Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,602)

Search Parameters:
Keywords = Synthetic Aperture Radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3843 KiB  
Article
Open-Set Recognition Model for SAR Target Based on Capsule Network with the KLD
by Chunyun Jiang, Huiqiang Zhang, Ronghui Zhan, Wenyu Shu and Jun Zhang
Remote Sens. 2024, 16(17), 3141; https://doi.org/10.3390/rs16173141 (registering DOI) - 26 Aug 2024
Abstract
Synthetic aperture radar (SAR) automatic target recognition (ATR) technology has seen significant advancements. Despite these advancements, the majority of research still operates under the closed-set assumption, wherein all test samples belong to classes seen during the training phase. In real-world applications, however, it [...] Read more.
Synthetic aperture radar (SAR) automatic target recognition (ATR) technology has seen significant advancements. Despite these advancements, the majority of research still operates under the closed-set assumption, wherein all test samples belong to classes seen during the training phase. In real-world applications, however, it is common to encounter targets not previously seen during training, posing a significant challenge to the existing methods. Ideally, an ATR system should not only accurately identify known target classes but also effectively reject those belonging to unknown classes, giving rise to the concept of open set recognition (OSR). To address this challenge, we propose a novel approach that leverages the unique capabilities of the Capsule Network and the Kullback-Leibler divergence (KLD) to distinguish unknown classes. This method begins by deeply mining the features of SAR targets using the Capsule Network and enhancing the separability between different features through a specially designed loss function. Subsequently, the KLD of features between a testing sample and the center of each known class is calculated. If the testing sample exhibits a significantly larger KLD compared to all known classes, it is classified as an unknown target. The experimental results of the SAR-ACD dataset demonstrate that our method can maintain a correct identification rate of over 95% for known classes while effectively recognizing unknown classes. Compared to existing techniques, our method exhibits significant improvements. Full article
Show Figures

Figure 1

17 pages, 13031 KiB  
Article
Accurate Deformation Retrieval of the 2023 Turkey–Syria Earthquakes Using Multi-Track InSAR Data and a Spatio-Temporal Correlation Analysis with the ICA Method
by Yuhao Liu, Songbo Wu, Bochen Zhang, Siting Xiong and Chisheng Wang
Remote Sens. 2024, 16(17), 3139; https://doi.org/10.3390/rs16173139 (registering DOI) - 26 Aug 2024
Viewed by 56
Abstract
Multi-track synthetic aperture radar interferometry (InSAR) provides a good approach for the monitoring of long-term multi-dimensional earthquake deformation, including pre-, co-, and post-seismic data. However, the removal of atmospheric errors in both single- and multi-track InSAR data presents significant challenges. In this paper, [...] Read more.
Multi-track synthetic aperture radar interferometry (InSAR) provides a good approach for the monitoring of long-term multi-dimensional earthquake deformation, including pre-, co-, and post-seismic data. However, the removal of atmospheric errors in both single- and multi-track InSAR data presents significant challenges. In this paper, a method of spatio-temporal correlation analysis using independent component analysis (ICA) is proposed, which can extract multi-track deformation components for the accurate retrieval of earthquake deformation time series. Sentinel-1 data covering the double earthquakes in Turkey and Syria in 2023 are used to demonstrate the effectiveness of the proposed method. The results show that co-seismic displacement in the east–west and up–down directions ranged from −114.7 cm to 82.8 cm and from −87.0 cm to 63.9 cm, respectively. Additionally, the deformation rates during the monitoring period ranged from −137.9 cm/year to 123.3 cm/year in the east–west direction and from −51.8 cm/year to 45.7 cm/year in the up–down direction. A comparative validation experiment was conducted using three GPS stations. Compared with the results of the original MSBAS method, the proposed method provides results that are smoother and closer to those of the GPS data, and the average optimization efficiency is 43.08% higher. The experiments demonstrated that the proposed method could provide accurate two-dimensional deformation time series for studying the pre-, co-, and post-earthquake events of the 2023 Turkey–Syria Earthquakes. Full article
Show Figures

