Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,869)

Search Parameters:
Keywords = animal models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 717 KiB  
Article
Evaluation of Clobetasol and Tacrolimus Treatments in an Imiquimod-Induced Psoriasis Rat Model
by Philippe Guillaume, Tristan Rupp, Guillaume Froget and Sonia Goineau
Int. J. Mol. Sci. 2024, 25(17), 9254; https://doi.org/10.3390/ijms25179254 (registering DOI) - 26 Aug 2024
Abstract
Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation, inflammation, and aberrant differentiation. Imiquimod-induced psoriasis in rodent models has been widely used to study the pathogenesis of the disease and evaluate potential therapeutic interventions. In this study, we investigated the efficacy [...] Read more.
Psoriasis is a chronic inflammatory skin disorder characterized by keratinocyte hyperproliferation, inflammation, and aberrant differentiation. Imiquimod-induced psoriasis in rodent models has been widely used to study the pathogenesis of the disease and evaluate potential therapeutic interventions. In this study, we investigated the efficacy of two commonly used treatments, Clobetasol and Tacrolimus, in ameliorating psoriatic symptoms in an Imiquimod-induced psoriasis Wistar rat model. Interestingly, rat models are poorly evaluated in the literature despite rats displaying several advantages in evaluating pharmacological substances. Psoriasis-like skin lesions were induced by topical application of Imiquimod cream on shaved dorsal skin for seven consecutive days. Following induction, rats in the treatment groups received either a Clobetasol or Tacrolimus ointment once daily for one week, while the control group did not receive any application. Disease severity was assessed using clinical scoring, histological examination, and measurement of proinflammatory cytokine levels. Both Clobetasol and Tacrolimus treatments significantly reduced psoriatic lesion severity compared to the control group. Clinical scoring revealed a decrease in erythema, scaling, transepidermal water loss, and thickness of skin lesions in both treatment groups with a more marked effect with Clobetasol. Histological analysis demonstrated reduced epidermal hyperplasia in treated animals compared to controls. Furthermore, Clobetasol led to a significant reduction in the expression levels of the interleukin-17 (IL-17a and IL-17f) proinflammatory cytokines in lesioned skin. Overall, our findings demonstrated the therapeutic efficacy of both Clobetasol and, in a modest manner, Tacrolimus in attenuating Imiquimod-induced psoriasis-like symptoms in a rat model. These results support the clinical use of these agents in the management of psoriasis and mitigating psoriatic inflammation. They also provide insights into the use of rats as a relevant species for the Imiquimod-induced psoriasis model. Full article
(This article belongs to the Special Issue News in Skin Diseases: From Basic Mechanisms to Therapies)
27 pages, 1483 KiB  
Review
3D Models Currently Proposed to Investigate Human Skin Aging and Explore Preventive and Reparative Approaches: A Descriptive Review
by Francesca Lombardi, Francesca Rosaria Augello, Alessia Ciafarone, Valeria Ciummo, Serena Altamura, Benedetta Cinque and Paola Palumbo
Biomolecules 2024, 14(9), 1066; https://doi.org/10.3390/biom14091066 (registering DOI) - 26 Aug 2024
Abstract
Skin aging is influenced by intrinsic and extrinsic factors that progressively impair skin functionality over time. Investigating the skin aging process requires thorough research using innovative technologies. This review explores the use of in vitro human 3D culture models, serving as valuable alternatives [...] Read more.
Skin aging is influenced by intrinsic and extrinsic factors that progressively impair skin functionality over time. Investigating the skin aging process requires thorough research using innovative technologies. This review explores the use of in vitro human 3D culture models, serving as valuable alternatives to animal ones, in skin aging research. The aim is to highlight the benefits and necessity of improving the methodology in analyzing the molecular mechanisms underlying human skin aging. Traditional 2D models, including monolayers of keratinocytes, fibroblasts, or melanocytes, even if providing cost-effective and straightforward methods to study critical processes such as extracellular matrix degradation, pigmentation, and the effects of secretome on skin cells, fail to replicate the complex tissue architecture with its intricated interactions. Advanced 3D models (organoid cultures, “skin-on-chip” technologies, reconstructed human skin, and 3D bioprinting) considerably enhance the physiological relevance, enabling a more accurate representation of skin aging and its peculiar features. By reporting the advantages and limitations of 3D models, this review highlights the importance of using advanced in vitro systems to develop practical anti-aging preventive and reparative approaches and improve human translational research in this field. Further exploration of these technologies will provide new opportunities for previously unexplored knowledge on skin aging. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Human Skin Aging)
Show Figures

