Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,370)

Search Parameters:
Keywords = apoptosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3091 KiB  
Article
A Novel Pyrazole Exhibits Potent Anticancer Cytotoxicity via Apoptosis, Cell Cycle Arrest, and the Inhibition of Tubulin Polymerization in Triple-Negative Breast Cancer Cells
by Edgar A. Borrego, Cristina D. Guerena, Austre Y. Schiaffino Bustamante, Denisse A. Gutierrez, Carlos A. Valenzuela, Ana P. Betancourt, Armando Varela-Ramirez and Renato J. Aguilera
Cells 2024, 13(14), 1225; https://doi.org/10.3390/cells13141225 (registering DOI) - 20 Jul 2024
Viewed by 133
Abstract
In this study, we screened a chemical library to find potent anticancer compounds that are less cytotoxic to non-cancerous cells. This study revealed that pyrazole PTA-1 is a potent anticancer compound. Additionally, we sought to elucidate its mechanism of action (MOA) in triple-negative [...] Read more.
In this study, we screened a chemical library to find potent anticancer compounds that are less cytotoxic to non-cancerous cells. This study revealed that pyrazole PTA-1 is a potent anticancer compound. Additionally, we sought to elucidate its mechanism of action (MOA) in triple-negative breast cancer cells. Cytotoxicity was analyzed with the differential nuclear staining assay (DNS). Additional secondary assays were performed to determine the MOA of the compound. The potential MOA of PTA-1 was assessed using whole RNA sequencing, Connectivity Map (CMap) analysis, in silico docking, confocal microscopy, and biochemical assays. PTA-1 is cytotoxic at a low micromolar range in 17 human cancer cell lines, demonstrating less cytotoxicity to non-cancerous human cells, indicating a favorable selective cytotoxicity index (SCI) for the killing of cancer cells. PTA-1 induced phosphatidylserine externalization, caspase-3/7 activation, and DNA fragmentation in triple-negative breast MDA-MB-231 cells, indicating that it induces apoptosis. Additionally, PTA-1 arrests cells in the S and G2/M phases. Furthermore, gene expression analysis revealed that PTA-1 altered the expression of 730 genes at 24 h (198 upregulated and 532 downregulated). A comparison of these gene signatures with those within CMap indicated a profile similar to that of tubulin inhibitors. Subsequent studies revealed that PTA-1 disrupts microtubule organization and inhibits tubulin polymerization. Our results suggest that PTA-1 is a potent drug with cytotoxicity to various cancer cells and induces apoptosis and cell cycle arrest and inhibits tubulin polymerization, indicating that PTA-1 is an attractive drug for future clinical cancer treatment. Full article
(This article belongs to the Topic Novel Discoveries in Oncology)
Show Figures

Figure 1

21 pages, 2344 KiB  
Article
Synergistic Enhancement of Chemotherapy-Induced Cell Death and Antitumor Efficacy against Tumoral T-Cell Lymphoblasts by IMMUNEPOTENT CRP
by Ana Luisa Rivera-Lazarín, Kenny Misael Calvillo-Rodríguez, Mizael Izaguirre-Rodríguez, José Manuel Vázquez-Guillén, Ana Carolina Martínez-Torres and Cristina Rodríguez-Padilla
Int. J. Mol. Sci. 2024, 25(14), 7938; https://doi.org/10.3390/ijms25147938 (registering DOI) - 20 Jul 2024
Viewed by 192
Abstract
T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL), present significant challenges to treatment due to their aggressive nature and chemoresistance. Chemotherapies remain a mainstay for their management, but the aggressiveness of these cancers and their associated toxicities pose [...] Read more.
T-cell malignancies, including T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL), present significant challenges to treatment due to their aggressive nature and chemoresistance. Chemotherapies remain a mainstay for their management, but the aggressiveness of these cancers and their associated toxicities pose limitations. Immunepotent CRP (ICRP), a bovine dialyzable leukocyte extract, has shown promise in inducing cytotoxicity against various cancer types, including hematological cancers. In this study, we investigated the combined effect of ICRP with a panel of chemotherapies on cell line models of T-ALL and T-LBL (CEM and L5178Y-R cells, respectively) and its impact on immune system cells (peripheral blood mononuclear cells, splenic and bone marrow cells). Our findings demonstrate that combining ICRP with chemotherapies enhances cytotoxicity against tumoral T-cell lymphoblasts. ICRP + Cyclophosphamide (CTX) cytotoxicity is induced through a caspase-, reactive oxygen species (ROS)-, and calcium-dependent mechanism involving the loss of mitochondrial membrane potential, an increase in ROS production, and caspase activation. Low doses of ICRP in combination with CTX spare non-tumoral immune cells, overcome the bone marrow-induced resistance to CTX cell death, and improves the CTX antitumor effect in vivo in syngeneic Balb/c mice challenged with L5178Y-R. This led to a reduction in tumor volume and a decrease in Ki-67 proliferation marker expression and the granulocyte/lymphocyte ratio. These results set the basis for further research into the clinical application of ICRP in combination with chemotherapeutic regimens for improving outcomes in T-cell malignancies. Full article
(This article belongs to the Special Issue Acute Leukemia: From Basic Research to Clinical Application)
Show Figures