Figure 1

18 pages, 4036 KiB  
Article
Stepwise Attention-Guided Multiscale Fusion Network for Lightweight and High-Accurate SAR Ship Detection
by Chunyuan Wang, Xianjun Cai, Fei Wu, Peng Cui, Yang Wu and Ye Zhang
Remote Sens. 2024, 16(17), 3137; https://doi.org/10.3390/rs16173137 (registering DOI) - 25 Aug 2024
Viewed by 240
Abstract
Many exceptional deep learning networks have demonstrated remarkable proficiency in general object detection tasks. However, the challenge of detecting ships in synthetic aperture radar (SAR) imagery increases due to the complex and various nature of these scenes. Moreover, sophisticated large-scale models necessitate substantial [...] Read more.
Many exceptional deep learning networks have demonstrated remarkable proficiency in general object detection tasks. However, the challenge of detecting ships in synthetic aperture radar (SAR) imagery increases due to the complex and various nature of these scenes. Moreover, sophisticated large-scale models necessitate substantial computational resources and hardware expenses. To address these issues, a new framework is proposed called a stepwise attention-guided multiscale feature fusion network (SAFN). Specifically, we introduce a stepwise attention mechanism designed to selectively emphasize relevant information and filter out irrelevant details of objects in a step-by-step manner. Firstly, a novel LGA-FasterNet is proposed, which incorporates a lightweight backbone FasterNet with lightweight global attention (LGA) to realize expressive feature extraction while reducing the model’s parameters. To effectively mitigate the impact of scale and complex background variations, a deformable attention bidirectional fusion network (DA-BFNet) is proposed, which introduces a novel deformable location attention (DLA) block and a novel deformable recognition attention (DRA) block, strategically integrating through bidirectional connections to achieve enhanced features fusion. Finally, we have substantiated the robustness of the new framework through extensive testing on the publicly accessible SAR datasets, HRSID and SSDD. The experimental outcomes demonstrate the competitive performance of our approach, showing a significant enhancement in ship detection accuracy compared to some state-of-the-art methods. Full article
Show Figures

Figure 1

22 pages, 5669 KiB  
Article
Multi-Stage Feature Fusion of Multispectral and SAR Satellite Images for Seasonal Crop-Type Mapping at Regional Scale Using an Adapted 3D U-Net Model
by Lucas Wittstruck, Thomas Jarmer and Björn Waske
Remote Sens. 2024, 16(17), 3115; https://doi.org/10.3390/rs16173115 - 23 Aug 2024
Viewed by 285
Abstract
Earth observation missions such as Sentinel and Landsat support the large-scale identification of agricultural crops by providing free radar and multispectral satellite images. The extraction of representative image information as well as the combination of different image sources for improved feature selection still [...] Read more.
Earth observation missions such as Sentinel and Landsat support the large-scale identification of agricultural crops by providing free radar and multispectral satellite images. The extraction of representative image information as well as the combination of different image sources for improved feature selection still represent a major challenge in the field of remote sensing. In this paper, we propose a novel three-dimensional (3D) deep learning U-Net model to fuse multi-level image features from multispectral and synthetic aperture radar (SAR) time series data for seasonal crop-type mapping at a regional scale. For this purpose, we used a dual-stream U-Net with a 3D squeeze-and-excitation fusion module applied at multiple stages in the network to progressively extract and combine multispectral and SAR image features. Additionally, we introduced a distinctive method for generating patch-based multitemporal multispectral composites by selective image sampling within a 14-day window, prioritizing those with minimal cloud cover. The classification results showed that the proposed network provided the best overall accuracy (94.5%) compared to conventional two-dimensional (2D) and three-dimensional U-Net models (2D: 92.6% and 3D: 94.2%). Our network successfully learned multi-modal dependencies between the multispectral and SAR satellite images, leading to improved field mapping of spectrally similar and heterogeneous classes while mitigating the limitations imposed by persistent cloud coverage. Additionally, the feature representations extracted by the proposed network demonstrated their transferability to a new cropping season, providing a reliable mapping of spatio-temporal crop type patterns. Full article
(This article belongs to the Special Issue Remote Sensing: 15th Anniversary)
Show Figures

Figure 1

17 pages, 34782 KiB  
Article
Non-Tectonic Geohazards of Guangdong Province, China, Monitored Using Sentinel-1A/B from 2015 to 2022
by Jincang Liu, Zhenhua Fu, Lipeng Zhou, Guangcai Feng, Yilin Wang and Wulinhong Luo
Sensors 2024, 24(16), 5449; https://doi.org/10.3390/s24165449 - 22 Aug 2024
Viewed by 261
Abstract
Guangdong Province, home to 21 cities and a permanent population of 127.06 million people, boasts the largest provincial economy in China, contributing 11.76% to the national GDP in 2023. However, it is prone to geological hazards due to its geological conditions, extreme weather, [...] Read more.
Guangdong Province, home to 21 cities and a permanent population of 127.06 million people, boasts the largest provincial economy in China, contributing 11.76% to the national GDP in 2023. However, it is prone to geological hazards due to its geological conditions, extreme weather, and extensive human activities. Geohazards not only endanger lives but also hinder regional economic development. Monitoring surface deformation regularly can promptly detect geological hazards and allow for effective mitigation strategies. Traditional ground subsidence monitoring methods are insufficient for comprehensive surveys and rapid monitoring of geological hazards in the whole province. Interferometric Synthetic Aperture Radar (InSAR) technology using satellite images can achieve wide-area geohazard monitoring. However, current geological hazard monitoring in Guangdong Province based on InSAR technology lacks regional analysis and statistics of surface deformation across the entire province. Furthermore, such monitoring fails to analyze the spatial–temporal characteristics of surface deformation and disaster evolution mechanisms by considering the local geological features. To address these issues, current work utilizes Sentinel-1A/B satellite data covering Guangdong Province from 2015 to 2022 to obtain the wide-area surface deformation in the whole province using the multi-temporal (MT) InSAR technology. Based on the deformation results, a wide-area deformation region automatic identification method is used to identify the surface deformation regions and count the deformation area in each city of Guangdong Province. By analyzing the results, we obtained the following findings: (1) Using the automatic identification algorithm we identified 2394 deformation regions. (2) Surface subsidence is concentrated in the delta regions and reclamation areas; over a 4 cm/year subsidence rate is observed in the hilly regions of northern Guangdong, particularly in mining areas. (3) Surface deformation is closely related to geological structures and human activities. (4) Sentinel-1 satellite C-band imagery is highly effective for wide-area geological hazard monitoring, but has limitations in monitoring small-area geological hazards. In the future, combining the high-spatial–temporal-resolution L-band imagery from the NISAR satellite with Sentinel-1 imagery will allow for comprehensive monitoring and early warning of geological hazards, achieving multiple geometric and platform perspectives for geological hazard monitoring and management in Guangdong Province. The findings of this study have significant reference value for the monitoring and management of geological disasters in Guangdong Province. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

32 pages, 7438 KiB  
Article
Monitoring of Spatio-Temporal Variations of Oil Slicks via the Collocation of Multi-Source Satellite Images
by Tran Vu La, Ramona-Maria Pelich, Yu Li, Patrick Matgen and Marco Chini
Remote Sens. 2024, 16(16), 3110; https://doi.org/10.3390/rs16163110 - 22 Aug 2024
Viewed by 417
Abstract
Monitoring oil drift by integrating multi-source satellite imagery has been a relatively underexplored practice due to the limited time-sampling of datasets. However, this limitation has been mitigated by the emergence of new satellite constellations equipped with both Synthetic Aperture Radar (SAR) and optical [...] Read more.
Monitoring oil drift by integrating multi-source satellite imagery has been a relatively underexplored practice due to the limited time-sampling of datasets. However, this limitation has been mitigated by the emergence of new satellite constellations equipped with both Synthetic Aperture Radar (SAR) and optical sensors. In this manuscript, we take advantage of multi-temporal and multi-source satellite imagery, incorporating SAR (Sentinel-1 and ICEYE-X) and optical data (Sentinel-2/3 and Landsat-8/9), to provide insights into the spatio-temporal variations of oil spills. We also analyze the impact of met–ocean conditions on oil drift, focusing on two specific scenarios: marine floating oil slicks off the coast of Qatar and oil spills resulting from a shipwreck off the coast of Mauritius. By overlaying oils detected from various sources, we observe their short-term and long-term evolution. Our analysis highlights the finding that changes in oil structure and size are influenced by strong surface winds, while surface currents predominantly affect the spread of oil spills. Moreover, to detect oil slicks across different datasets, we propose an innovative unsupervised algorithm that combines a Bayesian approach used to detect oil and look-alike objects with an oil contours approach distinguishing oil from look-alikes. This algorithm can be applied to both SAR and optical data, and the results demonstrate its ability to accurately identify oil slicks, even in the presence of oil look-alikes and under varying met–ocean conditions. Full article
(This article belongs to the Special Issue Marine Ecology and Biodiversity by Remote Sensing Technology)
Show Figures

Figure 1

24 pages, 21090 KiB  
Article
Comparative Analysis of Machine-Learning Models for Soil Moisture Estimation Using High-Resolution Remote-Sensing Data
by Ming Li and Yueguan Yan
Land 2024, 13(8), 1331; https://doi.org/10.3390/land13081331 - 22 Aug 2024
Viewed by 378
Abstract
Soil moisture is an important component of the hydrologic cycle and ecosystem functioning, and it has a significant impact on agricultural production, climate change and natural disasters. Despite the availability of machine-learning techniques for estimating soil moisture from high-resolution remote-sensing imagery, including synthetic [...] Read more.
Soil moisture is an important component of the hydrologic cycle and ecosystem functioning, and it has a significant impact on agricultural production, climate change and natural disasters. Despite the availability of machine-learning techniques for estimating soil moisture from high-resolution remote-sensing imagery, including synthetic aperture radar (SAR) data and optical remote sensing, comprehensive comparative studies of these techniques remain limited. This paper addresses this gap by systematically comparing the performance of four tree-based ensemble-learning models (random forest (RF), extreme gradient boosting (XGBoost), light gradient-boosting machine (LightGBM), and category boosting (CatBoost)) and three deep-learning models (deep neural network (DNN), convolutional neural network (CNN), and gated recurrent unit (GRU)) in terms of soil moisture estimation. Additionally, we introduce and evaluate the effectiveness of four different stacking methods for model fusion, an approach that is relatively novel in this context. Moreover, Sentinel-1 C-band dual-polarization SAR and Sentinel-2 multispectral data, as well as NASADEM and geographical code and temporal code features, are used as input variables to retrieve the soil moisture in the ShanDian River Basin in China. Our findings reveal that the tree-based ensemble-learning models outperform the deep-learning models, with LightGBM being the best individual model, while the stacking approach can further enhance the accuracy and robustness of soil moisture estimation. Moreover, the stacking all boosting classes ensemble-learning model (SABM), which integrates only boosting-type models, demonstrates superior accuracy and robustness in soil moisture estimation. The SHAP value analysis reveals that ensemble learning can utilize more complex features than deep learning. This study provides an effective method for retrieving soil moisture using machine-learning and high-resolution remote-sensing data, demonstrating the application value of SAR data and high-resolution optical remote-sensing data in soil moisture monitoring. Full article
Show Figures

Figure 1

25 pages, 94594 KiB  
Article
Harbor Detection in Polarimetric SAR Images Based on Context Features and Reflection Symmetry
by Chun Liu, Jie Gao, Shichong Liu, Chao Li, Yongchao Cheng, Yi Luo and Jian Yang
Remote Sens. 2024, 16(16), 3079; https://doi.org/10.3390/rs16163079 - 21 Aug 2024
Viewed by 339
Abstract
The detection of harbors presents difficulties related to their diverse sizes, varying morphology and scattering, and complex backgrounds. To avoid the extraction of unstable geometric features, in this paper, we propose an unsupervised harbor detection method for polarimetric SAR images using context features [...] Read more.
The detection of harbors presents difficulties related to their diverse sizes, varying morphology and scattering, and complex backgrounds. To avoid the extraction of unstable geometric features, in this paper, we propose an unsupervised harbor detection method for polarimetric SAR images using context features and polarimetric reflection symmetry. First, the image is segmented into three region types, i.e., water low-scattering regions, strong-scattering urban regions, and other regions, based on a multi-region Markov random field (MRF) segmentation method. Second, by leveraging the fact that harbors are surrounded by water on one side and a large number of buildings on the other, the coastal narrow-band area is extracted from the low-scattering regions, and the harbor regions of interest (ROIs) are determined by extracting the strong-scattering regions from the narrow-band area. Finally, by using the scattering reflection asymmetry of harbor buildings, harbors are identified based on the global threshold segmentation of the horizontal, vertical, and circular co- and cross-polarization correlation powers of the extracted ROIs. The effectiveness of the proposed method was validated with experiments on RADARSAT-2 quad-polarization images of Zhanjiang, Fuzhou, Lingshui, and Dalian, China; San Francisco, USA; and Singapore. The proposed method had high detection rates and low false detection rates in the complex coastal environment scenarios studied, far outperforming the traditional spatial harbor detection method considered for comparison. Full article
Show Figures

Figure 1

19 pages, 98931 KiB  
Article
Semi-Automatic Detection of Ground Displacement from Multi-Temporal Sentinel-1 Synthetic Aperture Radar Interferometry Analysis and Density-Based Spatial Clustering of Applications with Noise in Xining City, China
by Dianqiang Chen, Qichen Wu, Zhongjin Sun, Xuguo Shi, Shaocheng Zhang, Yi Zhang and Yunlong Wu
Remote Sens. 2024, 16(16), 3066; https://doi.org/10.3390/rs16163066 - 21 Aug 2024
Viewed by 423
Abstract
The China Loess Plateau (CLP) is the world’s most extensive and thickest region of loess deposits. The inherently loose structure of loess makes the CLP particularly vulnerable to geohazards such as landslides, collapses, and subsidence, resulting in substantial geological and environmental challenges. Xining [...] Read more.
The China Loess Plateau (CLP) is the world’s most extensive and thickest region of loess deposits. The inherently loose structure of loess makes the CLP particularly vulnerable to geohazards such as landslides, collapses, and subsidence, resulting in substantial geological and environmental challenges. Xining City, situated at the northwest edge of the CLP, is especially prone to frequent geological hazards due to intensified human activities and natural forces. Synthetic Aperture Radar Interferometry (InSAR) has become a widely used tool for identifying landslide hazards and displacement monitoring because of its high accuracy, low cost, and wide coverage. In this study, we utilized the small baseline subset (SBAS) InSAR technique to derive the line of sight (LOS) displacements of Xining City using Sentinel-1 datasets from ascending and descending orbits between October 2014 and September 2022. By integrating LOS displacements from the two datasets, we retrieved the eastward and vertical displacements to characterize the kinematics of active slopes. To identify the active areas semi-automatically, we applied the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm to cluster InSAR measurement points (IMPs). Forty-eight active slopes with areas ranging from 0.0049 to 0.5496 km2 and twenty-five subsidence-dominant areas ranging from 0.023 to 3.123 km2 were identified across Xining City. Kinematics analysis of the Jiujiawan landslide indicated that acceleration started in August 2016, likely triggered by rainfall, and continued until the landslide. The extreme rainfall in August 2022 may have pushed the Jiujiawan landslide beyond its critical threshold, leading to instability. Additionally, the study identified nine active slopes that threaten the normal operation of the Lanzhou–Xinjiang High-Speed Railway, with kinematic analysis suggesting rainfall-related accelerations. The influence of anthropogenic activities on ground displacements in loess areas was also confirmed through time series displacement analysis. Our results can be leveraged for geohazard prevention and management in Xining City. As SAR image data continue to accumulate, InSAR can serve as a regular tool for maintaining up-to-date landslide inventories, thereby contributing to more sustainable geohazard management. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Land Subsidence Monitoring)
Show Figures

Figure 1

42 pages, 2053 KiB  
Review
Review of River Ice Observation and Data Analysis Technologies
by Igor Zakharov, Thomas Puestow, Amir Ali Khan, Robert Briggs and Paul Barrette
Hydrology 2024, 11(8), 126; https://doi.org/10.3390/hydrology11080126 - 20 Aug 2024
Viewed by 618
Abstract
This paper provides a comprehensive review of the available literature on the observation and characterization of river ice using remote sensing technologies. Through an analysis of 200 publications spanning from 1919 to June 2024, we reviewed different observation technologies deployed on in situ, [...] Read more.
This paper provides a comprehensive review of the available literature on the observation and characterization of river ice using remote sensing technologies. Through an analysis of 200 publications spanning from 1919 to June 2024, we reviewed different observation technologies deployed on in situ, aerial and satellite platforms for their utility in monitoring and characterizing river ice covers. River ice information, captured by 51 terms extracted from the literature, holds significant value in enhancing infrastructure resilience in the face of climate change. Satellite technologies, in particular the multispectral optical and multi-polarimetric synthetic aperture radar (SAR), provide a number of advantages, such as ice features discrimination, better ice characterization, and reliable delineation of open water and ice, with both current and upcoming sensors. The review includes data analysis methods employed for the monitoring and characterization of river ice, including ice information retrieval methods and corresponding accuracies. The need for further research on artificial intelligence and, in particular, deep learning (DL) techniques has been recognized as valuable for enhancing the accuracy of automated systems. The growing availability of freely available and commercial satellites, UAVs, and in situ data with improved characteristics suggests significant operational potential for river ice observation in the near future. Our study also identifies gaps in the current capabilities for river ice observation and provides suggestions for improved data analysis and interpretation. Full article
Show Figures

