Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,608)

Search Parameters:
Keywords = auxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2156 KiB  
Article
Karrikinolide1 (KAR1), a Bioactive Compound from Smoke, Improves the Germination of Morphologically Dormant Apium graveolens L. Seeds by Reducing Indole-3-Acetic Acid (IAA) Levels
by Shubhpriya Gupta, Jakub Hrdlička, Manoj Kulkarni, Ivana Doležalova, Aleš Pěnčík, Johannes Van Staden, Ondřej Novák and Karel Doležal
Plants 2024, 13(15), 2096; https://doi.org/10.3390/plants13152096 (registering DOI) - 29 Jul 2024
Abstract
Smoke-water (SW) and Karrikinolide1 (KAR1) release dormancy and improve seed germination in many plant species. Therefore, we tested SW (1:2500 v/v) and KAR1 (10−7 M) to break the morphological dormancy of celery cultivar (Apium graveolens [...] Read more.
Smoke-water (SW) and Karrikinolide1 (KAR1) release dormancy and improve seed germination in many plant species. Therefore, we tested SW (1:2500 v/v) and KAR1 (10−7 M) to break the morphological dormancy of celery cultivar (Apium graveolens L.). In the first trial, seeds were subjected to a 21-day incubation period at 20 °C with SW and KAR1 applied as single treatments. KAR1 showed significantly improved germination (30.7%) as compared to SW (17.2%) and a water control (14.7%). In seed soaking experiments, SW, KAR1, and gibberellic acid (GA3) treatments showed higher germination percentages than the water control after 3 and 6 h of soaking. However, prolonged soaking (12 h) reduced germination percentages for all treatments, indicating a detrimental effect. Analysis of KAR1 content dynamics in 7-day- and 21-day-old celery seeds indicated its prolonged effects on germination and dormancy alleviation. Phytohormones, including auxins in 7-day-old and cytokinins in 7-day- and 21-day-old celery seedlings, along with their precursors and metabolites, were analyzed using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) after treatment with KAR1 and SW. The analysis of auxin levels in 7-day-old seeds revealed a negative correlation between seed germination and auxin (indole-3-acetic acid, IAA) content. Notably, it was found that KAR1-treated seeds significantly reduced IAA levels in all treatments. SW and KAR1 did not significantly affect cytokinin levels during celery germination except for N6-Isopentenyladenine. Hence, further research is needed to understand their precise role in celery seed germination. This work will improve our understanding of the role of bioactive compounds from plant-derived smoke and how they regulate hormonal responses and improve germination efficiency in celery. Full article
Show Figures

Figure 1

23 pages, 5751 KiB  
Article
Transcriptomic Analysis of the Molecular Mechanism Potential of Grafting—Enhancing the Ability of Oriental Melon to Tolerate Low-Nitrogen Stress
by Yulei Zhu, Ziqing Sun, Hongxi Wu, Caifeng Cui, Sida Meng and Chuanqiang Xu
Int. J. Mol. Sci. 2024, 25(15), 8227; https://doi.org/10.3390/ijms25158227 (registering DOI) - 27 Jul 2024
Viewed by 431
Abstract
Nitrogen is the primary nutrient for plants. Low nitrogen generally affects plant growth and fruit quality. Melon, as an economic crop, is highly dependent on nitrogen. However, the response mechanism of its self-rooted and grafted seedlings to low-nitrogen stress has not been reported [...] Read more.
Nitrogen is the primary nutrient for plants. Low nitrogen generally affects plant growth and fruit quality. Melon, as an economic crop, is highly dependent on nitrogen. However, the response mechanism of its self-rooted and grafted seedlings to low-nitrogen stress has not been reported previously. Therefore, in this study, we analyzed the transcriptional differences between self-rooted and grafted seedlings under low-nitrogen stress using fluorescence characterization and RNA-Seq analysis. It was shown that low-nitrogen stress significantly inhibited the fluorescence characteristics of melon self-rooted seedlings. Analysis of differentially expressed genes showed that the synthesis of genes related to hormone signaling, such as auxin and brassinolide, was delayed under low-nitrogen stress. Oxidative stress response, involved in carbon and nitrogen metabolism, and secondary metabolite-related differentially expressed genes (DEGs) were significantly down-regulated. It can be seen that low-nitrogen stress causes changes in many hormonal signals in plants, and grafting can alleviate the damage caused by low-nitrogen stress on plants, ameliorate the adverse effects of nitrogen stress on plants, and help them better cope with environmental stresses. Full article
(This article belongs to the Section Molecular Plant Sciences)
15 pages, 502 KiB  
Article
Involvement of Auxin, Flavonoids and Strigolactones in the Different Rooting Ability of European Chestnut (Castanea sativa) and Hybrids (Castanea crenata × Castanea sativa)
by Petra Kunc, Aljaz Medic and Gregor Osterc
Plants 2024, 13(15), 2088; https://doi.org/10.3390/plants13152088 (registering DOI) - 27 Jul 2024
Viewed by 209
Abstract
The aim of this study was to investigate the differences between Castanea sativa Mill. and Castanea crenata Siebold & Zucc. × Castanea sativa Mill. in rooting ability in relation to endogenous levels of auxin, auxin cofactors and inhibitors that influence rooting success. Leafy [...] Read more.
The aim of this study was to investigate the differences between Castanea sativa Mill. and Castanea crenata Siebold & Zucc. × Castanea sativa Mill. in rooting ability in relation to endogenous levels of auxin, auxin cofactors and inhibitors that influence rooting success. Leafy cuttings of the two commercial cultivars ‘Marsol’ and ‘Maraval’ (Castanea crenata × Castanea sativa) and the native accession ‘Kozjak’ (Castanea sativa) were analyzed. Endogenous indole-3-acetic acid (IAA) concentration was assessed at the beginning of propagation (day 0); in addition, strigolactones, flavonoids, rooting ability and quality were assessed 120 days after. The concentration of endogenous IAA in ‘Maraval’ (324.34 ± 28.66 ng g−1) and ‘Marsol’ (251.60 ± 35.44 ng g−1) was significantly higher than in ‘Kozjak’ (112.87 ± 35.44 ng g−1). The best rooting result was observed with the genotypes ‘Maraval’ (100.00 ± 0.00%) and ‘Marsol’ (90.48 ± 6.15%). A significantly lower strigol concentration was observed in the roots of ‘Maraval’ (75.54 ± 17.93 ng g−1) compared with other genotypes. The total flavonoid concentration in ‘Maraval’ was significantly higher (2794.99 ± 187.13 μg g−1) than in ‘Kozjak’ (1057.38 ± 61.05 μg g−1). Our results indicate that the concentration of endogenous IAA has a significant influence on rooting success. The results further indicate that in the case of flavonoids and strigolactones, not only the individual compounds but also their ratio is important for rooting success. Correlation coefficients calculated between analyzed compounds and rooting success point toward specific functions of flavonoids and strigolactones in the rooting of Castanea that need to be functionally analyzed. Full article
23 pages, 8462 KiB  
Article
Functional Framework of Amino Acid Transporters in Quinoa: Genome-Wide Survey, Homology, and Stress Response
by Linghong Li, Jianxun Huang, Yulai Zhang, Xinhui Yang, Tong Gou, Aixia Ren, Pengcheng Ding, Xiangyun Wu, Min Sun and Zhiqiang Gao
Agronomy 2024, 14(8), 1648; https://doi.org/10.3390/agronomy14081648 (registering DOI) - 27 Jul 2024
Viewed by 205
Abstract
The role of amino acid transporter (AAT) genes in facilitating the transmembrane movement of amino acids between cells and various cellular components has been characterized in several plant species. Quinoa (Chenopodium quinoa Willd.), a renowned nutritious crop known for its [...] Read more.
The role of amino acid transporter (AAT) genes in facilitating the transmembrane movement of amino acids between cells and various cellular components has been characterized in several plant species. Quinoa (Chenopodium quinoa Willd.), a renowned nutritious crop known for its amino acid composition, has not yet had its AAT genes characterized. Therefore, the identification and characterization of AAT genes in quinoa will help bridge this knowledge gap and offer valuable insights into the genetic mechanisms underlying amino acid transport and metabolism. This study focuses on gene expression, gene structure, duplication events, and a comparison of functions studied to establish the role of AAT genes. A total of 160 non-redundant AAT genes were identified in quinoa and classified into 12 subfamilies, with 8 subfamilies belonging to the amino acid/auxin permease (AAAP) family and 4 to the amino acid-polyamine-organocation (APC) superfamily family. The chromosomal localization, gene structures, and conserved motifs of these genes were systematically analyzed. Expression profiling revealed diverse expression patterns across various tissues and in response to drought and salt stresses. Segmental and tandem duplications were found to contribute to the gene duplication and expansion of the CqAAT gene family. Additionally, CqCAT6 and CqAAP1 were predicted to regulate the long-distance transportation and distribution of amino acids, making them potential candidate genes for further research. Overall, this information could serve as a foundation for the identification and utilization of CqAATs in Quinoa, enhancing our understanding of amino acid transport mechanisms in this important crop. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

20 pages, 12432 KiB  
Article
Divergent Roles of the Auxin Response Factors in Lemongrass (Cymbopogon flexuosus (Nees ex Steud.) W. Watson) during Plant Growth
by Guoli Wang, Jian Zeng, Canghao Du, Qi Tang, Yuqing Hua, Mingjie Chen, Guangxiao Yang, Min Tu, Guangyuan He, Yin Li, Jinming He and Junli Chang
Int. J. Mol. Sci. 2024, 25(15), 8154; https://doi.org/10.3390/ijms25158154 - 26 Jul 2024
Viewed by 220
Abstract
Auxin Response Factors (ARFs) make up a plant-specific transcription factor family that mainly couples perception of the phytohormone, auxin, and gene expression programs and plays an important and multi-faceted role during plant growth and development. Lemongrass (Cymbopogon flexuosus) is a representative [...] Read more.
Auxin Response Factors (ARFs) make up a plant-specific transcription factor family that mainly couples perception of the phytohormone, auxin, and gene expression programs and plays an important and multi-faceted role during plant growth and development. Lemongrass (Cymbopogon flexuosus) is a representative Cymbopogon species widely used in gardening, beverages, fragrances, traditional medicine, and heavy metal phytoremediation. Biomass yield is an important trait for several agro-economic purposes of lemongrass, such as landscaping, essential oil production, and phytoremediation. Therefore, we performed gene mining of CfARFs and identified 26 and 27 CfARF-encoding genes in each of the haplotype genomes of lemongrass, respectively. Phylogenetic and domain architecture analyses showed that CfARFs can be divided into four groups, among which groups 1, 2, and 3 correspond to activator, repressor, and ETTN-like ARFs, respectively. To identify the CfARFs that may play major roles during the growth of lemongrass plants, RNA-seq was performed on three tissues (leaf, stem, and root) and four developmental stages (3-leaf, 4-leaf, 5-leaf. and mature stages). The expression profiling of CfARFs identified several highly expressed activator and repressor CfARFs and three CfARFs (CfARF3, 18, and 35) with gradually increased levels during leaf growth. Haplotype-resolved transcriptome analysis revealed that biallelic expression dominance is frequent among CfARFs and contributes to their gene expression patterns. In addition, co-expression network analysis identified the modules enriched with CfARFs. By establishing orthologous relationships among CfARFs, sorghum ARFs, and maize ARFs, we showed that CfARFs were mainly expanded by whole-genome duplications, and that the duplicated CfARFs might have been divergent due to differential expression and variations in domains and motifs. Our work provides a detailed catalog of CfARFs in lemongrass, representing a first step toward characterizing CfARF functions, and may be useful in molecular breeding to enhance lemongrass plant growth. Full article
(This article belongs to the Special Issue Advances in the Identification and Characterization of Plant Genes)
Show Figures