Graphical abstract

14 pages, 581 KiB  
Review
iPSC-Derived Cardiomyocytes as a Disease Model to Understand the Biology of Congenital Heart Defects
by Chithra K. Pushpan and Subramanyan Ram Kumar
Cells 2024, 13(17), 1430; https://doi.org/10.3390/cells13171430 (registering DOI) - 26 Aug 2024
Abstract
The discovery of human pluripotent stem cells (hiPSCs) and advances in DNA editing techniques have opened opportunities for personalized cell-based therapies for a wide spectrum of diseases. It has gained importance as a valuable tool to investigate genetic and functional variations in congenital [...] Read more.
The discovery of human pluripotent stem cells (hiPSCs) and advances in DNA editing techniques have opened opportunities for personalized cell-based therapies for a wide spectrum of diseases. It has gained importance as a valuable tool to investigate genetic and functional variations in congenital heart defects (CHDs), enabling the customization of treatment strategies. The ability to understand the disease process specific to the individual patient of interest provides this technology with a significant advantage over generic animal models. However, its utility as a disease-in-a-dish model requires identifying effective and efficient differentiation protocols that accurately reproduce disease traits. Currently, iPSC-related research relies heavily on the quality of cells and the properties of the differentiation technique In this review, we discuss the utility of iPSCs in bench CHD research, the molecular pathways involved in the differentiation of cardiomyocytes, and their applications in CHD disease modeling, therapeutics, and drug application. Full article
18 pages, 1485 KiB  
Article
Horse Sector Participants’ Attitudes towards Anthropomorphism and Animal Welfare and Wellbeing
by Julie M. Fiedler, Margaret L. Ayre, Sarah Rosanowski and Josh D. Slater
Animals 2024, 14(17), 2482; https://doi.org/10.3390/ani14172482 (registering DOI) - 26 Aug 2024
Abstract
Anthropomorphizing can misinform the making of inferences about animal mental experiences. This is a consideration when implementing the Five Domains Model for animal welfare assessment. An online survey run in 2021 captured horse sector participants’ perspectives about anthropomorphism and wellbeing in relation to [...] Read more.
Anthropomorphizing can misinform the making of inferences about animal mental experiences. This is a consideration when implementing the Five Domains Model for animal welfare assessment. An online survey run in 2021 captured horse sector participants’ perspectives about anthropomorphism and wellbeing in relation to horses. Most respondents, 82.9% (n = 431/520), believed that anthropomorphism could influence horse welfare and wellbeing. These respondents were then asked how, in their opinion, anthropomorphism might relate to horse welfare. A thematic analysis identified two themes: (1) ‘Anthropomorphism can influence how people relate to horses’ and (2) ‘Anthropomorphism can have consequences for horse welfare and wellbeing’. The results suggested that experienced respondents were aware of the complexities surrounding anthropomorphic attitudes and that anthropomorphism can have beneficial and detrimental consequences on horse welfare and wellbeing. Benefits include a sense of relatedness to a horse, while detriments include the potential to misinterpret horse behaviors. The authors propose that anthropomorphism has a place in horse welfare and wellbeing when used critically and with caution. This study recommends that there is a need to actively manage anthropomorphism when organizations update policies and practices and implement the Five Domains Model. More research is required to understand the effects of anthropomorphism on horse-related practices. Full article
(This article belongs to the Section Animal Welfare)
Show Figures