Figure 1

15 pages, 2167 KiB  
Article
Sub-Chronic Methomyl Exposure Induces Oxidative Stress and Inflammatory Responses in Zebrafish with Higher Female Susceptibility
by Mingxiao Li, Xi Chen, Chao Song, Jing Xu, Limin Fan, Liping Qiu, Dandan Li, Huimin Xu, Shunlong Meng, Xiyan Mu, Bin Xia and Jun Ling
Antioxidants 2024, 13(7), 871; https://doi.org/10.3390/antiox13070871 (registering DOI) - 20 Jul 2024
Viewed by 146
Abstract
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This [...] Read more.
The widespread use of carbamate pesticides has raised significant environmental and health concerns, particularly regarding water contamination and the disruption of defense systems in organisms. Despite these concerns, research on the differential impacts of pesticides on male and female organisms remains limited. This study focused on methomyl, investigating sex-specific differences in liver antioxidant defenses and inflammatory response indices in male and female zebrafish after 56 days of exposure to environmentally relevant concentrations (0, 0.05, 0.10, and 0.20 mg/L). Our findings indicate that methomyl exposure significantly increased ROS content in zebrafish livers, inducing oxidative stress and activating enzymatic antioxidant defenses such as SOD, CAT, and GSH-Px activities. Sub-chronic exposure altered the expression of apoptosis-related genes (Bax/Bcl2a and Caspases3a), resulting in liver cell apoptosis in a concentration-dependent manner, with the 0.20 mg/L concentration causing the most severe damage. Additionally, methomyl exposure at environmentally relevant concentrations triggered persistent inflammatory responses in liver tissues, evidenced by increased transcription levels of inflammatory factor genes and the activation of toll-like receptors, heightening susceptibility to exogenous allergens. It is noteworthy that oxidative damage indicators (AST, ROS, MDA) and inflammatory gene expressions (IL-1β, TNF-α) were significantly higher in female livers compared to male livers at 0.10–0.20 mg/L methomyl exposure. Consequently, our study underscores the potential adverse effects of environmental methomyl exposure on aquatic organisms and highlights the need for heightened consideration of the risks posed by environmental endocrine disruptors to female health and safety. Full article
Show Figures

Figure 1

10 pages, 5330 KiB  
Communication
Developing Device of Death Operation (DODO) to Detect Apoptosis in 2D and 3D Cultures
by Ziheng Zhang, Zhe Sun and Ji-Long Liu
Cells 2024, 13(14), 1224; https://doi.org/10.3390/cells13141224 (registering DOI) - 20 Jul 2024
Viewed by 159
Abstract
The real-time detection of intracellular biological processes by encoded sensors has broad application prospects. Here, we developed a degron-based modular reporting system, the Device of Death Operation (DODO), that can monitor various biological processes. The DODO system consists of a “reporter”, an “inductor”, [...] Read more.
The real-time detection of intracellular biological processes by encoded sensors has broad application prospects. Here, we developed a degron-based modular reporting system, the Device of Death Operation (DODO), that can monitor various biological processes. The DODO system consists of a “reporter”, an “inductor”, and a “degron”. After zymogen activation and cleavage, the degron will be released from the “reporter”, which eventually leads to the stabilization of the “reporter”, and can be detected. By replacing different “inductors” and “reporters”, a series of biological processes can be reported through various signals. The system can effectively report the existence of TEV protease. To prove this concept, we successfully applied the DODO system to report apoptosis in 2D and 3D cultures. In addition, the reporter based on degron will help to design protease reporters other than caspase. Full article
(This article belongs to the Section Cellular Pathology)
Show Figures