Figure 1

22 pages, 16283 KiB  
Article
Estimating Reactivation Times and Velocities of Slow-Moving Landslides via PS-InSAR and Their Relationship with Precipitation in Central Italy
by Ebrahim Ghaderpour, Claudia Masciulli, Marta Zocchi, Francesca Bozzano, Gabriele Scarascia Mugnozza and Paolo Mazzanti
Remote Sens. 2024, 16(16), 3055; https://doi.org/10.3390/rs16163055 - 20 Aug 2024
Viewed by 384
Abstract
Monitoring slow-moving landslides is a crucial task for socioeconomic risk prevention and/or mitigation. Persistent scatterer interferometric synthetic aperture radar (PS-InSAR) is an advanced remote sensing method for monitoring ground deformation. In this research, PS-InSAR time series derived from COSMO-SkyMed (descending orbit) and Sentinel-1 [...] Read more.
Monitoring slow-moving landslides is a crucial task for socioeconomic risk prevention and/or mitigation. Persistent scatterer interferometric synthetic aperture radar (PS-InSAR) is an advanced remote sensing method for monitoring ground deformation. In this research, PS-InSAR time series derived from COSMO-SkyMed (descending orbit) and Sentinel-1 (ascending orbit) are analyzed for a region in Central Apennines in Italy. The sequential turning point detection method (STPD) is implemented to detect the trend turning dates and their directions in the PS-InSAR time series within areas of interest susceptible to landslides. The monthly maps of significant turning points and their directions for years 2018, 2019, 2020, and 2021 are produced and classified for four Italian administrative regions, namely, Marche, Umbria, Abruzzo, and Lazio. Monthly global precipitation measurement (GPM) images at 0.1×0.1 spatial resolution and four local precipitation time series are also analyzed by STPD to investigate when the precipitation rate has changed and how they might have reactivated slow-moving landslides. Generally, a strong correlation (r0.7) is observed between GPM (satellite-based) and local precipitation (station-based) with similar STPD results. Marche and Abruzzo (the coastal regions) have an insignificant precipitation rate while Umbria and Lazio have a significant increase in precipitation from 2017 to 2023. The coastal regions also exhibit relatively lower precipitation amounts. The results indicate a strong correlation between the trend turning dates of the accumulated precipitation and displacement time series, especially for Lazio during summer and fall 2020, where relatively more significant precipitation rate of change is observed. The findings of this study may guide stakeholders and responsible authorities for risk management and mitigating damage to infrastructures. Full article
Show Figures

Figure 1

26 pages, 15128 KiB  
Article
Wildfire Threshold Detection and Progression Monitoring Using an Improved Radar Vegetation Index in California
by Dustin Horton, Joel T. Johnson, Ismail Baris, Thomas Jagdhuber, Rajat Bindlish, Jeonghwan Park and Mohammad M. Al-Khaldi
Remote Sens. 2024, 16(16), 3050; https://doi.org/10.3390/rs16163050 - 19 Aug 2024
Viewed by 396
Abstract
To address the recent increase in wildfire severity and incidence, as well as the subsequent financial and physical costs, forest managers and wildland firefighting agencies rely on remotely sensed products for better decision-making and mitigation efforts. To address the remote sensing needs of [...] Read more.
To address the recent increase in wildfire severity and incidence, as well as the subsequent financial and physical costs, forest managers and wildland firefighting agencies rely on remotely sensed products for better decision-making and mitigation efforts. To address the remote sensing needs of these agencies, which include high spatial resolution, immunity to atmospheric and solar illumination effects, and day/night capabilities, the use of synthetic aperture radar (SAR) is under investigation for application in current and upcoming systems for all phases of a wildfire. Focusing on the active phase, a method for monitoring wildfire activity is presented based on changes in the radar vegetation index (RVI). L-band backscatter measurements from NASA/JPL’s UAVSAR instrument are used to obtain RVI images on multiple dates during the 2020 Bobcat (located in Southern CA, USA) and Hennessey (located in Northern CA, USA) fires and the 2021 Caldor (located in the Sierra Nevada region of CA, USA) fire. Changes in the RVI between measurement dates of a single fire are then compared to indicators of fire activity such as ancillary GIS-based burn extent perimeters and the Landsat 8-based difference normalized burn ratio (dNBR). An RVI-based wildfire “burn” detector/index is then developed by thresholding the RVI change. A combination of the receiver operating characteristic (ROC) curves and F1 scores for this detector are used to derive change detection thresholds at varying spatial resolutions. Six repeat-track UAVSAR lines over the 2020 fires are used to determine appropriate threshold values, and the performance is subsequently investigated for the 2021 Caldor fire. The results show good performance for the Bobcat and Hennessey fires at 100 m resolution, with optimum probability of detections of 67.89% and 71.98%, F1 scores of 0.6865 and 0.7309, and Matthews correlation coefficients of 0.5863 and 0.6207, respectively, with an overall increase in performance for all metrics as spatial resolution becomes coarser. The results for pixels identified as “burned” compare well with other fire indicators such as soil burn severity, known progression maps, and post-fire agency publications. Good performance is also observed for the Caldor fire where the percentage of pixels identified as burned within the known fire perimeters ranges from 37.87% at ~5 m resolution to 88.02% at 500 m resolution, with a general increase in performance as spatial resolution increases. All detections for Caldor show dense collections of burned pixels within the known perimeters, while pixels identified as burned that lie outside of the know perimeters have a sparse spatial distribution similar to noise that decreases as spatial resolution is degraded. The Caldor results also align well with other fire indicators such as soil burn severity and vegetation disturbance. Full article
(This article belongs to the Section Earth Observation for Emergency Management)
Show Figures

Figure 1

24 pages, 9808 KiB  
Article
Analysis and Design of an Airborne-Dangled Monopole-Antenna Symmetric Remote-Sensing Radiation Source for Airport Runway Monitoring
by Qianqian Tian, Haifeng Fan, Jingjie Chen and Lei Zhang
Symmetry 2024, 16(8), 1069; https://doi.org/10.3390/sym16081069 - 19 Aug 2024
Viewed by 289
Abstract
Traditional methods for monitoring the foundation settlement of airport runways predominantly employ equipment such as leveling instruments, total stations, layered settlement instruments, magnetic ring settlement instruments, ground-penetrating radar (GPR), and synthetic aperture radar. These methods suffer from low automation levels, are time-consuming, labor-intensive, [...] Read more.
Traditional methods for monitoring the foundation settlement of airport runways predominantly employ equipment such as leveling instruments, total stations, layered settlement instruments, magnetic ring settlement instruments, ground-penetrating radar (GPR), and synthetic aperture radar. These methods suffer from low automation levels, are time-consuming, labor-intensive, and can significantly disrupt airport operations. An alternative electromagnetic detection technique, Controlled Source Audio-Frequency Magnetotellurics (CSAMT), offers deep-depth detection capabilities. However, CSAMT faces significant challenges, particularly in generating high signal-to-noise ratio (SNR) signals in the far-field region (FfR). Traditional CSAMT utilizes grounded horizontal dipoles (GHDs), which radiate symmetric beams. Due to the low directivity of GHDs, only a small fraction of the radiated energy is effectively utilized in FfR observations. Enhancing the SNR in FfR typically requires either reducing the transceiving distance or increasing the transmitting power, both of which introduce substantial complications. This paper proposes an airborne-dangled monopole-antenna symmetric remote-sensing radiation source for airport runway monitoring, which replaces the conventional GHD. The analytical, simulation, and experimental verification results indicate that the energy required by the airborne-dangled symmetric source to generate the same electric field amplitude in the FfR is only one-third of that needed by traditional CSAMT. This results in significant energy savings and reduced emissions, underscoring the advantages of the airborne-dangled monopole-antenna symmetric source in enhancing energy efficiency for CSAMT. The theoretical analysis, simulations, and experimental results consistently verify the validity and efficacy of the proposed airborne-dangled monopole-antenna symmetric remote-sensing radiation source in CSAMT. This innovative approach holds substantial promise for airport runway monitoring, offering a more efficient and less intrusive solution compared to traditional methods. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 57619 KiB  
Article
Leveraging Mixed Data Sources for Enhanced Road Segmentation in Synthetic Aperture Radar Images
by Tian Lan, Shuting He, Yuanyuan Qing and Bihan Wen
Remote Sens. 2024, 16(16), 3024; https://doi.org/10.3390/rs16163024 - 18 Aug 2024
Viewed by 344
Abstract
In this study, we tackle the task of road segmentation from Synthetic Aperture Radar (SAR) imagery, which is vital for remote sensing applications including urban planning and disaster management. Despite its significance, SAR-based road segmentation is hindered by the scarcity of high-resolution, annotated [...] Read more.
In this study, we tackle the task of road segmentation from Synthetic Aperture Radar (SAR) imagery, which is vital for remote sensing applications including urban planning and disaster management. Despite its significance, SAR-based road segmentation is hindered by the scarcity of high-resolution, annotated SAR datasets and the distinct characteristics of SAR imagery, which differ significantly from more commonly used electro-optical (EO) imagery. To overcome these challenges, we introduce a multi-source data approach, creating the HybridSAR Road Dataset (HSRD). This dataset includes the SpaceNet 6 Road (SN6R) dataset, derived from high-resolution SAR images and OSM road data, as well as the DG-SAR and SN3-SAR datasets, synthesized from existing EO datasets. We adapt an off-the-shelf road segmentation network from the optical to the SAR domain through an enhanced training framework that integrates both real and synthetic data. Our results demonstrate that the HybridSAR Road Dataset and the adapted network significantly enhance the accuracy and robustness of SAR road segmentation, paving the way for future advancements in remote sensing. Full article
Show Figures