Figure 1

22 pages, 3186 KiB  
Article
Effects of Antipsychotics on the Hypothalamus–Pituitary–Adrenal Axis in a Phencyclidine Animal Model of Schizophrenia
by Tatjana Nikolić, Milica Velimirović Bogosavljević, Tihomir Stojković, Selma Kanazir, Nataša Lončarević-Vasiljković, Nevena V. Radonjić, Jelena Popić and Nataša Petronijević
Cells 2024, 13(17), 1425; https://doi.org/10.3390/cells13171425 - 26 Aug 2024
Abstract
Schizophrenia (SCH) is a mental disorder that requires long-term antipsychotic treatment. SCH patients are thought to have an increased sensitivity to stress. The dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, observed in SCH, could include altered levels of glucocorticoids, glucocorticoid receptors (GRs), and associated [...] Read more.
Schizophrenia (SCH) is a mental disorder that requires long-term antipsychotic treatment. SCH patients are thought to have an increased sensitivity to stress. The dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, observed in SCH, could include altered levels of glucocorticoids, glucocorticoid receptors (GRs), and associated proteins. The perinatal administration of phencyclidine (PCP) to rodents represents an animal model of SCH. This study investigated the effects of perinatal PCP exposure and subsequent haloperidol/clozapine treatment on corticosterone levels measured by ELISA and the expression of GR-related proteins (GR, pGR, HSP70, HSP90, FKBP51, and 11β-Hydroxysteroid dehydrogenase-11β-HSD) determined by Western blot, in different brain regions of adult rats. Six groups of male rats were treated on the 2nd, 6th, 9th, and 12th postnatal days (PN), with either PCP or saline. Subsequently, one saline and one PCP group received haloperidol/clozapine from PN day 35 to PN day 100. The results showed altered GR sensitivity in the rat brain after PCP exposure, which decreased after haloperidol/clozapine treatment. These findings highlight disturbances in the HPA axis in a PCP-induced model of SCH and the potential protective effects of antipsychotics. To the best of our knowledge, this is the first study to investigate the effects of antipsychotic drugs on the HPA axis in a PCP animal model of SCH. Full article
Show Figures

Figure 1

15 pages, 2894 KiB  
Article
Memantine and the Kynurenine Pathway in the Brain: Selective Targeting of Kynurenic Acid in the Rat Cerebral Cortex
by Renata Kloc and Ewa M. Urbanska
Cells 2024, 13(17), 1424; https://doi.org/10.3390/cells13171424 - 26 Aug 2024
Abstract
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. [...] Read more.
Cytoprotective and neurotoxic kynurenines formed along the kynurenine pathway (KP) were identified as possible therapeutic targets in various neuropsychiatric conditions. Memantine, an adamantane derivative modulating dopamine-, noradrenaline-, serotonin-, and glutamate-mediated neurotransmission is currently considered for therapy in dementia, psychiatric disorders, migraines, or ischemia. Previous studies have revealed that memantine potently stimulates the synthesis of neuroprotective kynurenic acid (KYNA) in vitro via a protein kinase A-dependent mechanism. Here, the effects of acute and prolonged administration of memantine on brain kynurenines and the functional changes in the cerebral KP were assessed in rats using chromatographic and enzymatic methods. Five-day but not single treatment with memantine selectively activated the cortical KP towards neuroprotective KYNA. KYNA increases were accompanied by a moderate decrease in cortical tryptophan (TRP) and L-kynurenine (L-KYN) concentrations without changes in 3-hydroxykynurenine (3-HK) levels. Enzymatic studies revealed that the activity of cortical KYNA biosynthetic enzymes ex vivo was stimulated after prolonged administration of memantine. As memantine does not directly stimulate the activity of KATs’ proteins, the higher activity of KATs most probably results from the increased expression of the respective genes. Noteworthy, the concentrations of KYNA, 3-HK, TRP, and L-KYN in the striatum, hippocampus, and cerebellum were not affected. Selective cortical increase in KYNA seems to represent one of the mechanisms underlying the clinical efficacy of memantine. It is tempting to hypothesize that a combination of memantine and drugs could strongly boost cortical KYNA and provide a more effective option for treating cortical pathologies at early stages. Further studies should evaluate this issue in experimental animal models and under clinical scenarios. Full article
Show Figures

