...] Read more.
Podophyllotoxin (PPT) is a precursor for the synthesis of drugs against cancer and other diseases. The present sources of PPT (Sinopodophyllum hexandrum and Podophyllum peltatum) are endangered species, with PPT production highly dependent on their growing conditions. In connection with the identification of new sources of PPT, the present study aimed to recover PPT from Juniperus virginiana leaves via atmospheric or high pressure extraction methods with a focus on using eco-friendly solvents. PPT quantification was determined by UHPLC/HRMS/MS. A thorough study of conventional extraction was carried out to reveal the optimal conditions (solvent ethyl acetate at room temperature and a duration of 1 h) for maximizing the PPT recovery (about 30 mg/g of dry extract and 3 mg/g of dry initial plant material). Peleg’s equation was applied for process kinetics modeling. The best PPT content in the final dry extract (42–45 mg/g of dry extract) was obtained by high pressure methods under supercritical (scCO2 with ethanol or ethyl acetate, 30 MPa, 50 °C and 100 min) or accelerated solvent extraction conditions (solvent ethyl acetate, 10.35 MPa, 20 °C and 3 cycles for 15 min). Seasonal stability and storage stability of the raw material were also determined. The present results have potential applications in the pharmacy for the delivery of PPT from juniper leaves. Full article
Show Figures

Figure 1

14 pages, 11935 KiB  
Article
Ultrasonic Treatment Enhances the Antioxidant and Immune-Stimulatory Properties of the Polysaccharide from Sinopodophyllum hexandrum Fruit
by Ziwei Liu, Hangyu Li, Qianqian Liu, Yangyang Feng, Daiyan Wu, Xinnan Zhang, Linzi Zhang, Sheng Li, Feng Tang, Qun Liu, Xiaonong Yang and Haibo Feng
Foods 2023, 12(5), 910; https://doi.org/10.3390/foods12050910 - 21 Feb 2023
Cited by 3 | Viewed by 1826
Abstract
We aimed to assess the potential of ultrasonic treatment on the processing of polysaccharides as functional foods or food additives. The polysaccharide from Sinopodophyllum hexandrum fruit (SHP, 52.46 kDa, 1.91 nm) was isolated and purified. SHP was treated with various levels of ultrasound [...] Read more.
We aimed to assess the potential of ultrasonic treatment on the processing of polysaccharides as functional foods or food additives. The polysaccharide from Sinopodophyllum hexandrum fruit (SHP, 52.46 kDa, 1.91 nm) was isolated and purified. SHP was treated with various levels of ultrasound (250 W and 500 W), resulting in the formation of two polysaccharides, SHP1 (29.37 kD, 1.40 nm) and SHP2 (36.91 kDa, 0.987 nm). Ultrasonic treatment was found to reduce the surface roughness and molecular weight of the polysaccharides, leading to thinning and fracturing. The effect of ultrasonic treatment on polysaccharide activity was evaluated in vitro and in vivo. In vivo experiments showed that ultrasonic treatment improved the organ index. Simultaneously, it enhanced the activity of superoxide dismutase, total antioxidant capacity, and decreased the content of malondialdehyde in the liver. In vitro experiments demonstrated that ultrasonic treatment also promoted proliferation, nitric oxide secretion, phagocytic efficiency, costimulatory factors (CD80+, CD86+) expression, and cytokine(IL-6, IL-1β) production of RAW264.7 macrophages. Full article
(This article belongs to the Special Issue Application of Ultrasonic Technology in Food Processing)
Show Figures

Figure 1

15 pages, 2729 KiB  
Article
Light-Induced Flavonoid Biosynthesis in Sinopodophyllum hexandrum with High-Altitude Adaptation
by Qiaozhu Zhao, Miaoyin Dong, Mengfei Li, Ling Jin and Paul W. Paré
Plants 2023, 12(3), 575; https://doi.org/10.3390/plants12030575 - 28 Jan 2023
Cited by 8 | Viewed by 1847
Abstract
Sinopodophyllum hexandrum is a perennial alpine herb producing the anti-cancer metabolite podophyllotoxin (PPT). Although the adaptation of S. hexandrum to high altitudes has been demonstrated and the effects of temperature, precipitation, and UV-B light on plant growth and metabolite accumulation have been studied, [...] Read more.
Sinopodophyllum hexandrum is a perennial alpine herb producing the anti-cancer metabolite podophyllotoxin (PPT). Although the adaptation of S. hexandrum to high altitudes has been demonstrated and the effects of temperature, precipitation, and UV-B light on plant growth and metabolite accumulation have been studied, knowledge on the role of flavonoid biosynthesis in adapting to high altitudes is limited. In this study, light intensity, amount and type of flavonoids, and differentially expressed proteins (DEPs) and genes (DEGs) at 2300 and 3300 m were analyzed by HPLC, proteomic, transcriptomic, and qRT-PCR analysis. We found that higher light intensity correlated with greater flavonoid, flavonol, and anthocyanin content as well as higher anthocyanin to total flavonoid and flavonol ratios observed at the higher altitude. Based on proteomic and transcriptomic analyses, nine DEPs and 41 DEGs were identified to be involved in flavonoid biosynthesis and light response at 3300 m. The relative expression of nine genes (PAL, CHS1, IFRL, ANS, MYB4, BHLH137, CYP6, PPO1, and ABCB19) involved in flavonoid biosynthesis and seven genes (HSP18.1, HSP70, UBC4, ERF5, ERF9, APX3, and EX2) involved in light stress were observed to be up-regulated at 3300 m compared with 2300 m. These findings indicate that light intensity may play a regulatory role in enhancing flavonoid accumulation that allows S. hexandrum to adapt to elevated-altitude coupled with high light intensity. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants Volume II)
Show Figures