Figure 1

16 pages, 8492 KiB  
Article
A Bioinformatic Assay of Quercetin in Gastric Cancer
by Sergio Raúl Zúñiga-Hernández, Trinidad García-Iglesias, Monserrat Macías-Carballo, Alejandro Pérez-Larios, Yanet Karina Gutiérrez-Mercado, Gabriela Camargo-Hernández and Christian Martín Rodríguez-Razón
Int. J. Mol. Sci. 2024, 25(14), 7934; https://doi.org/10.3390/ijms25147934 (registering DOI) - 20 Jul 2024
Viewed by 196
Abstract
Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated [...] Read more.
Gastric cancer (GC) remains a significant global health challenge, with high mortality rates, especially in developing countries. Current treatments are invasive and have considerable risks, necessitating the exploration of safer alternatives. Quercetin (QRC), a flavonoid present in various plants and foods, has demonstrated multiple health benefits, including anticancer properties. This study investigated the therapeutic potential of QRC in the treatment of GC. We utilized advanced molecular techniques to assess the impact of QRC on GC cells, examining its effects on cellular pathways and gene expression. Our findings indicate that QRC significantly inhibits GC cell proliferation and induces apoptosis, suggesting its potential as a safer therapeutic option for GC treatment. Further research is required to validate these results and explore the clinical applications of QRC in cancer therapy. Full article
Show Figures

Figure 1

19 pages, 6202 KiB  
Article
Ramulus Mori (Sangzhi) Alkaloids Alleviate Diabetic Nephropathy through Improving Gut Microbiota Disorder
by Wenxiu Liu, Saijun Xu, Bin Zhang and Xiaobo Sun
Nutrients 2024, 16(14), 2346; https://doi.org/10.3390/nu16142346 (registering DOI) - 20 Jul 2024
Viewed by 182
Abstract
Diabetic nephropathy (DN), one of the leading causes of end-stage kidney failure worldwide, is closely associated with high mortality in diabetic patients. However, therapeutic drugs for DN are still lacking. Ramulus Mori alkaloids (SZ-A), an effective component of alkaloids extracted from Ramulus Mori [...] Read more.
Diabetic nephropathy (DN), one of the leading causes of end-stage kidney failure worldwide, is closely associated with high mortality in diabetic patients. However, therapeutic drugs for DN are still lacking. Ramulus Mori alkaloids (SZ-A), an effective component of alkaloids extracted from Ramulus Mori, have been found to improve glucose and lipid metabolism to mitigate diabetes and obesity; however, few studies have focused on their effects on DN progression. Thus, we investigated the protective role of SZ-A on DN through 16S rRNA sequencing, non-targeted metabolomics, and fecal microbiota transplantation (FMT) experiments. To address our hypothesis, we established the DN mouse model by combining a high-fat diet (HFD) with streptozotocin (STZ) injection. Herein, we demonstrated that SZ-A supplementation was recalcitrant to renal injury in DN mice, improving glomerular morphology, reversing the blood biochemistry parameters, and ameliorating podocyte injury. Importantly, the composition of the gut microbiota altered after SZ-A treatment, especially with the elevated abundance of Dubosiella and the increased level of serum pentadecanoic acid. FMT experiments further revealed that the gut microbiota exerted critical effects in mediating the beneficial roles of SZ-A. In vitro experiments proved that pentadecanoic acid administration improved podocyte apoptosis induced by AGEs. Taken together, SZ-A play a renoprotective role, possibly through regulating the gut microbiota and promoting pentadecanoic acid production. Our current study lends support to more extensive clinical applications of SZ-A. Full article
(This article belongs to the Special Issue Recent Advances in Nutrigenomics and Nutrigenetics)
Show Figures

Figure 1

15 pages, 583 KiB  
Review
Protective Effect of Caffeine and Chlorogenic Acids of Coffee in Liver Disease
by Daniela Di Pietrantonio, Valeria Pace Palitti, Angelo Cichelli and Stefania Tacconelli
Foods 2024, 13(14), 2280; https://doi.org/10.3390/foods13142280 (registering DOI) - 20 Jul 2024
Viewed by 249
Abstract
Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per [...] Read more.
Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per day) is safe and beneficial to human health, revealing protective effects against numerous chronic metabolic diseases such as diabetes, cardiovascular, neurodegenerative, and hepatic diseases. This review focuses on two of coffee’s main bioactive compounds, i.e., caffeine and chlorogenic acids, and their effects on the progression of chronic liver diseases, demonstrating that regular coffee consumption correlates with a lower risk of the development and progression of non-alcoholic steatohepatitis, viral hepatitis, liver cirrhosis, and hepatocellular carcinoma. In particular, this review analyzes caffeine and chlorogenic acid from a pharmacological point of view and explores the molecular mechanism through which these compounds are responsible for the protective role of coffee. Both bioactive compounds, therefore, have antifibrotic effects on hepatic stellate cells and hepatocytes, induce a decrease in connective tissue growth factor, stimulate increased apoptosis with anti-cancer effects, and promote a major inhibition of focal adhesion kinase, actin, and protocollagen synthesis. In conclusion, coffee shows many beneficial effects, and experimental data in favor of coffee consumption in patients with liver diseases are encouraging, but further prospective studies are needed to demonstrate its preventive and therapeutic role in chronic liver diseases. Full article
Show Figures

Figure 1

16 pages, 1568 KiB  
Article
The Role of Programmed Cell Death 1/Programmed Death Ligand 1 (PD-1/PD-L1) Axis in Sepsis-Induced Apoptosis
by Oana Coman, Bianca-Liana Grigorescu, Adina Huțanu, Anca Bacârea, Anca Meda Văsieșiu, Raluca Ștefania Fodor, Florin Stoica and Leonard Azamfirei
Medicina 2024, 60(7), 1174; https://doi.org/10.3390/medicina60071174 - 19 Jul 2024
Viewed by 178
Abstract
Background and Objectives: Sepsis involves a dysregulated host response, characterized by simultaneous immunosuppression and hyperinflammation. Initially, there is the release of pro-inflammatory factors and immune system dysfunction, followed by persistent immune paralysis leading to apoptosis. This study investigates sepsis-induced apoptosis and its [...] Read more.
Background and Objectives: Sepsis involves a dysregulated host response, characterized by simultaneous immunosuppression and hyperinflammation. Initially, there is the release of pro-inflammatory factors and immune system dysfunction, followed by persistent immune paralysis leading to apoptosis. This study investigates sepsis-induced apoptosis and its pathways, by assessing changes in PD-1 and PD-L1 serum levels, CD4+ and CD8+ T cells, and Sequential Organ Failure Assessment (SOFA) and Acute Physiology and Chronic Health Evaluation (APACHE II) severity scores. Materials and Methods: This prospective, observational, single-centre study enrolled 87 sepsis patients admitted to the intensive care unit at the County Emergency Clinical Hospital in Târgu Mureș, Romania. We monitored the parameters on day 1 (the day sepsis or septic shock was diagnosed as per the Sepsis-3 Consensus) and day 5. Results: Our study found a statistically significant variation in the SOFA score for the entirety of the patients between the studied days (p = 0.001), as well as for the studied patient groups: sepsis, septic shock, survivors, and non-survivors (p = 0.001, p = 0.003, p = 0.01, p = 0.03). On day 1, we found statistically significant correlations between CD8+ cells and PD-1 (p = 0.02) and PD-L1 (p = 0.04), CD4+ and CD8+ cells (p < 0.0001), SOFA and APACHE II scores (p < 0.0001), and SOFA and APACHE II scores and PD-L1 (p = 0.001 and p = 0.01). On day 5, we found statistically significant correlations between CD4+ and CD8+ cells and PD-L1 (p = 0.03 and p = 0.0099), CD4+ and CD8+ cells (p < 0.0001), and SOFA and APACHE II scores (p < 0.0001). Conclusions: The reduction in Th CD4+ and Tc CD8+ lymphocyte subpopulations were evident from day 1, indicating that apoptosis is a crucial factor in the progression of sepsis and septic shock. The increased expression of the PD-1/PD-L1 axis impairs costimulatory signalling, leading to diminished T cell responses and lymphopenia, thereby increasing the susceptibility to nosocomial infections. Full article
(This article belongs to the Special Issue Management of Septic Shock in ICU)
22 pages, 2884 KiB  
Article
Molecular Mechanisms Underlying the Anticancer Properties of Pitavastatin against Cervical Cancer Cells
by Ya-Hui Chen, Jyun-Xue Wu, Shun-Fa Yang, Yun-Chia Wu and Yi-Hsuan Hsiao
Int. J. Mol. Sci. 2024, 25(14), 7915; https://doi.org/10.3390/ijms25147915 - 19 Jul 2024
Viewed by 201
Abstract
Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this [...] Read more.
Cervical cancer ranks as the fourth most prevalent form of cancer and is a significant contributor to female mortality on a global scale. Pitavastatin is an anti-hyperlipidemic medication and has been demonstrated to exert anticancer and anti-inflammatory effects. Thus, the purpose of this study was to evaluate the anticancer effect of pitavastatin on cervical cancer and the underlying molecular mechanisms involved. The results showed that pitavastatin significantly inhibited cell viability by targeting cell-cycle arrest and apoptosis in Ca Ski, HeLa and C-33 A cells. Pitavastatin caused sub-G1- and G0/G1-phase arrest in Ca Ski and HeLa cells and sub-G1- and G2/M-phase arrest in C-33 A cells. Moreover, pitavastatin induced apoptosis via the activation of poly-ADP-ribose polymerase (PARP), Bax and cleaved caspase 3; inactivated the expression of Bcl-2; and increased mitochondrial membrane depolarization. Furthermore, pitavastatin induced apoptosis and slowed the migration of all three cervical cell lines, mediated by the PI3K/AKT and MAPK (JNK, p38 and ERK1/2) pathways. Pitavastatin markedly inhibited tumor growth in vivo in a cancer cell-originated xenograft mouse model. Overall, our results identified pitavastatin as an anticancer agent for cervical cancer, which might be expanded to clinical use in the future. Full article
Show Figures

Figure 1

25 pages, 21357 KiB  
Article
Cytotoxic Potential of Betulinic Acid Fatty Esters and Their Liposomal Formulations: Targeting Breast, Colon, and Lung Cancer Cell Lines
by Andreea Milan, Marius Mioc, Alexandra Mioc, Armand Gogulescu, Gabriel Mardale, Ștefana Avram, Tamara Maksimović, Bogdan Mara and Codruța Șoica
Molecules 2024, 29(14), 3399; https://doi.org/10.3390/molecules29143399 - 19 Jul 2024
Viewed by 185
Abstract
Betulinic acid is a lupane-type pentacyclic triterpene mostly found in birch bark and thoroughly explored for its wide range of pharmacological activities. Despite its impressive biological potential, its low bioavailability has challenged many researchers to develop different formulations for achieving better in vitro [...] Read more.
Betulinic acid is a lupane-type pentacyclic triterpene mostly found in birch bark and thoroughly explored for its wide range of pharmacological activities. Despite its impressive biological potential, its low bioavailability has challenged many researchers to develop different formulations for achieving better in vitro and in vivo effects. We previously reported the synthesis of fatty acid esters of betulinic acid using butyric, stearic, and palmitic acids (But-BA, St-BA, and Pal-BA) and included them in surfaced-modified liposomes (But-BA-Lip, St-BA-Lip, Pal-BA-Lip). In the current study, we evaluated the cytotoxic effects of both fatty acid esters and their respective liposomal formulations against MCF-7, HT-29, and NCI-H460 cell line. The cytotoxic assessment of BA derivatives revealed that both the fatty esters and their liposomal formulations acted as cytotoxic agents in a dose- and time-dependent manner. But-BA-Lip exerted stronger cytotoxic effects than the parent compound, BA and its liposomal formulation, and even stronger effects than 5-FU against HT-29 cells (IC50 of 30.57 μM) and NCI-H460 cells (IC50 of 30.74 μM). BA’s fatty esters and their respective liposomal formulations facilitated apoptosis in cancer cells by inducing nuclear morphological changes and increasing caspase-3/-7 activity. The HET-CAM assay proved that none of the tested compounds induced any irritative effect, suggesting that they can be used safely for local applications. Full article
(This article belongs to the Special Issue Research Progress and Application of Natural Compounds—2nd Edition)
Show Figures

Figure 1

21 pages, 2346 KiB  
Article
Astragalus Extract Mixture HT042 Alleviates Dexamethasone-Induced Bone Growth Retardation in Rat Metatarsal Bones
by Chae Yun Baek, JunI Lee, Donghun Lee and Hocheol Kim
Nutrients 2024, 16(14), 2333; https://doi.org/10.3390/nu16142333 - 19 Jul 2024
Viewed by 153
Abstract
The most widely used synthetic glucocorticoid, dexamethasone (DEX), causes stunted growth in children when used excessively or for long periods of time; however, there are still plenty of pediatric patients require long-term treatment with DEX. As an alternative, growth hormone is used in [...] Read more.
The most widely used synthetic glucocorticoid, dexamethasone (DEX), causes stunted growth in children when used excessively or for long periods of time; however, there are still plenty of pediatric patients require long-term treatment with DEX. As an alternative, growth hormone is used in combination, but it has side effects, a high cost, and psychological factors, and it is not satisfactory in terms of effectiveness. It is necessary to develop a safe and affordable treatment that can replace it. The Korean Food and Drug Administration approved HT042, a standardized functional food ingredient, with the claim that it can help height growth of children. In this study, it was found that HT042 activated the Indian hedgehog/parathyroid hormone-related protein signaling pathway and enhanced the number of growth hormone receptors and insulin-like growth factor-1 receptors on the growth plate surface, which were reduced by DEX treatment, and restored growth retardation. In metatarsal bone and primary chondrocyte models, it was found that HT042 can promote the length of growth plate and recover DEX-induced growth retardation. It was also found that HT042 promotes cell proliferation using bromodeoxyuridine and terminal deoxynucleotidyl transferase dUTP nick end labeling assays; moreover, we verified increased expression of GHR/IGF-1R and Ihh/PTHrP pathway activity using qRT-PCR, western blotting, and siRNA analyses to verify its direct action on the growth plate. The anti-apoptotic effect of HT042 was identified by regulating the expression of apoptotic factors such as caspase-3, Bcl2, Bclx, and Bax. These results were identified using both ex vivo and in vitro models. Our study verified that co-administration of HT042 could recover the DEX induced growth retardation Full article
(This article belongs to the Section Nutrition and Public Health)
11 pages, 2787 KiB  
Article
The Missense Variant in the Signal Peptide of α-GLA Gene, c.13 A/G, Promotes Endoplasmic Reticular Stress and the Related Pathway’s Activation
by Sabrina Bossio, Ida Daniela Perrotta, Danilo Lofaro, Daniele La Russa, Vittoria Rago, Renzo Bonofiglio, Rosita Greco, Michele Andreucci, Antonio Aversa, Antonella La Russa and Anna Perri
Genes 2024, 15(7), 947; https://doi.org/10.3390/genes15070947 - 19 Jul 2024
Viewed by 175
Abstract
Anderson–Fabry disease (AFD) is an X-linked multisystemic disorder with a heterogeneous phenotype, resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) and leading to globotriaosylceramide systemic accumulation. Lysosomal storage is not the unique player in organ failure and different mechanisms could [...] Read more.
Anderson–Fabry disease (AFD) is an X-linked multisystemic disorder with a heterogeneous phenotype, resulting from deficiency of the lysosomal enzyme α-galactosidase A (α-Gal A) and leading to globotriaosylceramide systemic accumulation. Lysosomal storage is not the unique player in organ failure and different mechanisms could drive tissue damage, including endoplasmic reticulum (ER) stress and its related signaling pathway’s activation. We identified a new missense variant in the signal peptide of α-GLA gene, c.13 A/G, in a 55-year-old woman affected by chronic kidney disease, acroparesthesia, hypohidrosis, and deafness and exhibiting normal values of lysoGb3 and αGLA activity. The functional study of the new variant performed by its overexpression in HEK293T cells showed an increased protein expression of a key ER stress marker, GRP78, the pro-apoptotic BAX, the negative regulator of cell cycle p21, the pro-inflammatory cytokine, IL1β, together with pNFkB, and the pro-fibrotic marker, N-cadherin. Transmission electron microscopy showed signs of ER injury and intra-lysosomal inclusions. The proband’s PBMC exhibited higher expression of TGFβ 1 and pNFkB compared to control. Our findings suggest that the new variant, although it did not affect enzymatic activity, could cause cellular damage by affecting ER homeostasis and promoting apoptosis, inflammation, and fibrosis. Further studies are needed to demonstrate the variant’s contribution to cellular and tissue damage. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

25 pages, 8776 KiB  
Article
From Sea to Science: Coral Aquaculture for Sustainable Anticancer Drug Development
by Hung-Yu Lin, Tsen-Ni Tsai, Kai-Cheng Hsu, Yu-Ming Hsu, Lin-Chien Chiang, Mohamed El-Shazly, Ken-Ming Chang, Yu-Hsuan Lin, Shang-Yi Tu, Tony Eight Lin, Ying-Chi Du, Yi-Chang Liu and Mei-Chin Lu
Mar. Drugs 2024, 22(7), 323; https://doi.org/10.3390/md22070323 - 19 Jul 2024
Viewed by 239
Abstract
Marine natural products offer immense potential for drug development, but the limited supply of marine organisms poses a significant challenge. Establishing aquaculture presents a sustainable solution for this challenge by facilitating the mass production of active ingredients while reducing our reliance on wild [...] Read more.
Marine natural products offer immense potential for drug development, but the limited supply of marine organisms poses a significant challenge. Establishing aquaculture presents a sustainable solution for this challenge by facilitating the mass production of active ingredients while reducing our reliance on wild populations and harm to local environments. To fully utilize aquaculture as a source of biologically active products, a cell-free system was established to target molecular components with protein-modulating activity, including topoisomerase II, HDAC, and tubulin polymerization, using extracts from aquaculture corals. Subsequent in vitro studies were performed, including MTT assays, flow cytometry, confocal microscopy, and Western blotting, along with in vivo xenograft models, to verify the efficacy of the active extracts and further elucidate their cytotoxic mechanisms. Regulatory proteins were clarified using NGS and gene modification techniques. Molecular docking and SwissADME assays were performed to evaluate the drug-likeness and pharmacokinetic and medicinal chemistry-related properties of the small molecules. The extract from Lobophytum crassum (LCE) demonstrated potent broad-spectrum activity, exhibiting significant inhibition of tubulin polymerization, and showed low IC50 values against prostate cancer cells. Flow cytometry and Western blotting assays revealed that LCE induced apoptosis, as evidenced by the increased expression of apoptotic protein-cleaved caspase-3 and the populations of early and late apoptotic cells. In the xenograft tumor experiments, LCE significantly suppressed tumor growth and reduced the tumor volume (PC3: 43.9%; Du145: 49.2%) and weight (PC3: 48.8%; Du145: 7.8%). Additionally, LCE inhibited prostate cancer cell migration, and invasion upregulated the epithelial marker E-cadherin and suppressed EMT-related proteins. Furthermore, LCE effectively attenuated TGF-β-induced EMT in PC3 and Du145 cells. Bioactivity-guided fractionation and SwissADME validation confirmed that LCE’s main component, 13-acetoxysarcocrassolide (13-AC), holds greater potential for the development of anticancer drugs. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
Show Figures

Figure 1

14 pages, 3846 KiB  
Article
Activation of p38 and JNK by ROS Contributes to Deoxybouvardin-Mediated Intrinsic Apoptosis in Oxaliplatin-Sensitive and -Resistant Colorectal Cancer Cells
by Si Yeong Seo, Sang Hoon Joo, Seung-On Lee, Goo Yoon, Seung-Sik Cho, Yung Hyun Choi, Jin Woo Park and Jung-Hyun Shim
Antioxidants 2024, 13(7), 866; https://doi.org/10.3390/antiox13070866 - 19 Jul 2024
Viewed by 157
Abstract
Colorectal cancer (CRC) remains a global health burden, accounting for almost a million deaths annually. Deoxybouvardin (DB), a non-ribosomal peptide originally isolated from Bouvardia ternifolia, has been reported to possess antitumor activity; however, the detailed mechanisms underlying this anticancer activity have not [...] Read more.
Colorectal cancer (CRC) remains a global health burden, accounting for almost a million deaths annually. Deoxybouvardin (DB), a non-ribosomal peptide originally isolated from Bouvardia ternifolia, has been reported to possess antitumor activity; however, the detailed mechanisms underlying this anticancer activity have not been elucidated. We investigated the anticancer activity of the cyclic hexapeptide, DB, in human CRC HCT116 cells. Cell viability, evaluated by MTT assay, revealed that DB suppressed the growth of both oxaliplatin (Ox)-resistant HCT116 cells (HCT116-OxR) and Ox-sensitive cells in a concentration- and time-dependent manner. Increased reactive oxygen species (ROS) generation was observed in DB-treated CRC cells, and it induced cell cycle arrest at the G2/M phase by regulating p21, p27, cyclin B1, and cdc2 levels. In addition, Western blot analysis revealed that DB activated the phosphorylation of JNK and p38 MAPK in CRC. Furthermore, mitochondrial membrane potential (MMP) was dysregulated by DB, resulting in cytochrome c release and activation of caspases. Taken together, DB exhibited anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting JNK and p38 MAPK, increasing cellular ROS levels, and disrupting MMP. Thus, DB is a potential therapeutic agent for the treatment of Ox-resistant CRC. Full article
Show Figures

Graphical abstract

13 pages, 3017 KiB  
Article
Cancer Chemopreventive Effect of 2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethylchalcone on Diethylnitrosamine-Induced Early Stages of Hepatocarcinogenesis in Rats
by Sirinya Taya, Charatda Punvittayagul, Puttinan Meepowpan and Rawiwan Wongpoomchai
Plants 2024, 13(14), 1975; https://doi.org/10.3390/plants13141975 - 19 Jul 2024
Viewed by 158
Abstract
2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC) is a major compound in Cleistocalyx nervosum seed extract (CSE), which has been reported to have various biological activities, including anti-cancer activity. Therefore, this study attempted to evaluate whether DMC is a chemopreventive compound in CSE. Moreover, the preventive mechanisms of [...] Read more.
2′,4′-dihydroxy-6′-methoxy-3′,5′-dimethylchalcone (DMC) is a major compound in Cleistocalyx nervosum seed extract (CSE), which has been reported to have various biological activities, including anti-cancer activity. Therefore, this study attempted to evaluate whether DMC is a chemopreventive compound in CSE. Moreover, the preventive mechanisms of CSE and DMC in the DEN-induced early stages of hepatocarcinogenesis in rats were investigated. Male Wistar rats were intraperitoneally injected with DEN 50 mg/kg bw once a week for 8 weeks. Rats received CSE and DMC orally throughout the experiment. The number of glutathione S-transferase placental form (GST-P)-positive foci in the liver was measured. Furthermore, the preventive mechanisms of CSE and DMC on DEN-induced HCC, including cell proliferation and apoptosis, were investigated. Administering CSE at a dosage of 400 mg/kg bw and DMC at a dosage of 10 mg/kg bw significantly decreased the number and size of GST-P-positive foci and GST-P expression. In addition, DMC inhibited the development of preneoplastic lesions by decreasing cell proliferation and causing cell apoptosis; however, CSE inhibited the development of preneoplastic lesions by inducing cell apoptosis. In conclusion, DMC exhibited a cancer chemopreventive effect on the early stages of hepatocarcinogenesis by increasing cell apoptosis and reducing cell proliferation. Full article
Show Figures

Figure 1

Back to TopTop