Figure 1

15 pages, 2640 KiB  
Article
Regeneration of Sesuvium portulacastrum through Indirect Shoot Organogenesis and Influence of an Endophytic Fungus on Rooting of Microshoots
by Xiuli Jiang, Dan Wang, Jianjun Chen, Weihong He, Boya Zhou, Ziling Li, Lingyan Chen, Donghui Peng, Qiang Chen and Xiangying Wei
Agriculture 2024, 14(8), 1221; https://doi.org/10.3390/agriculture14081221 - 25 Jul 2024
Viewed by 278
Abstract
Sesuvium portulacastrum L. is a dicotyledonous halophyte belonging to the family Aizoaceae. Its young leaves are highly nutritious, and many ecotypes are used as leafy vegetable and medicinal crops. Additionally, due to their tolerance to soil salinity, flooding, and high temperatures, some ecotypes [...] Read more.
Sesuvium portulacastrum L. is a dicotyledonous halophyte belonging to the family Aizoaceae. Its young leaves are highly nutritious, and many ecotypes are used as leafy vegetable and medicinal crops. Additionally, due to their tolerance to soil salinity, flooding, and high temperatures, some ecotypes are used for the remediation of saline soils. As a result, there is an increasing need for a large number of disease-free S. portulacastrum propagules. This study developed an efficient protocol for the regeneration of S. portulacastrum through indirect shoot organogenesis. Leaf explants were cultured on Murashige and Skoog basal medium supplemented with different concentrations of zeatin (ZT) and indole-3-acetic acid (IAA). Callus was induced in all explants cultured with 1.5 mg/L ZT only or 1.5 mg/L ZT with 0.5 mg/L IAA. The callus was cut into small pieces and cultured on the same medium on which it was initially induced. ZT at 1.5 mg/L induced 73.7% of callus pieces to produce adventitious shoots, and the shoot numbers per callus piece were up to 20. To improve the in vitro rooting of adventitious shoots, commonly known as microshoots or microcuttings, an endophytic fungus, Cladosporium ‘BF-F’, was inoculated onto the rooting medium. ‘BF-F’ substantially enhanced rooting and plantlet growth, as the root numbers were three times more and plantlet heights were 70% greater than those without ‘BF-F’ inoculation. To detect the genes involved in the enhanced rooting and plantlet growth, qRT-PCR analysis was performed. Results showed that genes related to auxin responses and nitrogen uptake and metabolism were highly upregulated in ‘BF-F’-inoculated plantlets. Plants inoculated with ‘BF-F’ grew vigorously after being transplanted into a sand–soil substrate. Thus, this study not only established an efficient protocol for the regeneration of S. portulacastrum but also developed a novel method for improving the rooting of microshoots and plantlet growth. The established propagation system could be used for producing a large number of S. portulacastrum plantlets for commercial use and also for genetic transformation. Full article
Show Figures

Figure 1

12 pages, 3988 KiB  
Article
GhMAX2 Contributes to Auxin-Mediated Fiber Elongation in Cotton (Gossypium hirsutum)
by Zailong Tian, Haijin Qin, Baojun Chen, Zhaoe Pan, Yinhua Jia, Xiongming Du and Shoupu He
Plants 2024, 13(15), 2041; https://doi.org/10.3390/plants13152041 - 25 Jul 2024
Viewed by 291
Abstract
Strigolactones (SLs) represent a new group of phytohormones that play a pivotal role in the regulation of plant shoot branching and the development of adventitious roots. In cotton (Gossypium hirsutum, Gh), SLs play a crucial role in the regulation of [...] Read more.
Strigolactones (SLs) represent a new group of phytohormones that play a pivotal role in the regulation of plant shoot branching and the development of adventitious roots. In cotton (Gossypium hirsutum, Gh), SLs play a crucial role in the regulation of fiber cell elongation and secondary cell wall thickness. However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. In this study, we report two SL-signaling genes, GhMAX2-3 and GhMAX2-6, which positively regulate cotton fiber elongation. Further protein—protein interaction and degradation assays showed that the repressor of the auxin cascade GhIAA17 serves as a substrate for the F-box E3 ligase GhMAX2. The in vivo ubiquitination assay suggested that GhMAX2-3 and GhMAX2-6 ubiquitinate GhIAA17 and coordinately degrade GhIAA17 with GhTIR1. The findings of this investigation offer valuable insights into the roles of GhMAX2-mediated SL signaling in cotton and establish a solid foundation for future endeavors aimed at optimizing cotton plant cultivation. Full article
(This article belongs to the Special Issue Molecular Insights into Cotton Fiber Gene Regulation)
Show Figures

Figure 1

14 pages, 3360 KiB  
Article
Transcriptome Reveals the Regulation of Exogenous Auxin Inducing Rooting of Non-Rooting Callus of Tea Cuttings
by Shuting Wang, Huanran Wu, Yazhao Zhang, Guodong Sun, Wenjun Qian, Fengfeng Qu, Xinfu Zhang and Jianhui Hu
Int. J. Mol. Sci. 2024, 25(15), 8080; https://doi.org/10.3390/ijms25158080 - 24 Jul 2024
Viewed by 297
Abstract
Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR [...] Read more.
Cuttage is the main propagation method of tea plant cultivars in China. However, some tea softwood cuttings just form an expanded and loose callus at the base, without adventitious root (AR) formation during the propagation period. Meanwhile, exogenous auxin could promote the AR formation of tea plant cuttings, but the regulation mechanism has not yet explained clearly. We conducted this study to elucidate the regulatory mechanism of exogenous auxin-induced adventitious root (AR) formation of such cuttings. The transcriptional expression profile of non-rooting tea calluses in response to exogenous IBA and NAA was analyzed using ONT RNA Seq technology. In total, 56,178 differentially expressed genes (DEGs) were detected, and most of genes were significantly differentially expressed after 12 h of exogenous auxin treatment. Among these DEGs, we further identified 80 DEGs involved in the auxin induction pathway and AR formation. Specifically, 14 auxin respective genes (ARFs, GH3s, and AUX/IAAs), 3 auxin transporters (AUX22), 19 auxin synthesis- and homeostasis-related genes (cytochrome P450 (CYP450) and calmodulin-like protein (CML) genes), and 44 transcription factors (LOB domain-containing protein (LBDs), SCARECROW-LIKE (SCL), zinc finger protein, WRKY, MYB, and NAC) were identified from these DEGs. Moreover, we found most of these DEGs were highly up-regulated at some stage before AR formation, suggesting that they may play a potential role in the AR formation of tea plant cuttings. In summary, this study will provide a theoretical foundation to deepen our understanding of the molecular mechanism of AR formation in tea cuttings induced by auxin during propagation time. Full article
(This article belongs to the Special Issue Advances in Tea Tree Genetics and Breeding)
Show Figures

Figure 1

15 pages, 5126 KiB  
Article
Identification and Analysis of PPO Gene Family Members in Paulownia fortunei
by Zhenli Zhao, Fei Wang, Minjie Deng and Guoqiang Fan
Plants 2024, 13(15), 2033; https://doi.org/10.3390/plants13152033 - 24 Jul 2024
Viewed by 239
Abstract
Polyphenol oxidase (PPO) is a common metalloproteinase in plants with important roles in plant responses to abiotic and biotic stresses. There is evidence that PPOs contribute to stress responses in Paulownia fortunei. In this study, PPO gene family members in P. fortunei [...] Read more.
Polyphenol oxidase (PPO) is a common metalloproteinase in plants with important roles in plant responses to abiotic and biotic stresses. There is evidence that PPOs contribute to stress responses in Paulownia fortunei. In this study, PPO gene family members in P. fortunei were comprehensively identified and characterized using bioinformatics methods as well as analyses of phylogenetic relationships, gene and protein structure, codon usage bias, and gene expression in response to stress. The genome contained 10 PPO gene family members encoding 406–593 amino acids, with a G/C bias. Most were localized in chloroplasts. The motif structure was conserved among family members, and α-helices and random coils were the dominant elements in the secondary structure. The promoters contained many cis-acting elements, such as auxin, gibberellin, salicylic acid, abscisic acid, and photoresponsive elements. The formation of genes in this family was linked to evolutionary events, such as fragment replication. Real-time quantitative PCR results showed that PfPPO7, PfPPO10, PfPPO1, PfPPO2, PfPPO3, PfPPO4, PfPPO5, and PfPPO8 may be key genes in drought stress resistance. PfPPO1, PfPPO3, PfPPO4, and PfPPO10 were resistant stress-sensitive genes. These results provide a reliable basis for fully understanding the potential functions of these genes and the selection of resistance breeding. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

13 pages, 25799 KiB  
Article
Comparative Transcriptomic Analysis Reveals the Involvement of Auxin Signaling in the Heat Tolerance of Pakchoi under High-Temperature Stress
by Bing Yang, Yaosong Chen, Xiaofeng Li, Lu Gao, Liming Miao, Yishan Song, Dingyu Zhang and Hongfang Zhu
Agronomy 2024, 14(8), 1604; https://doi.org/10.3390/agronomy14081604 - 23 Jul 2024
Viewed by 256
Abstract
Pakchoi is a kind of nonheading Chinese cabbage being widely cultivated not only in China but also all over Asia. High temperature is a major limiting factor influencing the yield and quality of pakchoi, while the mechanism of pakchoi dealing with high-temperature challenges [...] Read more.
Pakchoi is a kind of nonheading Chinese cabbage being widely cultivated not only in China but also all over Asia. High temperature is a major limiting factor influencing the yield and quality of pakchoi, while the mechanism of pakchoi dealing with high-temperature challenges remains largely elusive. In the present study, we conducted a comparative transcriptomic analysis, which was also validated by qPCR, of the heat-tolerant Xinxiaqing (XXQ) variant and Suzhouqing (SZQ) variant, which are heat-sensitive under high-temperature treatment. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggest that high-temperature-induced phytohormones signal transduction, especially auxin signal transduction, regulates the heat responses of pakchoi. Our further investigations imply that high-temperature-activated auxin signal plays a positive role in helping pakchoi deal with high-temperature challenge; IAA-pretreated pakchoi plants exhibited greater resistance to the high-temperature treatment, probably due to the induction of antioxidant activity. In addition, our study also identified six heat shock proteins/factors (HSPs/HSFs) whose up-regulation correlates with the elevated heat tolerance of pakchoi. Notably, among these high-temperature-induced heat-responsive factors, HSP20 and HSP26.5 are under the regulation of auxin signal, and this signal cascade contributes to enhancing the thermostability of pakchoi. In the present study, we identified crucial high-temperature-responsive factors and signaling pathways in pakchoi, which help in understanding the mechanism of pakchoi coping with high-temperature challenge. Full article
(This article belongs to the Special Issue Metabolomics-Centered Mining of Crop Metabolic Diversity and Function)
Show Figures

Figure 1

14 pages, 3422 KiB  
Article
Sphingosine Promotes Fiber Early Elongation in Upland Cotton
by Li Wang, Changyin Jin, Wenqing Zhang, Xueting Mei, Hang Yu, Man Wu, Wenfeng Pei, Jianjiang Ma, Bingbing Zhang, Ming Luo and Jiwen Yu
Plants 2024, 13(14), 1993; https://doi.org/10.3390/plants13141993 - 21 Jul 2024
Viewed by 328
Abstract
Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic [...] Read more.
Sphingolipids play an important role in cotton fiber development, but the regulatory mechanism is largely unclear. We found that serine palmitoyltransferase (SPT) enzyme inhibitors, myriocin and sphingosine (dihydrosphingosine (DHS) and phytosphingosine (PHS)), affected early fiber elongation in cotton, and we performed a sphingolipidomic and transcriptomic analysis of control and PHS-treated fibers. Myriocin inhibited fiber elongation, while DHS and PHS promoted it in a dose–effect manner. Using liquid chromatography–tandem mass spectrometry (LC–MS/MS), we found that contents of 22 sphingolipids in the PHS-treated fibers for 10 days were changed, of which the contents of 4 sphingolipids increased and 18 sphingolipids decreased. The transcriptome analysis identified 432 differentially expressed genes (238 up-regulated and 194 down-regulated) in the PHS-treated fibers. Among them, the phenylpropanoid biosynthesis pathway is the most significant enrichment. The expression levels of transcription factors such as MYB, ERF, LBD, and bHLH in the fibers also changed, and most of MYB and ERF were up-regulated. Auxin-related genes IAA, GH3 and BIG GRAIN 1 were up-regulated, while ABPs were down-regulated, and the contents of 3 auxin metabolites were decreased. Our results provide important sphingolipid metabolites and regulatory pathways that influence fiber elongation. Full article
(This article belongs to the Special Issue Molecular Insights into Cotton Fiber Gene Regulation)
Show Figures