Figure 1

16 pages, 1677 KiB  
Article
Junipers of Various Origins as Potential Sources of the Anticancer Drug Precursor Podophyllotoxin
by Diana I. Ivanova, Paraskev T. Nedialkov, Alexander N. Tashev, Marta Olech, Renata Nowak, Yana E. Ilieva, Zlatina K. Kokanova-Nedialkova, Teodora N. Atanasova, George Angelov and Hristo M. Najdenski
Molecules 2021, 26(17), 5179; https://doi.org/10.3390/molecules26175179 - 26 Aug 2021
Cited by 14 | Viewed by 3190
Abstract
Juniper representatives are natural sources of plenty of bioactive metabolites and have been used since ancient times as folk remedies against tapeworms, warts, cancer, etc. The antiproliferative activities of junipers are attributed to podophyllotoxin (PPT), which is a precursor for the synthesis of [...] Read more.
Juniper representatives are natural sources of plenty of bioactive metabolites and have been used since ancient times as folk remedies against tapeworms, warts, cancer, etc. The antiproliferative activities of junipers are attributed to podophyllotoxin (PPT), which is a precursor for the synthesis of efficient anticancer drugs. However, the natural sources of PPT, Sinopodophyllum hexandrum (Royle) T. S. Ying and Podophyllum peltatum L., are already endangered species because of their intensive industrial exploitation. Therefore, identification of other sources of PPT is necessary. This study is a broad comparative investigation of junipers, for which original sources have been accessed from different continents of the world. The present research is aimed at the identification of species, producing PPT and other lignans at concentrations that are sufficient for the high antiproliferative activity of the corresponding extracts. Cytotoxic juniper leaf extracts demonstrated a broad spectrum of activity on a panel of cancer cell lines. The antiproliferative properties of junipers were attributed to the combined activity of great diversity of lignans (podophyllotoxin, deoxypodophyllotoxin, β-peltatin, yatein, matairesinol, anhydropodorhizol, etc.), detected by UHPLC-HRMS and LC-ESI-MS/MS in the corresponding extracts. Several species of the genus Juniperus L. were outlined as perspective sources of drug precursors with potential pharmaceutical applications. Full article
(This article belongs to the Special Issue Phytochemical and Pharmacological Evaluation of Natural Products)
Show Figures

Figure 1

14 pages, 2039 KiB  
Article
Sixteen New Prenylated Flavonoids from the Fruit of Sinopodophyllum hexandrum
by Yanjun Sun, Haojie Chen, Junmin Wang, Meiling Gao, Chen Zhao, Ruijie Han, Hui Chen, Meng Li, Guimin Xue and Weisheng Feng
Molecules 2019, 24(17), 3196; https://doi.org/10.3390/molecules24173196 - 3 Sep 2019
Cited by 14 | Viewed by 2526
Abstract
Sixteen new prenylated flavonoids, sinoflavonoids P–Z (111) and sinoflavonoids NA–NE (1216), were isolated from the fruit of Sinopodophyllum hexandrum, along with eight known analogues (1724). Their structures were elucidated on [...] Read more.
Sixteen new prenylated flavonoids, sinoflavonoids P–Z (111) and sinoflavonoids NA–NE (1216), were isolated from the fruit of Sinopodophyllum hexandrum, along with eight known analogues (1724). Their structures were elucidated on the basis of extensive spectroscopic data (HR-ESI-MS, 1H-NMR, 13C-NMR, HSQC, HMBC). The cytotoxic activities of compounds 118, 20, and 22 were evaluated by MTT assay. Compound 6 showed the most potent cytotoxicity in MCF-7, and HepG2 cell lines, with IC50 values of 6.25 and 3.83 μM, respectively. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop