Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,335)

Search Parameters:
Keywords = UAVs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7931 KiB  
Article
Improving Aerial Targeting Precision: A Study on Point Cloud Semantic Segmentation with Advanced Deep Learning Algorithms
by Salih Bozkurt, Muhammed Enes Atik and Zaide Duran
Drones 2024, 8(8), 376; https://doi.org/10.3390/drones8080376 (registering DOI) - 6 Aug 2024
Abstract
The integration of technological advancements has significantly impacted artificial intelligence (AI), enhancing the reliability of AI model outputs. This progress has led to the widespread utilization of AI across various sectors, including automotive, robotics, healthcare, space exploration, and defense. Today, air defense operations [...] Read more.
The integration of technological advancements has significantly impacted artificial intelligence (AI), enhancing the reliability of AI model outputs. This progress has led to the widespread utilization of AI across various sectors, including automotive, robotics, healthcare, space exploration, and defense. Today, air defense operations predominantly rely on laser designation. This process is entirely dependent on the capability and experience of human operators. Considering that UAV systems can have flight durations exceeding 24 h, this process is highly prone to errors due to the human factor. Therefore, the aim of this study is to automate the laser designation process using advanced deep learning algorithms on 3D point clouds obtained from different sources, thereby eliminating operator-related errors. As different data sources, dense 3D point clouds produced with photogrammetric methods containing color information, and point clouds produced with LiDAR systems were identified. The photogrammetric point cloud data were generated from images captured by the Akinci UAV’s multi-axis gimbal camera system within the scope of this study. For the point cloud data obtained from the LiDAR system, the DublinCity LiDAR dataset was used for testing purposes. The segmentation of point cloud data utilized the PointNet++ and RandLA-Net algorithms. Distinct differences were observed between the evaluated algorithms. The RandLA-Net algorithm, relying solely on geometric features, achieved an approximate accuracy of 94%, while integrating color features significantly improved its performance, raising its accuracy to nearly 97%. Similarly, the PointNet++ algorithm, relying solely on geometric features, achieved an accuracy of approximately 94%. Notably, the model developed as a unique contribution in this study involved enriching the PointNet++ algorithm by incorporating color attributes, leading to significant improvements with an approximate accuracy of 96%. The obtained results demonstrate a notable improvement in the PointNet++ algorithm with the proposed approach. Furthermore, it was demonstrated that the methodology proposed in this study can be effectively applied directly to data generated from different sources in aerial scanning systems. Full article
Show Figures

Figure 1

23 pages, 3752 KiB  
Article
A Multi-Area Task Path-Planning Algorithm for Agricultural Drones Based on Improved Double Deep Q-Learning Net
by Jian Li, Weijian Zhang, Junfeng Ren, Weilin Yu, Guowei Wang, Peng Ding, Jiawei Wang and Xuen Zhang
Agriculture 2024, 14(8), 1294; https://doi.org/10.3390/agriculture14081294 - 5 Aug 2024
Abstract
With the global population growth and increasing food demand, the development of precision agriculture has become particularly critical. In precision agriculture, accurately identifying areas of nitrogen stress in crops and planning precise fertilization paths are crucial. However, traditional coverage path-planning (CPP) typically considers [...] Read more.
With the global population growth and increasing food demand, the development of precision agriculture has become particularly critical. In precision agriculture, accurately identifying areas of nitrogen stress in crops and planning precise fertilization paths are crucial. However, traditional coverage path-planning (CPP) typically considers only single-area tasks and overlooks the multi-area tasks CPP. To address this problem, this study proposed a Regional Framework for Coverage Path-Planning for Precision Fertilization (RFCPPF) for crop protection UAVs in multi-area tasks. This framework includes three modules: nitrogen stress spatial distribution extraction, multi-area tasks environmental map construction, and coverage path-planning. Firstly, Sentinel-2 remote-sensing images are processed using the Google Earth Engine (GEE) platform, and the Green Normalized Difference Vegetation Index (GNDVI) is calculated to extract the spatial distribution of nitrogen stress. A multi-area tasks environmental map is constructed to guide multiple UAV agents. Subsequently, improvements based on the Double Deep Q Network (DDQN) are introduced, incorporating Long Short-Term Memory (LSTM) and dueling network structures. Additionally, a multi-objective reward function and a state and action selection strategy suitable for stress area plant protection operations are designed. Simulation experiments verify the superiority of the proposed method in reducing redundant paths and improving coverage efficiency. The proposed improved DDQN achieved an overall step count that is 60.71% of MLP-DDQN and 90.55% of Breadth-First Search–Boustrophedon Algorithm (BFS-BA). Additionally, the total repeated coverage rate was reduced by 7.06% compared to MLP-DDQN and by 8.82% compared to BFS-BA. Full article
(This article belongs to the Section Digital Agriculture)
23 pages, 1330 KiB  
Article
Leveraging Edge Computing for Video Data Streaming in UAV-Based Emergency Response Systems
by Mekhla Sarkar and Prasan Kumar Sahoo
Sensors 2024, 24(15), 5076; https://doi.org/10.3390/s24155076 - 5 Aug 2024
Abstract
The rapid advancement of technology has greatly expanded the capabilities of unmanned aerial vehicles (UAVs) in wireless communication and edge computing domains. The primary objective of UAVs is the seamless transfer of video data streams to emergency responders. However, live video data streaming [...] Read more.
The rapid advancement of technology has greatly expanded the capabilities of unmanned aerial vehicles (UAVs) in wireless communication and edge computing domains. The primary objective of UAVs is the seamless transfer of video data streams to emergency responders. However, live video data streaming is inherently latency dependent, wherein the value of the video frames diminishes with any delay in the stream. This becomes particularly critical during emergencies, where live video streaming provides vital information about the current conditions. Edge computing seeks to address this latency issue in live video streaming by bringing computing resources closer to users. Nonetheless, the mobile nature of UAVs necessitates additional trajectory supervision alongside the management of computation and networking resources. Consequently, efficient system optimization is required to maximize the overall effectiveness of the collaborative system with limited UAV resources. This study explores a scenario where multiple UAVs collaborate with end users and edge servers to establish an emergency response system. The proposed idea takes a comprehensive approach by considering the entire emergency response system from the incident site to video distribution at the user level. It includes an adaptive resource management strategy, leveraging deep reinforcement learning by simultaneously addressing video streaming latency, UAV and user mobility factors, and varied bandwidth resources. Full article
(This article belongs to the Special Issue Feature Papers in the 'Sensor Networks' Section 2024)
12 pages, 4434 KiB  
Article
Agronomic and Technical Evaluation of Herbicide Spot Spraying in Maize Based on High-Resolution Aerial Weed Maps—An On-Farm Trial
by Alicia Allmendinger, Michael Spaeth, Marcus Saile, Gerassimos G. Peteinatos and Roland Gerhards
Plants 2024, 13(15), 2164; https://doi.org/10.3390/plants13152164 - 5 Aug 2024
Abstract
Spot spraying can significantly reduce herbicide use while maintaining equal weed control efficacy as a broadcast application of herbicides. Several online spot-spraying systems have been developed, with sensors mounted on the sprayer or by recording the RTK-GNSS position of each crop seed. In [...] Read more.
Spot spraying can significantly reduce herbicide use while maintaining equal weed control efficacy as a broadcast application of herbicides. Several online spot-spraying systems have been developed, with sensors mounted on the sprayer or by recording the RTK-GNSS position of each crop seed. In this study, spot spraying was realized offline based on georeferenced unmanned aerial vehicle (UAV) images with high spatial resolution. Studies were conducted in four maize fields in Southwestern Germany in 2023. A randomized complete block design was used with seven treatments containing broadcast and spot applications of pre-emergence and post-emergence herbicides. Post-emergence herbicides were applied at 2–4-leaf and at 6–8-leaf stages of maize. Weed and crop density, weed control efficacy (WCE), crop losses, accuracy of weed classification in UAV images, herbicide savings and maize yield were measured and analyzed. On average, 94% of all weed plants were correctly identified in the UAV images with the automatic classifier. Spot-spraying achieved up to 86% WCE, which was equal to the broadcast herbicide treatment. Early spot spraying saved 47% of herbicides compared to the broadcast herbicide application. Maize yields in the spot-spraying plots were equal to the broadcast herbicide application plots. This study demonstrates that spot-spraying based on UAV weed maps is feasible and provides a significant reduction in herbicide use. Full article
Show Figures