Figure 1

12 pages, 2304 KiB  
Article
Rousettus aegyptiacus Fruit Bats Do Not Support Productive Replication of Cedar Virus upon Experimental Challenge
by Björn-Patrick Mohl, Sandra Diederich, Kerstin Fischer and Anne Balkema-Buschmann
Viruses 2024, 16(9), 1359; https://doi.org/10.3390/v16091359 - 26 Aug 2024
Viewed by 149
Abstract
Cedar henipavirus (CedV), which was isolated from the urine of pteropodid bats in Australia, belongs to the genus Henipavirus in the family of Paramyxoviridae. It is closely related to the Hendra virus (HeV) and Nipah virus (NiV), which have been classified at [...] Read more.
Cedar henipavirus (CedV), which was isolated from the urine of pteropodid bats in Australia, belongs to the genus Henipavirus in the family of Paramyxoviridae. It is closely related to the Hendra virus (HeV) and Nipah virus (NiV), which have been classified at the highest biosafety level (BSL4) due to their high pathogenicity for humans. Meanwhile, CedV is apathogenic for humans and animals. As such, it is often used as a model virus for the highly pathogenic henipaviruses HeV and NiV. In this study, we challenged eight Rousettus aegyptiacus fruit bats of different age groups with CedV in order to assess their age-dependent susceptibility to a CedV infection. Upon intranasal inoculation, none of the animals developed clinical signs, and only trace amounts of viral RNA were detectable at 2 days post-inoculation in the upper respiratory tract and the kidney as well as in oral and anal swab samples. Continuous monitoring of the body temperature and locomotion activity of four animals, however, indicated minor alterations in the challenged animals, which would have remained unnoticed otherwise. Full article
(This article belongs to the Special Issue Emerging Zoonotic Paramyxoviruses)
Show Figures

Figure 1

23 pages, 1976 KiB  
Review
Navigating the Landscape of CMT1B: Understanding Genetic Pathways, Disease Models, and Potential Therapeutic Approaches
by Mary Kate McCulloch, Fatemeh Mehryab and Afrooz Rashnonejad
Int. J. Mol. Sci. 2024, 25(17), 9227; https://doi.org/10.3390/ijms25179227 - 26 Aug 2024
Viewed by 185
Abstract
Charcot–Marie–Tooth type 1B (CMT1B) is a peripheral neuropathy caused by mutations in the gene encoding myelin protein zero (MPZ), a key component of the myelin sheath in Schwann cells. Mutations in the MPZ gene can lead to protein misfolding, unfolded protein response (UPR), [...] Read more.
Charcot–Marie–Tooth type 1B (CMT1B) is a peripheral neuropathy caused by mutations in the gene encoding myelin protein zero (MPZ), a key component of the myelin sheath in Schwann cells. Mutations in the MPZ gene can lead to protein misfolding, unfolded protein response (UPR), endoplasmic reticulum (ER) stress, or protein mistrafficking. Despite significant progress in understanding the disease mechanisms, there is currently no effective treatment for CMT1B, with therapeutic strategies primarily focused on supportive care. Gene therapy represents a promising therapeutic approach for treating CMT1B. To develop a treatment and better design preclinical studies, an in-depth understanding of the pathophysiological mechanisms and animal models is essential. In this review, we present a comprehensive overview of the disease mechanisms, preclinical models, and recent advancements in therapeutic research for CMT1B, while also addressing the existing challenges in the field. This review aims to deepen the understanding of CMT1B and to encourage further research towards the development of effective treatments for CMT1B patients. Full article
(This article belongs to the Special Issue Gene Therapy in Neuropathy)
Show Figures

Figure 1

9 pages, 1774 KiB  
Article
Dietary Choline Intake Is Beneficial for Cognitive Function and Delays Cognitive Decline: A 22-Year Large-Scale Prospective Cohort Study from China Health and Nutrition Survey
by Feifei Huang, Fangxu Guan, Xiaofang Jia, Jiguo Zhang, Chang Su, Wenwen Du, Yifei Ouyang, Li Li, Jing Bai, Xiaofan Zhang, Yanli Wei, Bing Zhang, Yuna He and Huijun Wang
Nutrients 2024, 16(17), 2845; https://doi.org/10.3390/nu16172845 - 26 Aug 2024
Viewed by 224
Abstract
Pre-clinical studies have discovered the neuroprotective function and the benefit for cognitive function of choline. However, it remains unclear whether these benefits observed in animal studies also work in humans. The aims of this study are to examine the effects of dietary choline [...] Read more.
Pre-clinical studies have discovered the neuroprotective function and the benefit for cognitive function of choline. However, it remains unclear whether these benefits observed in animal studies also work in humans. The aims of this study are to examine the effects of dietary choline intake on cognitive function and cognitive decline during ageing in middle-aged and elderly Chinese. We included 1887 subjects aged 55~79 years with 6696 observations from the China Health and Nutrition Survey cohort study. The subjects were followed up for 6 to 21 years, with an average of 12.2 years. A dietary survey was conducted over 3 consecutive days with a 24 h recall, using household weight-recording methods. Based on the China Food Composition, data from USDA, and published literature, the dietary choline intake was calculated as the sum of free choline, phosphocholine, phosphatidylcholine, sphingomyelin, and glycerophosphocholine. Cognitive function was assessed using a subset of the Telephone Interview for Cognitive Status-modified (TICS-m) items. In order to eliminate the different weight of scores in each domain, the scores were converted by dividing by the maximum score in each domain, which ranged from 0 to 3 points. Higher cognitive scores represented better cognition. We used two-level mixed effect models to estimate the effects of dietary choline intake on cognitive score and cognitive decline rate in males and females, respectively. The average dietary choline intake was 161.1 mg/d for the baseline. After adjusting for confounders, the dietary choline intake was significantly associated with higher cognitive score in both males and females. The cognitive score in the highest quartile group of dietary choline was 0.085 for males and 0.077 for females–higher than those in the lowest quartile group (p < 0.01 for males, p < 0.05 for females). For every 10-year increase in age, the cognitive score decreased by 0.266 for males and 0.283 for females. The cognitive score decline rate of the third quartile group of dietary choline was 0.125/10 years lower than that of the lowest quartile group in females (p < 0.05). Dietary choline intake not only improves cognitive function, but also postpones cognitive decline during the aging process. The findings of this study highlight the neuroprotective benefit of choline in the middle-aged and elderly Chinese population, especially among females. Full article
Show Figures