Figure 1

17 pages, 3272 KiB  
Article
6-BA Reduced Yield Loss under Waterlogging Stress by Regulating the Phenylpropanoid Pathway in Wheat
by Faiza Gulzar, Hongkun Yang, Jiabo Chen, Beenish Hassan, Xiulan Huang and Fangao Qiong
Plants 2024, 13(14), 1991; https://doi.org/10.3390/plants13141991 - 21 Jul 2024
Viewed by 360
Abstract
Waterlogging stress causes substantial destruction to plant growth and production under climatic fluctuations globally. Plants hormones have been widely explored in numerous crops, displaying an imperative role in crop defense and growth mechanism. However, there is a paucity of research on the subject [...] Read more.
Waterlogging stress causes substantial destruction to plant growth and production under climatic fluctuations globally. Plants hormones have been widely explored in numerous crops, displaying an imperative role in crop defense and growth mechanism. However, there is a paucity of research on the subject of plant hormones regulating waterlogging stress responses in wheat crop. In this study, we clarified the role of 6-BA in waterlogging stress through inducing phenylpropanoid biosynthesis in wheat. The application of 6-BA (6-benzyladenine) enhanced the growth and development of wheat plants under waterlogging stress, which was accompanied by reduced electrolyte leakage, high chlorophyll, and soluble sugar content. ROS scavenging was also enhanced by 6-BA, resulting in reduced MDA and H2O2 accumulation and amplified antioxidant enzyme activities. Additionally, under the effect of 6-BA, the acceleration of lignin content and accumulation in the cell walls of wheat tissues, along with the activation of PAL (phenylalanine ammonia lyase), TAL (tyrosine ammonia lyase), and 4CL (4-hydroxycinnamate CoA ligase) activities and the increase in the level of transcription of the TaPAL and Ta4CL genes, were observed under waterlogging stress. Also, 6-BA improved the root growth system under waterlogging stress conditions. Further qPCR analysis revealed increased auxin signaling (TaPR1) in 6-BA-treated plants under waterlogging stress that was consistent with the induction of endogenous IAA hormone content under waterlogging stress conditions. Here, 6-BA also reduced yield loss, as compared to control plants. Thus, the obtained data suggested that, under the application of 6-BA, phenylpropanoid metabolism (i.e., lignin) was stimulated, playing a significant role in reducing the negative effects of waterlogging stress on yield, as evinced by the improved plant growth parameters. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

27 pages, 4308 KiB  
Article
The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction
by Michelle E. H. Thompson and Manish N. Raizada
Microorganisms 2024, 12(7), 1473; https://doi.org/10.3390/microorganisms12071473 - 19 Jul 2024
Viewed by 729
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that [...] Read more.
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

11 pages, 2256 KiB  
Article
Understanding Ameliorating Effects of Boron on Adaptation to Salt Stress in Arabidopsis
by Mei Qu, Xin Huang, Lana Shabala, Anja Thoe Fuglsang, Min Yu and Sergey Shabala
Plants 2024, 13(14), 1960; https://doi.org/10.3390/plants13141960 - 17 Jul 2024
Viewed by 314
Abstract
When faced with salinity stress, plants typically exhibit a slowdown in their growth patterns. Boron (B) is an essential micronutrient for plants that are known to play a critical role in controlling cell wall properties. In this study, we used the model plant [...] Read more.
When faced with salinity stress, plants typically exhibit a slowdown in their growth patterns. Boron (B) is an essential micronutrient for plants that are known to play a critical role in controlling cell wall properties. In this study, we used the model plant Arabidopsis thaliana Col-0 and relevant mutants to explore how the difference in B availability may modulate plant responses to salt stress. There was a visible root growth suppression of Col-0 with the increased salt levels in the absence of B while this growth reduction was remarkably alleviated by B supply. Pharmacological experiments revealed that orthovanadate (a known blocker of H+-ATPase) inhibited root growth at no B condition, but had no effect in the presence of 30 μM B. Salinity stress resulted in a massive K+ loss from mature zones of A. thaliana roots; this efflux was attenuated in the presence of B. Supplemental B also increased the magnitude of net H+ pumping by plant roots. Boron availability was also essential for root halotropism. Interestingly, the aha2Δ57 mutant with active H+-ATPase protein exhibited the same halotropism response as Col-0 while the aha2-4 mutant had a stronger halotropism response (larger bending angle) compared with that of Col-0. Overall, the ameliorative effect of B on the A. thaliana growth under salt stress is based on the H+-ATPase stimulation and a subsequent K+ retention, involving auxin- and ROS-pathways. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

29 pages, 3133 KiB  
Review
Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein–Protein Interactions in Cell Signaling Pathways
by Houming Ren, Qingshan Ou, Qian Pu, Yuqi Lou, Xiaolin Yang, Yujiao Han and Shiping Liu
Biomolecules 2024, 14(7), 859; https://doi.org/10.3390/biom14070859 - 17 Jul 2024
Viewed by 328
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein–protein [...] Read more.
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein–protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways. Full article
Show Figures

Figure 1

Back to TopTop