Figure 1

18 pages, 7434 KiB  
Article
CFD Analysis of Aerodynamic Characteristics in a Square-Shaped Swarm Formation of Four Quadcopter UAVs
by Ahmet Talat İnan and Berkay Çetin
Appl. Sci. 2024, 14(15), 6820; https://doi.org/10.3390/app14156820 - 5 Aug 2024
Viewed by 138
Abstract
The aerodynamic behavior of a square-shaped formation of four quadcopter UAVs flying in a swarm is investigated in detail through three-dimensional computer simulations utilizing Computational Fluid Dynamics (CFD) methodology. The swarm configuration comprises four UAVs positioned with two in the upper row and [...] Read more.
The aerodynamic behavior of a square-shaped formation of four quadcopter UAVs flying in a swarm is investigated in detail through three-dimensional computer simulations utilizing Computational Fluid Dynamics (CFD) methodology. The swarm configuration comprises four UAVs positioned with two in the upper row and two in the lower row along the same propeller axes. The flow profile generated by the UAV propellers rotating at 10,000 revolutions per minute is analyzed parametrically using the Multiple Reference Frame (MRF) technique. UAVs within the swarm are positioned at 75 cm from the motion centers of adjacent propellers. This distance, the effects of horizontally and vertically positioned UAVs on each other, and the collective behavior of the swarm are thoroughly examined. Pressure, velocity, and turbulent kinetic energy values are meticulously analyzed. This research represents a milestone in understanding the aerodynamic characteristics of UAV swarms and the optimization of swarm performance. The findings highlight effective factors in swarm flights and their consequences for UAVs. Additionally, the article describes the “near-UAV phenomenon”. Furthermore, the methodology developed for CFD simulations provides an approach to analyzing close flight scenarios and evaluating their performance in various swarm configurations. These achievements contribute to the future development of UAV technology. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

16 pages, 5689 KiB  
Article
Flutter Optimization of Carbon/Epoxy Plates Based on a Fast Tree Algorithm
by Mirko Dinulović, Aleksandar Bengin, Branimir Krstić, Marjan Dodić and Miloš Vorkapić
Aerospace 2024, 11(8), 636; https://doi.org/10.3390/aerospace11080636 - 3 Aug 2024
Viewed by 272
Abstract
This study focuses on optimizing carbon/epoxy laminate configurations to maximize the flutter speed of composite structures using a Fast Tree Regression algorithm. Initially, a seed dataset was created, using finite element method (FEM) modal analysis for common stack-ups used in composite fins and [...] Read more.
This study focuses on optimizing carbon/epoxy laminate configurations to maximize the flutter speed of composite structures using a Fast Tree Regression algorithm. Initially, a seed dataset was created, using finite element method (FEM) modal analysis for common stack-ups used in composite fins and UAV components. The FEM analysis, based on the Lanczos algorithm for extracting modal frequencies in bending and torsion, was verified through experimental modal analysis using an AS-4/3501-6 composite system. Custom software was developed to interface with the FEA modal software, enabling the generation and augmentation of laminate dataset scenarios. The seed dataset was expanded until the coefficient of determination (R2) reached at least 0.95. Various regression algorithms, including Fast Forest Regression, Fast Tree Regression, Sdca Regression, and Lbfgs Poisson Regression, were evaluated. The Fast Tree Regression algorithm was selected for further analysis due to its superior performance. This algorithm was applied to a design space of nearly 2000 potential laminate candidates, focusing on symmetric lay-ups to avoid undesirable coupling between bending and torsion in UAV and missile control surfaces. The final optimized lay-ups, exhibit the highest Delta function values (the squared difference of modal frequencies in torsion and bending), indicating the expected highest flutter speeds. The results demonstrate the efficacy of tailored composite materials in achieving specific aerodynamic performance goals. Full article
(This article belongs to the Special Issue Aerodynamic Numerical Optimization in UAV Design)
Show Figures

Figure 1

19 pages, 6572 KiB  
Article
Non-Line-of-Sight Positioning Method for Ultra-Wideband/Miniature Inertial Measurement Unit Integrated System Based on Extended Kalman Particle Filter
by Chengzhi Hou, Wanqing Liu, Hongliang Tang, Jiayi Cheng, Xu Zhu, Mailun Chen, Chunfeng Gao and Guo Wei
Drones 2024, 8(8), 372; https://doi.org/10.3390/drones8080372 - 3 Aug 2024
Viewed by 318
Abstract
In the field of unmanned aerial vehicle (UAV) control, high-precision navigation algorithms are a research hotspot. To address the problem of poor localization caused by non-line-of-sight (NLOS) errors in ultra-wideband (UWB) systems, an UWB/MIMU integrated navigation method was developed, and a particle filter [...] Read more.
In the field of unmanned aerial vehicle (UAV) control, high-precision navigation algorithms are a research hotspot. To address the problem of poor localization caused by non-line-of-sight (NLOS) errors in ultra-wideband (UWB) systems, an UWB/MIMU integrated navigation method was developed, and a particle filter (PF) algorithm for data fusion was improved upon. The extended Kalman filter (EKF) was used to improve the method of constructing the importance density function (IDF) in the traditional PF, so that the particle sampling process fully considers the real-time measurement information, increases the sampling efficiency, weakens the particle degradation phenomenon, and reduces the UAV positioning error. We compared the positioning accuracy of the proposed extended Kalman particle filter (EKPF) algorithm with that of the EKF and unscented Kalman filter (UKF) algorithm used in traditional UWB/MIMU data fusion through simulation, and the results proved the effectiveness of the proposed algorithm through outdoor experiments. We found that, in NLOS environments, compared with pure UWB positioning, the accuracy of the EKPF algorithm in the X- and Y-directions was increased by 35% and 39%, respectively, and the positioning error in the Z-direction was considerably reduced, which proved the practicability of the proposed algorithm. Full article
Show Figures

Figure 1

17 pages, 1888 KiB  
Article
Adaptive Aberrance Repressed Correlation Filters with Cooperative Optimization in High-Dimensional Unmanned Aerial Vehicle Task Allocation and Trajectory Planning
by Zijie Zheng, Zhijun Zhang, Zhenzhang Li, Qiuda Yu and Ya Jiang
Electronics 2024, 13(15), 3071; https://doi.org/10.3390/electronics13153071 - 2 Aug 2024
Viewed by 255
Abstract
In the rapidly evolving field of unmanned aerial vehicle (UAV) applications, the complexity of task planning and trajectory optimization, particularly in high-dimensional operational environments, is increasingly challenging. This study addresses these challenges by developing the Adaptive Distortion Suppression Correlation Filter Cooperative Optimization (ARCF-ICO) [...] Read more.
In the rapidly evolving field of unmanned aerial vehicle (UAV) applications, the complexity of task planning and trajectory optimization, particularly in high-dimensional operational environments, is increasingly challenging. This study addresses these challenges by developing the Adaptive Distortion Suppression Correlation Filter Cooperative Optimization (ARCF-ICO) algorithm, designed for high-dimensional UAV task allocation and trajectory planning. The ARCF-ICO algorithm combines advanced correlation filter technologies with multi-objective optimization techniques, enhancing the precision of trajectory planning and efficiency of task allocation. By incorporating weather conditions and other environmental factors, the algorithm ensures robust performance at low altitudes. The ARCF-ICO algorithm improves UAV tracking stability and accuracy by suppressing distortions, facilitating optimal path selection and task execution. Experimental validation using the UAV123@10fps and OTB-100 datasets demonstrates that the ARCF-ICO algorithm outperforms existing methods in Area Under the Curve (AUC) and Precision metrics. Additionally, the algorithm’s consideration of battery consumption and endurance further validates its applicability to current UAV technologies. This research advances UAV mission planning and sets new standards for UAV deployment in both civilian and military applications, where adaptability and accuracy are critical. Full article
Show Figures

Figure 1

17 pages, 23072 KiB  
Article
Fire-Net: Rapid Recognition of Forest Fires in UAV Remote Sensing Imagery Using Embedded Devices
by Shouliang Li, Jiale Han, Fanghui Chen, Rudong Min, Sixue Yi and Zhen Yang
Remote Sens. 2024, 16(15), 2846; https://doi.org/10.3390/rs16152846 - 2 Aug 2024
Viewed by 233
Abstract
Forest fires pose a catastrophic threat to Earth’s ecology as well as threaten human beings. Timely and accurate monitoring of forest fires can significantly reduce potential casualties and property damage. Thus, to address the aforementioned problems, this paper proposed an unmanned aerial vehicle [...] Read more.
Forest fires pose a catastrophic threat to Earth’s ecology as well as threaten human beings. Timely and accurate monitoring of forest fires can significantly reduce potential casualties and property damage. Thus, to address the aforementioned problems, this paper proposed an unmanned aerial vehicle (UAV) based on a lightweight forest fire recognition model, Fire-Net, which has a multi-stage structure and incorporates cross-channel attention following the fifth stage. This is to enable the model’s ability to perceive features at various scales, particularly small-scale fire sources in wild forest scenes. Through training and testing on a real-world dataset, various lightweight convolutional neural networks were evaluated on embedded devices. The experimental outcomes indicate that Fire-Net attained an accuracy of 98.18%, a precision of 99.14%, and a recall of 98.01%, surpassing the current leading methods. Furthermore, the model showcases an average inference time of 10 milliseconds per image and operates at 86 frames per second (FPS) on embedded devices. Full article
Show Figures

Figure 1

25 pages, 17257 KiB  
Article
A General Image Super-Resolution Reconstruction Technique for Walnut Object Detection Model
by Mingjie Wu, Xuanxi Yang, Lijun Yun, Chenggui Yang, Zaiqing Chen and Yuelong Xia
Agriculture 2024, 14(8), 1279; https://doi.org/10.3390/agriculture14081279 - 2 Aug 2024
Viewed by 199
Abstract
Object detection models are commonly used in yield estimation processes in intelligent walnut production. The accuracy of these models in capturing walnut features largely depends on the quality of the input images. Without changing the existing image acquisition devices, this study proposes a [...] Read more.
Object detection models are commonly used in yield estimation processes in intelligent walnut production. The accuracy of these models in capturing walnut features largely depends on the quality of the input images. Without changing the existing image acquisition devices, this study proposes a super-resolution reconstruction module for drone-acquired walnut images, named Walnut-SR, to enhance the detailed features of walnut fruits in images, thereby improving the detection accuracy of the object detection model. In Walnut-SR, a deep feature extraction backbone network called MDAARB (multilevel depth adaptive attention residual block) is designed to capture multiscale information through multilevel channel connections. Additionally, Walnut-SR incorporates an RRDB (residual-in-residual dense block) branch, enabling the module to focus on important feature information and reconstruct images with rich details. Finally, the CBAM (convolutional block attention module) attention mechanism is integrated into the shallow feature extraction residual branch to mitigate noise in shallow features. In 2× and 4× reconstruction experiments, objective evaluation results show that the PSNR and SSIM for 2× and 4× reconstruction reached 24.66 dB and 0.8031, and 19.26 dB and 0.4991, respectively. Subjective evaluation results indicate that Walnut-SR can reconstruct images with richer detail information and clearer texture features. Comparative experimental results of the integrated Walnut-SR module show significant improvements in mAP50 and mAP50:95 for object detection models compared to detection results using the original low-resolution images. Full article
(This article belongs to the Section Digital Agriculture)
Show Figures

Figure 1

17 pages, 2265 KiB  
Review
Frequency-Modulated Continuous-Wave Radar Perspectives on Unmanned Aerial Vehicle Detection and Classification: A Primer for Researchers with Comprehensive Machine Learning Review and Emphasis on Full-Wave Electromagnetic Computer-Aided Design Tools
by Ahmed N. Sayed, Omar M. Ramahi and George Shaker
Drones 2024, 8(8), 370; https://doi.org/10.3390/drones8080370 - 2 Aug 2024
Viewed by 428
Abstract
Unmanned Aerial Vehicles (UAVs) represent a rapidly increasing technology with profound implications for various domains, including surveillance, security, and commercial applications. Among the number of detection and classification methodologies, radar technology stands as a cornerstone due to its versatility and reliability. This paper [...] Read more.
Unmanned Aerial Vehicles (UAVs) represent a rapidly increasing technology with profound implications for various domains, including surveillance, security, and commercial applications. Among the number of detection and classification methodologies, radar technology stands as a cornerstone due to its versatility and reliability. This paper presents a comprehensive primer written specifically for researchers starting on investigations into UAV detection and classification, with a distinct emphasis on the integration of full-wave electromagnetic computer-aided design (EM CAD) tools. Commencing with an elucidation of radar’s pivotal role within the UAV detection paradigm, this primer systematically navigates through fundamental Frequency-Modulated Continuous-Wave (FMCW) radar principles, elucidating their intricate interplay with UAV characteristics and signatures. Methodologies pertaining to signal processing, detection, and tracking are examined, with particular emphasis placed on the pivotal role of full-wave EM CAD tools in system design and optimization. Through an exposition of relevant case studies and applications, this paper underscores successful implementations of radar-based UAV detection and classification systems while elucidating encountered challenges and insights obtained. Anticipating future trajectories, the paper contemplates emerging trends and potential research directions, accentuating the indispensable nature of full-wave EM CAD tools in propelling radar techniques forward. In essence, this primer serves as an indispensable roadmap, empowering researchers to navigate the complex terrain of radar-based UAV detection and classification, thereby fostering advancements in aerial surveillance and security systems. Full article
Show Figures

Figure 1

23 pages, 5101 KiB  
Article
Intelligent Rice Field Weed Control in Precision Agriculture: From Weed Recognition to Variable Rate Spraying
by Zhonghui Guo, Dongdong Cai, Juchi Bai, Tongyu Xu and Fenghua Yu
Agronomy 2024, 14(8), 1702; https://doi.org/10.3390/agronomy14081702 - 2 Aug 2024
Viewed by 365
Abstract
A precision agriculture approach that uses drones for crop protection and variable rate application has become the main method of rice weed control, but it suffers from excessive spraying issues, which can pollute soil and water environments and harm ecosystems. This study proposes [...] Read more.
A precision agriculture approach that uses drones for crop protection and variable rate application has become the main method of rice weed control, but it suffers from excessive spraying issues, which can pollute soil and water environments and harm ecosystems. This study proposes a method to generate variable spray prescription maps based on the actual distribution of weeds in rice fields and utilize DJI plant protection UAVs to perform automatic variable spraying operations according to the prescription maps, achieving precise pesticide application. We first construct the YOLOv8n DT model by transferring the “knowledge features” learned by the larger YOLOv8l model with strong feature extraction capabilities to the smaller YOLOv8n model through knowledge distillation. We use this model to identify weeds in the field and generate an actual distribution map of rice field weeds based on the recognition results. The number of weeds in each experimental plot is counted, and the specific amount of pesticide for each plot is determined based on the amount of weeds and the spraying strategy proposed in this study. Variable spray prescription maps are then generated accordingly. DJI plant protection UAVs are used to perform automatic variable spraying operations based on prescription maps. Water-sensitive papers are used to collect droplets during the automatic variable operation process of UAVs, and the variable spraying effect is evaluated through droplet analysis. YOLOv8n-DT improved the accuracy of the model by 3.1% while keeping the model parameters constant, and the accuracy of identifying weeds in rice fields reached 0.82, which is close to the accuracy of the teacher network. Compared to the traditional extensive spraying method, the approach in this study saves approximately 15.28% of herbicides. This study demonstrates a complete workflow from UAV image acquisition to the evaluation of the variable spraying effect of plant protection UAVs. The method proposed in this research may provide an effective solution to balance the use of chemical herbicides and protect ecological safety. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

20 pages, 1190 KiB  
Article
UAV Confrontation and Evolutionary Upgrade Based on Multi-Agent Reinforcement Learning
by Xin Deng, Zhaoqi Dong and Jishiyu Ding
Drones 2024, 8(8), 368; https://doi.org/10.3390/drones8080368 - 1 Aug 2024
Viewed by 338
Abstract
Unmanned aerial vehicle (UAV) confrontation scenarios play a crucial role in the study of agent behavior selection and decision planning. Multi-agent reinforcement learning (MARL) algorithms serve as a universally effective method guiding agents toward appropriate action strategies. They determine subsequent actions based on [...] Read more.
Unmanned aerial vehicle (UAV) confrontation scenarios play a crucial role in the study of agent behavior selection and decision planning. Multi-agent reinforcement learning (MARL) algorithms serve as a universally effective method guiding agents toward appropriate action strategies. They determine subsequent actions based on the state of the agents and the environmental information that the agents receive. However, traditional MARL settings often result in one party agent consistently outperforming the other party due to superior strategies, or both agents reaching a strategic stalemate with no further improvement. To solve this issue, we propose a semi-static deep deterministic policy gradient algorithm based on MARL. This algorithm employs a centralized training and decentralized execution approach, dynamically adjusting the training intensity based on the comparative strengths and weaknesses of both agents’ strategies. Experimental results show that during the training process, the strategy of the winning team drives the losing team’s strategy to upgrade continuously, and the relationship between the winning team and the losing team keeps changing, thus achieving mutual improvement of the strategies of both teams. The semi-static reinforcement learning algorithm improves the win-loss relationship conversion by 8% and reduces the training time by 40% compared with the traditional reinforcement learning algorithm. Full article
(This article belongs to the Special Issue Distributed Control, Optimization, and Game of UAV Swarm Systems)
Show Figures

Figure 1

13 pages, 1965 KiB  
Article
Geospatial Approach to Determine Nitrate Values in Banana Plantations
by Angélica Zamora-Espinoza, Juan Chin, Adolfo Quesada-Román and Veda Obando
AgriEngineering 2024, 6(3), 2513-2525; https://doi.org/10.3390/agriengineering6030147 - 1 Aug 2024
Viewed by 216
Abstract
Banana (Musa sp.) is one of the world’s most planted and consumed crops. Analysis of plantations using a geospatial perspective is growing in Costa Rica, and it can be used to optimize environmental analysis. The aim of this study was to propose [...] Read more.
Banana (Musa sp.) is one of the world’s most planted and consumed crops. Analysis of plantations using a geospatial perspective is growing in Costa Rica, and it can be used to optimize environmental analysis. The aim of this study was to propose a methodology to identify areas prone to water accumulation to quantify nitrate concentrations using geospatial modeling techniques in a 40 ha section of a banana plantation located in Siquirres, Limón, Costa Rica. A total of five geomorphometric variables (Slope, Slope Length factor (LS factor), Terrain Ruggedness Index (TRI), Topographic Wetness Index (TWI), and Flow Accumulation) were selected in the geospatial model. A 9 cm resolution digital elevation model (DEM) derived from unmanned aerial vehicles (UAVs) was employed to calculate geomorphometric variables. ArcGIS 10.6 and SAGA GIS 7.8.2 software were used in the data integration and analysis. The results showed that Slope and Topographic Wetness Index (TWI) are the geomorphometric parameters that better explained the areas prone to water accumulation and indicated which drainage channels are proper areas to sample nitrate values. The average nitrate concentration in high-probability areas was 8.73 ± 1.53 mg/L, while in low-probability areas, it was 11.28 ± 2.49 mg/L. Despite these differences, statistical analysis revealed no significant difference in nitrate concentrations between high- and low-probability areas. The method proposed here allows us to obtain reliable results in banana fields worldwide. Full article
Show Figures

Figure 1

26 pages, 15050 KiB  
Article
ERRT-GA: Expert Genetic Algorithm with Rapidly Exploring Random Tree Initialization for Multi-UAV Path Planning
by Hong Xu, Zijing Niu, Bo Jiang, Yuhang Zhang, Siji Chen, Zhiqiang Li, Mingke Gao and Miankuan Zhu
Drones 2024, 8(8), 367; https://doi.org/10.3390/drones8080367 - 1 Aug 2024
Viewed by 335
Abstract
In unmanned aerial vehicle (UAV) path planning, evolutionary algorithms are commonly used due to their ability to handle high-dimensional spaces and wide generality. However, traditional evolutionary algorithms have difficulty with population initialization and may fall into local optima. This paper proposes an improved [...] Read more.
In unmanned aerial vehicle (UAV) path planning, evolutionary algorithms are commonly used due to their ability to handle high-dimensional spaces and wide generality. However, traditional evolutionary algorithms have difficulty with population initialization and may fall into local optima. This paper proposes an improved genetic algorithm (GA) based on expert strategies, including a novel rapidly exploring random tree (RRT) initialization algorithm and a cross-variation process based on expert guidance and the wolf pack search algorithm. Experimental results on baseline functions in different scenarios show that the proposed RRT initialization algorithm improves convergence speed and computing time for most evolutionary algorithms. The expert guidance strategy helps algorithms jump out of local optima and achieve suboptimal solutions that should have converged. The ERRT-GA is tested for task assignment, path planning, and multi-UAV conflict detection, and it shows faster convergence, better scalability to high-dimensional spaces, and a significant reduction in task computing time compared to other evolutionary algorithms. The proposed algorithm outperforms most other methods and shows great potential for UAV path planning problems. Full article
Show Figures

Figure 1

Back to TopTop