Figure 1

17 pages, 2507 KiB  
Article
The Accordion Zebrafish tq206 Mutant in the Assessment of a Novel Pharmaceutical Approach to Brody Myopathy
by Eylem Emek Akyürek, Francesca Greco, Chiara Tesoriero, Francesco Dalla Barba, Marcello Carotti, Giulia Gorni, Dorianna Sandonà, Andrea Vettori and Roberta Sacchetto
Int. J. Mol. Sci. 2024, 25(17), 9229; https://doi.org/10.3390/ijms25179229 - 25 Aug 2024
Viewed by 256
Abstract
Brody disease (BD) is an “ultra-rare” human genetic disorder of skeletal muscle function due to defects in the atp2a1 gene causing deficiency of the SERCA protein, isoform1. The main clinical signs are exercise-induced stiffness and delayed muscular relaxation after physical exercises, even mild [...] Read more.
Brody disease (BD) is an “ultra-rare” human genetic disorder of skeletal muscle function due to defects in the atp2a1 gene causing deficiency of the SERCA protein, isoform1. The main clinical signs are exercise-induced stiffness and delayed muscular relaxation after physical exercises, even mild ones. No mouse model nor specific therapies exist for Brody myopathy, which is therefore considered an orphan disease. Bovine congenital pseudomyotonia (PMT) is a muscular disorder characterized by an impairment of muscle relaxation and is the only mammalian model of human BD. The pathogenetic mechanism underlying bovine PMT has been recently clarified. These findings prompted us to purpose a potential pharmacological approach addressing a specific population of BD patients who exhibit reduced expression but still exhibit activity of the SERCA1 pump. Preclinical research involving in vivo studies is essential and necessary before clinical trials can be pursued and SERCA protein shows a high degree of conservation among species. So far, the only animal models available to study BD in vivo are a group of zebrafish mutant lines known as accordion zebrafish (acc). In this paper, we focused on a comprehensive characterization of the “acctq206” zebrafish variant. Our aim was to use this mutant line as an experimental animal model for testing the novel therapeutic approach for BD. Full article
(This article belongs to the Special Issue Zebrafish as a Model in Human Disease: 3rd Edition)
14 pages, 2577 KiB  
Article
A Deep Learning Approach to Distance Map Generation Applied to Automatic Fiber Diameter Computation from Digital Micrographs
by Alain M. Alejo Huarachi and César A. Beltrán Castañón
Sensors 2024, 24(17), 5497; https://doi.org/10.3390/s24175497 - 24 Aug 2024
Viewed by 285
Abstract
Precise measurement of fiber diameter in animal and synthetic textiles is crucial for quality assessment and pricing; however, traditional methods often struggle with accuracy, particularly when fibers are densely packed or overlapping. Current computer vision techniques, while useful, have limitations in addressing these [...] Read more.
Precise measurement of fiber diameter in animal and synthetic textiles is crucial for quality assessment and pricing; however, traditional methods often struggle with accuracy, particularly when fibers are densely packed or overlapping. Current computer vision techniques, while useful, have limitations in addressing these challenges. This paper introduces a novel deep-learning-based method to automatically generate distance maps of fiber micrographs, enabling more accurate fiber segmentation and diameter calculation. Our approach utilizes a modified U-Net architecture, trained on both real and simulated micrographs, to regress distance maps. This allows for the effective separation of individual fibers, even in complex scenarios. The model achieves a mean absolute error (MAE) of 0.1094 and a mean square error (MSE) of 0.0711, demonstrating its effectiveness in accurately measuring fiber diameters. This research highlights the potential of deep learning to revolutionize fiber analysis in the textile industry, offering a more precise and automated solution for quality control and pricing. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

16 pages, 1256 KiB  
Article
In Vitro Prediction of Skin-Sensitizing Potency Using the GARDskin Dose–Response Assay: A Simple Regression Approach
by Robin Gradin, Fleur Tourneix, Ulrika Mattson, Johan Andersson, Frédéric Amaral, Andy Forreryd, Nathalie Alépée and Henrik Johansson
Toxics 2024, 12(9), 626; https://doi.org/10.3390/toxics12090626 - 24 Aug 2024
Viewed by 276
Abstract
Toxicological assessments of skin sensitizers have progressed towards a higher reliance on non-animal methods. Current technological trends aim to extend the utility of non-animal methods to accurately characterize skin-sensitizing potency. The GARDskin Dose–Response assay has previously been described; it was shown that its [...] Read more.
Toxicological assessments of skin sensitizers have progressed towards a higher reliance on non-animal methods. Current technological trends aim to extend the utility of non-animal methods to accurately characterize skin-sensitizing potency. The GARDskin Dose–Response assay has previously been described; it was shown that its main readout, cDV0 concentration, is associated with skin-sensitizing potency. The ability to predict potency from cDV0 in the form of NESILs derived from LLNAs or human NOELs was evaluated. The assessment of a dataset of 30 chemicals showed that the cDV0 values still correlated strongly and significantly with both LLNA EC3 and human NOEL values (ρ = 0.645–0.787 [p < 1 × 10−3]). A composite potency value that combined LLNA and human potency data was defined, which aided the performance of the proposed model for the prediction of NESILs. The potency model accurately predicted sensitizing potency, with cross-validation errors of 2.75 and 3.22 fold changes compared with NESILs from LLNAs and humans, respectively. In conclusion, the results suggest that the GARDskin Dose–Response assay may be used to derive an accurate quantitative continuous potency estimate of skin sensitizers. Full article
(This article belongs to the Special Issue Skin Sensitization Testing Using New Approach Methodologies)
Show Figures