Figure 1

17 pages, 6355 KiB  
Technical Note
Estimation of Soil Organic Carbon Density on the Qinghai–Tibet Plateau Using a Machine Learning Model Driven by Multisource Remote Sensing
by Qi Chen, Wei Zhou and Wenjiao Shi
Remote Sens. 2024, 16(16), 3006; https://doi.org/10.3390/rs16163006 - 16 Aug 2024
Viewed by 314
Abstract
Soil organic carbon (SOC) plays a vital role in the global carbon cycle and soil quality assessment. The Qinghai–Tibet Plateau is one of the largest plateaus in the world. Therefore, in this region, SOC density and the spatial distribution of SOC are highly [...] Read more.
Soil organic carbon (SOC) plays a vital role in the global carbon cycle and soil quality assessment. The Qinghai–Tibet Plateau is one of the largest plateaus in the world. Therefore, in this region, SOC density and the spatial distribution of SOC are highly sensitive to climate change and human intervention. Given the insufficient understanding of the spatial distribution of SOC density in the Qinghai–Tibet Plateau, this study utilized machine learning (ML) algorithms to estimate the density and distribution pattern of SOC density in the region. In this study, we first collected multisource data, such as optical remote sensing data, synthetic aperture radar) (SAR) data, and other environmental variables, including socioeconomic factors, topographic factors, climate factors, and soil properties. Then, we used ML algorithms, namely random forest (RF), extreme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM), to estimate the topsoil SOC density and spatial distribution patterns of SOC density. We also aimed to investigate any driving factors. The results are as follows: (1) The average SOC density is 5.30 kg/m2. (2) Among the three ML algorithms used, LightGBM showed the highest validation accuracy (R2 = 0.7537, RMSE = 2.4928 kgC/m2, MAE = 1.7195). (3) The normalized difference vegetation index (NDVI), valley depth (VD), and temperature are crucial in predicting the spatial distribution of topsoil SOC density. Feature importance analyses conducted using the three ML models all showed these factors to be among the top three in importance, with contribution rates of 14.08%, 12.29%, and 14.06%; 17.32%, 20.73%, and 24.62%; and 16.72%, 11.96%, and 20.03%. (4) Spatially, the southeastern part of the Qinghai–Tibet Plateau has the highest topsoil SOC density, with recorded values ranging from 8.41 kg/m2 to 13.2 kg/m2, while the northwestern part has the lowest density, with recorded values ranging from 0.85 kg/m2 to 2.88 kg/m2. Different land cover types showed varying SOC density values, with forests and grasslands having higher SOC densities compared to urban and bare land areas. The findings of this study provide a scientific basis for future soil resource management and improved carbon sequestration accounting in the Qinghai–Tibet Plateau. Full article
Show Figures

Figure 1

Back to TopTop