Figure 1

12 pages, 2655 KiB  
Article
Assessment of Corneal Graft Outcomes in a Murine Model of Endothelial Keratoplasty
by Akitomo Narimatsu, Rohan Bir Singh, Pier Luigi Surico, Seokjoo Lee, Katayoon Forouzanfar, Francesca Kahale, Aytan Musayeva, Thomas H. Dohlman, Tomas Blanco and Reza Dana
J. Clin. Med. 2024, 13(17), 5010; https://doi.org/10.3390/jcm13175010 - 24 Aug 2024
Viewed by 203
Abstract
Objectives: In this study, we establish a protocol for evaluating the outcomes of endothelial keratoplasty, including graft survival, rejection, or failure. Additionally, we also evaluate the alloimmune response in graft recipients. Methods: We performed EK using C57BL/6 (allogeneic) and BALB/c (syngeneic) [...] Read more.
Objectives: In this study, we establish a protocol for evaluating the outcomes of endothelial keratoplasty, including graft survival, rejection, or failure. Additionally, we also evaluate the alloimmune response in graft recipients. Methods: We performed EK using C57BL/6 (allogeneic) and BALB/c (syngeneic) as donors and BALB/c mice as recipients. Slit-lamp examination and optical coherence tomography were performed for clinical evaluations for 16 weeks post-procedure. Criteria for the assessment of corneal opacity were established and the animals were graded weekly. Additionally, we assessed corneal endothelial cell density by harvesting the corneas and staining with zonula occludens-1 (ZO-1). Lastly, lymph nodes were collected, and CD4+ T cells were MACS-sorted and co-cultured with syngeneic or allogeneic antigen-presenting cells (APCs) to assess the IFN-γ expression levels by alloreactive Th1 cells (ELISPOT) in response to the direct (donor) or indirect (host) pathways of sensitization. Results: We observed graft failure in four animals, including irreversible corneal opacity, graft detachment, and anterior synechiae in the first four weeks. The remaining animals were graded between 0 and 5 as per the established criteria. The total and graft corneal thickness and endothelial cell density progressively worsened with a higher grade of corneal opacity. The direct allosensitization of Th1 cells was significantly higher in mice with a higher grade of corneal opacity. At 16 weeks follow-up, the grafts remained stable with low opacity scores in syngeneic EK recipients; however, the opacity scores were higher and variable in allogeneic EK recipients. Conclusions: These findings establish a standardized protocol to assess the graft outcomes in a murine model of EK. Furthermore, we delineate the underlying immunological pathway that contributes to the immune-mediated rejection of grafts in this model. Full article
(This article belongs to the Special Issue New Insights into Corneal Regeneration and Transplantation)
Show Figures

Figure 1

34 pages, 5764 KiB  
Review
The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity
by Kornél Kistamás, Federica Lamberto, Raminta Vaiciuleviciute, Filipa Leal, Suchitra Muenthaisong, Luis Marte, Paula Subías-Beltrán, Aidas Alaburda, Dina N. Arvanitis, Melinda Zana, Pedro F. Costa, Eiva Bernotiene, Christian Bergaud and András Dinnyés
Int. J. Mol. Sci. 2024, 25(17), 9186; https://doi.org/10.3390/ijms25179186 - 24 Aug 2024
Viewed by 258
Abstract
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, [...] Read more.
One of the many unresolved obstacles in the field of cardiovascular research is an uncompromising in vitro cardiac model. While primary cell sources from animal models offer both advantages and disadvantages, efforts over the past half-century have aimed to reduce their use. Additionally, obtaining a sufficient quantity of human primary cardiomyocytes faces ethical and legal challenges. As the practically unlimited source of human cardiomyocytes from induced pluripotent stem cells (hiPSC-CM) is now mostly resolved, there are great efforts to improve their quality and applicability by overcoming their intrinsic limitations. The greatest bottleneck in the field is the in vitro ageing of hiPSC-CMs to reach a maturity status that closely resembles that of the adult heart, thereby allowing for more appropriate drug developmental procedures as there is a clear correlation between ageing and developing cardiovascular diseases. Here, we review the current state-of-the-art techniques in the most realistic heart models used in disease modelling and toxicity evaluations from hiPSC-CM maturation through heart-on-a-chip platforms and in silico models to the in vitro models of certain cardiovascular diseases. Full article
(This article belongs to the Special Issue Research on Skeletal and Cardiac Muscle Regeneration Mechanisms)
Show Figures

Figure 1

15 pages, 3474 KiB  
Article
Comparison of Six Measures of Genetic Similarity of Interspecific Brassicaceae Hybrids F2 Generation and Their Parental Forms Estimated on the Basis of ISSR Markers
by Jan Bocianowski, Janetta Niemann, Anna Jagieniak and Justyna Szwarc
Genes 2024, 15(9), 1114; https://doi.org/10.3390/genes15091114 - 23 Aug 2024
Viewed by 238
Abstract
Genetic similarity determines the extent to which two genotypes share common genetic material. It can be measured in various ways, such as by comparing DNA sequences, proteins, or other genetic markers. The significance of genetic similarity is multifaceted and encompasses various fields, including [...] Read more.
Genetic similarity determines the extent to which two genotypes share common genetic material. It can be measured in various ways, such as by comparing DNA sequences, proteins, or other genetic markers. The significance of genetic similarity is multifaceted and encompasses various fields, including evolutionary biology, medicine, forensic science, animal and plant breeding, and anthropology. Genetic similarity is an important concept with wide application across different scientific disciplines. The research material included 21 rapeseed genotypes (ten interspecific Brassicaceae hybrids of F2 generation and 11 of their parental forms) and 146 alleles obtained using 21 ISSR molecular markers. In the presented study, six measures for calculating genetic similarity were compared: Euclidean, Jaccard, Kulczyński, Sokal and Michener, Nei, and Rogers. Genetic similarity values were estimated between all pairs of examined genotypes using the six measures proposed above. For each genetic similarity measure, the average, minimum, maximum values, and coefficient of variation were calculated. Correlation coefficients between the genetic similarity values obtained from each measure were determined. The obtained genetic similarity coefficients were used for the hierarchical clustering of objects using the unweighted pair group method with an arithmetic mean. A multiple regression model was written for each method, where the independent variables were the remaining methods. For each model, the coefficient of multiple determination was calculated. Genetic similarity values ranged from 0.486 to 0.993 (for the Euclidean method), from 0.157 to 0.986 (for the Jaccard method), from 0.275 to 0.993 (for the Kulczyński method), from 0.272 to 0.993 (for the Nei method), from 0.801 to 1.000 (for the Rogers method) and from 0.486 to 0.993 (for the Sokal and Michener method). The results indicate that the research material was divided into two identical groups using any of the proposed methods despite differences in the values of genetic similarity coefficients. Two of the presented measures of genetic similarity (the Sokal and Michener method and the Euclidean method) were the same. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop