Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,113)

Search Parameters:
Keywords = brain diseases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
39 pages, 3223 KiB  
Review
Alzheimer’s Disease Pathology and Assistive Nanotheranostic Approaches for Its Therapeutic Interventions
by Anuvab Dey, Subhrojyoti Ghosh, Ramya Lakshmi Rajendran, Tiyasa Bhuniya, Purbasha Das, Bidyabati Bhattacharjee, Sagnik Das, Atharva Anand Mahajan, Anushka Samant, Anand Krishnan, Byeong-Cheol Ahn and Prakash Gangadaran
Int. J. Mol. Sci. 2024, 25(17), 9690; https://doi.org/10.3390/ijms25179690 (registering DOI) - 7 Sep 2024
Abstract
Abstract: Alzheimer’s disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques [...] Read more.
Abstract: Alzheimer’s disease (AD) still prevails and continues to increase indiscriminately throughout the 21st century, and is thus responsible for the depreciating quality of health and associated sectors. AD is a progressive neurodegenerative disorder marked by a significant amassment of beta-amyloid plaques and neurofibrillary tangles near the hippocampus, leading to the consequent loss of cognitive abilities. Conventionally, amyloid and tau hypotheses have been established as the most prominent in providing detailed insight into the disease pathogenesis and revealing the associative biomarkers intricately involved in AD progression. Nanotheranostic deliberates rational thought toward designing efficacious nanosystems and strategic endeavors for AD diagnosis and therapeutic implications. The exceeding advancements in this field enable the scientific community to envisage and conceptualize pharmacokinetic monitoring of the drug, sustained and targeted drug delivery responses, fabrication of anti-amyloid therapeutics, and enhanced accumulation of the targeted drug across the blood–brain barrier (BBB), thus giving an optimistic approach towards personalized and precision medicine. Current methods idealized on the design and bioengineering of an array of nanoparticulate systems offer higher affinity towards neurocapillary endothelial cells and the BBB. They have recently attracted intriguing attention to the early diagnostic and therapeutic measures taken to manage the progression of the disease. In this article, we tend to furnish a comprehensive outlook, the detailed mechanism of conventional AD pathogenesis, and new findings. We also summarize the shortcomings in diagnostic, prognostic, and therapeutic approaches undertaken to alleviate AD, thus providing a unique window towards nanotheranostic advancements without disregarding potential drawbacks, side effects, and safety concerns. Full article
15 pages, 594 KiB  
Review
Re-Evaluating Recommended Optimal Sleep Duration: A Perspective on Sleep Literacy
by Jun Kohyama
Children 2024, 11(9), 1098; https://doi.org/10.3390/children11091098 (registering DOI) - 7 Sep 2024
Abstract
A significant number of adolescents experience sleepiness, primarily due to sleep deprivation. The detrimental effects of inadequate sleep on both physical and mental health are well documented, particularly during adolescence—a critical developmental stage that has far-reaching implications for later life outcomes. The International [...] Read more.
A significant number of adolescents experience sleepiness, primarily due to sleep deprivation. The detrimental effects of inadequate sleep on both physical and mental health are well documented, particularly during adolescence—a critical developmental stage that has far-reaching implications for later life outcomes. The International Classification of Diseases 11th Revision recently introduced the disorder termed ‘insufficient sleep syndrome,’ characterized by a persistent reduction in sleep quantity. However, diagnosing this condition based solely on sleep duration is challenging due to significant individual variation in what constitutes optimal sleep. Despite this, managing sleep debt remains difficult without a clear understanding of individual optimal sleep needs. This review aims to reassess recommended sleep durations, with a focus on enhancing sleep literacy. Beginning with an exploration of insufficient sleep syndrome, this review delves into research on optimal sleep duration and examines foundational studies on sleep debt’s impact on the developing brain. Finally, it addresses the challenges inherent in sleep education programs from the perspective of sleep literacy. By doing so, this review seeks to contribute to a deeper understanding of the chronic sleep debt issues faced by adolescents, particularly those affected by insufficient sleep syndrome. Full article
(This article belongs to the Special Issue Insufficient Sleep Syndrome in Children and Adolescents)
Show Figures

Figure 1

15 pages, 5499 KiB  
Article
Correlating Histopathological Microscopic Images of Creutzfeldt–Jakob Disease with Clinical Typology Using Graph Theory and Artificial Intelligence
by Carlos Martínez, Susana Teijeira, Patricia Domínguez, Silvia Campanioni, Laura Busto, José A. González-Nóvoa, Jacobo Alonso, Eva Poveda, Beatriz San Millán and César Veiga
Mach. Learn. Knowl. Extr. 2024, 6(3), 2018-2032; https://doi.org/10.3390/make6030099 (registering DOI) - 7 Sep 2024
Abstract
Creutzfeldt–Jakob disease (CJD) is a rare, degenerative, and fatal brain disorder caused by abnormal proteins called prions. This research introduces a novel approach combining AI and graph theory to analyze histopathological microscopic images of brain tissues affected by CJD. The detection and quantification [...] Read more.
Creutzfeldt–Jakob disease (CJD) is a rare, degenerative, and fatal brain disorder caused by abnormal proteins called prions. This research introduces a novel approach combining AI and graph theory to analyze histopathological microscopic images of brain tissues affected by CJD. The detection and quantification of spongiosis, characterized by the presence of vacuoles in the brain tissue, plays a crucial role in aiding the accurate diagnosis of CJD. The proposed methodology employs image processing techniques to identify these pathological features in high-resolution medical images. By developing an automatic pipeline for the detection of spongiosis, we aim to overcome some limitations of manual feature extraction. The results demonstrate that our method correctly identifies and characterize spongiosis and allows the extraction of features that will help to better understand the spongiosis patterns in different CJD patients. Full article
(This article belongs to the Topic Applications in Image Analysis and Pattern Recognition)
Show Figures

Figure 1

14 pages, 879 KiB  
Article
Mortality-Associated Factors in a Traumatic Brain Injury Population in Mexico
by Erick Martínez-Herrera, Evelyn Galindo-Oseguera, Juan Castillo-Cruz, Claudia Erika Fuentes-Venado, Gilberto Adrián Gasca-López, Claudia C. Calzada-Mendoza, Esther Ocharan-Hernández, Carlos Alberto Zúñiga-Cruz, Eunice D. Farfán-García, Alfredo Arellano-Ramírez and Rodolfo Pinto-Almazán
Biomedicines 2024, 12(9), 2037; https://doi.org/10.3390/biomedicines12092037 (registering DOI) - 7 Sep 2024
Viewed by 120
Abstract
Background: Traumatic brain injury (TBI) is a major cause of death and disability, with a rising incidence in recent years. Factors such as age, sex, hypotension, low score on the Glasgow Coma Scale, use of invasive mechanical ventilation and vasopressors, etc., have been [...] Read more.
Background: Traumatic brain injury (TBI) is a major cause of death and disability, with a rising incidence in recent years. Factors such as age, sex, hypotension, low score on the Glasgow Coma Scale, use of invasive mechanical ventilation and vasopressors, etc., have been associated with mortality caused by TBI. The aim of this study was to identify the clinical and sociodemographic characteristics that influence the mortality or survival of patients with TBI in a tertiary care hospital in Mexico. Methods: A sample of 94 patients aged 18 years or older, from both sexes, with an admitting diagnosis of mild-to-severe head trauma, with initial prehospital treatment, was taken. Data were extracted from the Single Registry of Patients with TBI at the Ixtapaluca Regional High Specialty Hospital (HRAEI). Normality tests were used to decide on the corresponding statistical analysis. Results: No factors associated with mortality were found; however, survival analysis showed that the presence of seizures, aggregate limb trauma, and subjects with diabetes mellitus, heart disease or patients with four concomitant comorbidities had 100% mortality. In addition, having seizures in the prehospital setting increased the risk of mortality four times. Although they did not have a direct association with mortality, they significantly decreased survival. A larger sample size is probably required to obtain an association with mortality. Conclusions: These results reflect the severity of the clinical situation in this population and, although no risk factors were identified, they enlighten us about the conditions presented by patients who died. Full article
(This article belongs to the Special Issue Traumatic CNS Injury: From Bench to Bedside)
Show Figures

Figure 1

14 pages, 331 KiB  
Review
Neurodegenerative Disorders in the Context of Vascular Changes after Traumatic Brain Injury
by Zahra Hasanpour-Segherlou, Forough Masheghati, Mahdieh Shakeri-Darzehkanani, Mohammad-Reza Hosseini-Siyanaki and Brandon Lucke-Wold
J. Vasc. Dis. 2024, 3(3), 319-332; https://doi.org/10.3390/jvd3030025 - 6 Sep 2024
Viewed by 353
Abstract
Traumatic brain injury (TBI) results from external biomechanical forces that cause structural and physiological disturbances in the brain, leading to neuronal, axonal, and vascular damage. TBIs are predominantly mild (65%), with moderate (10%) and severe (25%) cases also prevalent. TBI significantly impacts health, [...] Read more.
Traumatic brain injury (TBI) results from external biomechanical forces that cause structural and physiological disturbances in the brain, leading to neuronal, axonal, and vascular damage. TBIs are predominantly mild (65%), with moderate (10%) and severe (25%) cases also prevalent. TBI significantly impacts health, increasing the risk of neurodegenerative diseases such as dementia, post injury. The initial phase of TBI involves acute disruption of the blood–brain barrier (BBB) due to vascular shear stress, leading to ischemic damage and amyloid-beta accumulation. Among the acute cerebrovascular changes after trauma are early progressive hemorrhage, micro bleeding, coagulopathy, neurovascular unit (NVU) uncoupling, changes in the BBB, changes in cerebral blood flow (CBF), and cerebral edema. The secondary phase is characterized by metabolic dysregulation and inflammation, mediated by oxidative stress and reactive oxygen species (ROS), which contribute to further neurodegeneration. The cerebrovascular changes and neuroinflammation include excitotoxicity from elevated extracellular glutamate levels, coagulopathy, NVU, immune responses, and chronic vascular changes after TBI result in neurodegeneration. Severe TBI often leads to dysfunction in organs outside the brain, which can significantly impact patient care and outcomes. The vascular component of systemic inflammation after TBI includes immune dysregulation, hemodynamic dysfunction, coagulopathy, respiratory failure, and acute kidney injury. There are differences in how men and women acquire traumatic brain injuries, how their brains respond to these injuries at the cellular and molecular levels, and in their brain repair and recovery processes. Also, the patterns of cerebrovascular dysfunction and stroke vulnerability after TBI are different in males and females based on animal studies. Full article
(This article belongs to the Section Neurovascular Diseases)
18 pages, 1392 KiB  
Article
A Novel Rare PSEN2 Val226Ala in PSEN2 in a Korean Patient with Atypical Alzheimer’s Disease, and the Importance of PSEN2 5th Transmembrane Domain (TM5) in AD Pathogenesis
by YoungSoon Yang, Eva Bagyinszky and Seong Soo A. An
Int. J. Mol. Sci. 2024, 25(17), 9678; https://doi.org/10.3390/ijms25179678 - 6 Sep 2024
Viewed by 241
Abstract
In this manuscript, a novel presenilin-2 (PSEN2) mutation, Val226Ala, was found in a 59-year-old Korean patient who exhibited rapid progressive memory dysfunction and hallucinations six months prior to her first visit to the hospital. Her Magnetic Resonance Imaging (MRI) showed brain atrophy, and [...] Read more.
In this manuscript, a novel presenilin-2 (PSEN2) mutation, Val226Ala, was found in a 59-year-old Korean patient who exhibited rapid progressive memory dysfunction and hallucinations six months prior to her first visit to the hospital. Her Magnetic Resonance Imaging (MRI) showed brain atrophy, and both amyloid positron emission tomography (PET) and multimer detection system-oligomeric amyloid-beta (Aβ) results were positive. The patient was diagnosed with early onset Alzheimer’s disease. The whole-exome analysis revealed a new PSEN2 Val226Ala mutation with heterozygosity in the 5th transmembrane domain of the PSEN2 protein near the lumen region. Analyses of the structural prediction suggested structural changes in the helix, specifically a loss of a hydrogen bond between Val226 and Gln229, which may lead to elevated helix motion. Multiple PSEN2 mutations were reported in PSEN2 transmembrane-5 (TM5), such as Tyr231Cys, Ile235Phe, Ala237Val, Leu238Phe, Leu238Pro, and Met239Thr, highlighting the dynamic importance of the 5th transmembrane domain of PSEN2. Mutations in TM5 may alter the access tunnel of the Aβ substrate in the membrane to the gamma-secretase active site, indicating a possible influence on enzyme function that increases Aβ production. Interestingly, the current patient with the Val226Ala mutation presented with a combination of hallucinations and memory dysfunction. Although the causal mechanisms of hallucinations in AD remain unclear, it is possible that PSEN2 interacts with other disease risk factors, including Notch Receptor 3 (NOTCH3) or Glucosylceramidase Beta-1 (GBA) variants, enhancing the occurrence of hallucinations. In conclusion, the direct or indirect role of PSEN2 Val226Ala in AD onset cannot be ruled out. Full article
(This article belongs to the Special Issue Genetic Research in Neurological Diseases)
8 pages, 488 KiB  
Article
The Role of Repeated Surgical Resections for Recurrent Brain Metastases in Older Population
by Maria Goldberg, Valeri Heinrich, Ghaith Altawalbeh, Chiara Negwer, Arthur Wagner, Jens Gempt, Bernhard Meyer and Amir Kaywan Aftahy
Medicina 2024, 60(9), 1464; https://doi.org/10.3390/medicina60091464 - 6 Sep 2024
Viewed by 173
Abstract
Background and Objectives: The impact of surgery for recurrent brain metastases in elderly patients has been the object of debate due to limited information in the literature. We analyzed clinical outcome and survival of elderly patients with recurrent brain metastases in order to [...] Read more.
Background and Objectives: The impact of surgery for recurrent brain metastases in elderly patients has been the object of debate due to limited information in the literature. We analyzed clinical outcome and survival of elderly patients with recurrent brain metastases in order to assess potentially beneficial role of surgery. Materials and methods: In total, 219 patients with recurrent brain metastases between 2007 and 2022 were identified, of which 95 underwent re-resection; 83 patients aged 65 and older were analyzed. A survival analysis was performed, and clinical outcomes were evaluated. Results: The median survival time after surgery for recurrent brain metastases was 6 months (95CI 4–10) in older patients and 8 (95CI 7–9) in younger patients (p = 0.619). Out of all the older patients, 33 who underwent surgical resection showed prolonged survival compared with patients who did not receive surgical resection (median: 14, 95CI 8–19 vs. 4, 95CI 4–7, p = 0.011). All patients had preoperative Karnofsky performance scores of >70, which did not deteriorate after surgery (87.02 ± 5.76 vs. 85 ± 6.85; p = 0.055). In the univariate analysis, complete cytoreduction was a favorable prognostic factor. The tumor volume, the number of metastases, extracranial disease progression, adjuvant radiation, and systemic therapy did not affect survival in this cohort. Conclusions: Patients aged 65 and older benefit from neurosurgical resections of recurrent brain metastases. Survival did not differ from that in younger patients, which can be explained by a better preoperative functional status. Moreover, independent of the extent of resection, older patients who underwent surgery showed better survival than patients who did not receive surgical treatment. Complete cytoreduction was a favorable prognostic marker. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

16 pages, 1230 KiB  
Review
Expression Changes of miRNAs in Humans and Animal Models of Amyotrophic Lateral Sclerosis and Their Potential Application for Clinical Diagnosis
by Ruili Wang, Liang Chen, Yuning Zhang, Bo Sun and Mengyao Liang
Life 2024, 14(9), 1125; https://doi.org/10.3390/life14091125 - 6 Sep 2024
Viewed by 164
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease. Current detection methods can only confirm the diagnosis at the onset of the disease, missing the critical window for early treatment. Recent studies using animal models have found that detecting changes in miRNA [...] Read more.
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease. Current detection methods can only confirm the diagnosis at the onset of the disease, missing the critical window for early treatment. Recent studies using animal models have found that detecting changes in miRNA sites can predict the onset and severity of the disease in its early stages, facilitating early diagnosis and treatment. miRNAs show expression changes in motor neurons that connect the brain, spinal cord, and brain stem, as well as in the skeletal muscle in mouse models of ALS. Clinically, expression changes in some miRNAs in patients align with those in mouse models, such as the upregulation of miR-29b in the brain and the upregulation of miR-206 in the skeletal muscle. This study provides an overview of some miRNA study findings in humans as well as in animal models, including SOD1, FUS, TDP-43, and C9orf72 transgenic mice and wobbler mice, highlighting the potential of miRNAs as diagnostic markers for ALS. miR-21 and miR-206 are aberrantly expressed in both mouse model and patient samples, positioning them as key potential diagnostic markers in ALS. Additionally, miR-29a, miR-29b, miR-181a, and miR-142-3p have shown aberrant expression in both types of samples and show promise as clinical targets for ALS. Finally, miR-1197 and miR-486b-5p have been recently identified as aberrantly expressed miRNAs in mouse models for ALS, although further studies are needed to determine their viability as diagnostic targets. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

23 pages, 588 KiB  
Systematic Review
Memory in Spina Bifida, from Childhood to Adulthood: A Systematic Review
by Imanol Amayra, Aitana Ruiz de Lazcano, Monika Salgueiro, Samuel Anguiano, Malena Ureña and Oscar Martínez
J. Clin. Med. 2024, 13(17), 5273; https://doi.org/10.3390/jcm13175273 - 5 Sep 2024
Viewed by 301
Abstract
Background: Spina bifida (SB) is a rare congenital disease characterized by not only physical but also neuropsychological disturbances. Among these neuropsychological impairments, memory deficits are a significant concern, as they substantially hinder aspects of crucial importance in the lives of individuals with SB [...] Read more.
Background: Spina bifida (SB) is a rare congenital disease characterized by not only physical but also neuropsychological disturbances. Among these neuropsychological impairments, memory deficits are a significant concern, as they substantially hinder aspects of crucial importance in the lives of individuals with SB such as medical needs or daily life activities. The main objective is to conduct a systematic review of the current evidence on the memory deficits in the SB population, including children, adolescents, and adults. Methods: Four databases (PubMed, SCOPUS, Web of Science, and ProQuest) were systematically screened for eligible studies. Results: The present review reveals cognitive difficulties in different memory types among individuals with SB. These deficits, identified in childhood, seem to persist into adulthood. Specifically, impairments are evident in short-term memory, working memory, and long-term memory. The neuropsychological instruments applied in the studies that were included in this systematic review vary, however, most reach the same conclusions. Conclusions: The present findings underscore the importance of incorporating cognitive assessments, particularly those focused on the memory domain, into routine childhood evaluations for individuals with SB. Early identification of these cognitive difficulties allows for the timely implementation of cognitive interventions that could leverage the inherent plasticity of the developing brain, and prevent or delay the onset of these deficits in later adulthood for people with SB, ultimately improving their functionality and quality of life. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

21 pages, 5355 KiB  
Article
Protein Kinase C-Delta Mediates Cell Cycle Reentry and Apoptosis Induced by Amyloid-Beta Peptide in Post-Mitotic Cortical Neurons
by Ming-Hsuan Wu, A-Ching Chao, Yi-Heng Hsieh, You Lien, Yi-Chun Lin and Ding-I Yang
Int. J. Mol. Sci. 2024, 25(17), 9626; https://doi.org/10.3390/ijms25179626 - 5 Sep 2024
Viewed by 180
Abstract
Amyloid-beta peptide (Aβ) is a neurotoxic constituent of senile plaques in the brains of Alzheimer’s disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aβ toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, [...] Read more.
Amyloid-beta peptide (Aβ) is a neurotoxic constituent of senile plaques in the brains of Alzheimer’s disease (AD) patients. The detailed mechanisms by which protein kinase C-delta (PKCδ) contributes to Aβ toxicity is not yet entirely understood. Using fully differentiated primary rat cortical neurons, we found that inhibition of Aβ25-35-induced PKCδ increased cell viability with restoration of neuronal morphology. Using cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) as the respective markers for the G1-, S-, and G2/M-phases, PKCδ inhibition mitigated cell cycle reentry (CCR) and subsequent caspase-3 cleavage induced by both Aβ25-35 and Aβ1-42 in the post-mitotic cortical neurons. Upstream of PKCδ, signal transducers and activators of transcription (STAT)-3 mediated PKCδ induction, CCR, and caspase-3 cleavage upon Aβ exposure. Downstream of PKCδ, aberrant neuronal CCR was triggered by overactivating cyclin-dependent kinase-5 (CDK5) via calpain2-dependent p35 cleavage into p25. Finally, PKCδ and CDK5 also contributed to Aβ25-35 induction of p53-upregulated modulator of apoptosis (PUMA) in cortical neurons. Together, we demonstrated that, in the post-mitotic neurons exposed to Aβs, STAT3-dependent PKCδ expression triggers calpain2-mediated p35 cleavage into p25 to overactivate CDK5, thus leading to aberrant CCR, PUMA induction, caspase-3 cleavage, and ultimately apoptosis. Full article
(This article belongs to the Special Issue Cell Division: A Focus on Molecular Mechanisms)
Show Figures

Figure 1

20 pages, 3168 KiB  
Article
Left Ventricular Systolic Dysfunction in NBCe1-B/C-Knockout Mice
by Clayton T. Brady, Aniko Marshall, Lisa A. Eagler, Thomas M. Pon, Michael E. Duffey, Brian R. Weil, Jennifer K. Lang and Mark D. Parker
Int. J. Mol. Sci. 2024, 25(17), 9610; https://doi.org/10.3390/ijms25179610 - 5 Sep 2024
Viewed by 141
Abstract
Congenital proximal renal tubular acidosis (pRTA) is a rare systemic disease caused by mutations in the SLC4A4 gene that encodes the electrogenic sodium bicarbonate cotransporter, NBCe1. The major NBCe1 protein variants are designated NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A expression is kidney-specific, NBCe1-B is [...] Read more.
Congenital proximal renal tubular acidosis (pRTA) is a rare systemic disease caused by mutations in the SLC4A4 gene that encodes the electrogenic sodium bicarbonate cotransporter, NBCe1. The major NBCe1 protein variants are designated NBCe1-A, NBCe1-B, and NBCe1-C. NBCe1-A expression is kidney-specific, NBCe1-B is broadly expressed and is the only NBCe1 variant expressed in the heart, and NBCe1-C is a splice variant of NBCe1-B that is expressed in the brain. No cardiac manifestations have been reported from patients with pRTA, but studies in adult rats with virally induced reduction in cardiac NBCe1-B expression indicate that NBCe1-B loss leads to cardiac hypertrophy and prolonged QT intervals in rodents. NBCe1-null mice die shortly after weaning, so the consequence of congenital, global NBCe1 loss on the heart is unknown. To circumvent this issue, we characterized the cardiac function of NBCe1-B/C-null (KOb/c) mice that survive up to 2 months of age and which, due to the uninterrupted expression of NBCe1-A, do not exhibit the confounding acidemia of the globally null mice. In contrast to the viral knockdown model, cardiac hypertrophy was not present in KOb/c mice as assessed by heart-weight-to-body-weight ratios and cardiomyocyte cross-sectional area. However, echocardiographic analysis revealed reduced left ventricular ejection fraction, and intraventricular pressure–volume measurements demonstrated reduced load-independent contractility. We also observed increased QT length variation in KOb/c mice. Finally, using the calcium indicator Fura-2 AM, we observed a significant reduction in the amplitude of Ca2+ transients in paced KOb/c cardiomyocytes. These data indicate that congenital, global absence of NBCe1-B/C leads to impaired cardiac contractility and increased QT length variation in juvenile mice. It remains to be determined whether the cardiac phenotype in KOb/c mice is influenced by the absence of NBCe1-B/C from neuronal and endocrine tissues. Full article
Show Figures

Figure 1

24 pages, 3471 KiB  
Article
Novel Pyrrole Derivatives as Multi-Target Agents for the Treatment of Alzheimer’s Disease: Microwave-Assisted Synthesis, In Silico Studies and Biological Evaluation
by Emilio Mateev, Valentin Karatchobanov, Marjano Dedja, Konstantinos Diamantakos, Alexandrina Mateeva, Muhammed Tilahun Muhammed, Ali Irfan, Magdalena Kondeva-Burdina, Iva Valkova, Maya Georgieva and Alexander Zlatkov
Pharmaceuticals 2024, 17(9), 1171; https://doi.org/10.3390/ph17091171 - 4 Sep 2024
Viewed by 433
Abstract
Considering the complex pathogenesis of Alzheimer’s disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding [...] Read more.
Considering the complex pathogenesis of Alzheimer’s disease (AD), the multi-target ligand strategy is expected to provide superior effects for the treatment of the neurological disease compared to the classic single target strategy. Thus, one novel pyrrole-based hydrazide (vh0) and four corresponding hydrazide–hydrazones (vh1-4) were synthesized by applying highly efficient MW-assisted synthetic protocols. The synthetic pathway provided excellent yields and reduced reaction times under microwave conditions compared to conventional heating. The biological assays indicated that most of the novel pyrroles are selective MAO-B inhibitors with IC50 in the nanomolar range (665 nM) and moderate AChE inhibitors. The best dual-acting MAO-B/AChE inhibitor (IC50 hMAOB–0.665 μM; IC50 eeAChE—4.145 μM) was the unsubstituted pyrrole-based hydrazide (vh0). Importantly, none of the novel molecules displayed hMAOA-blocking capacities. The radical-scavenging properties of the compounds were examined using DPPH and ABTS in vitro tests. Notably, the hydrazide vh0 demonstrated the best antioxidant activities. In addition, in silico simulations using molecular docking and MM/GBSA, targeting the AChE (PDB ID: 4EY6) and MAO-B (PDB: 2V5Z), were utilized to obtain active conformations and to optimize the most prominent dual inhibitor (vh0). The ADME and in vitro PAMPA studies demonstrated that vh0 could cross the blood–brain barrier, and it poses good lead-like properties. Moreover, the optimized molecular structures and the frontier molecular orbitals were examined via DFT studies at 6-311G basis set in the ground state. Full article
(This article belongs to the Special Issue Pharmacotherapy of Neurodegeneration Disorders)
Show Figures

Figure 1

30 pages, 3185 KiB  
Review
Glial Cells as Key Regulators in Neuroinflammatory Mechanisms Associated with Multiple Sclerosis
by Styliani Theophanous, Irene Sargiannidou and Kleopas A. Kleopa
Int. J. Mol. Sci. 2024, 25(17), 9588; https://doi.org/10.3390/ijms25179588 - 4 Sep 2024
Viewed by 308
Abstract
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of [...] Read more.
Even though several highly effective treatments have been developed for multiple sclerosis (MS), the underlying pathological mechanisms and drivers of the disease have not been fully elucidated. In recent years, there has been a growing interest in studying neuroinflammation in the context of glial cell involvement as there is increasing evidence of their central role in disease progression. Although glial cell communication and proper function underlies brain homeostasis and maintenance, their multiple effects in an MS brain remain complex and controversial. In this review, we aim to provide an overview of the contribution of glial cells, oligodendrocytes, astrocytes, and microglia in the pathology of MS during both the activation and orchestration of inflammatory mechanisms, as well as of their synergistic effects during the repair and restoration of function. Additionally, we discuss how the understanding of glial cell involvement in MS may provide new therapeutic targets either to limit disease progression or to facilitate repair. Full article
(This article belongs to the Special Issue Molecular Advances and Perspectives in Multiple Sclerosis)
Show Figures

Figure 1

19 pages, 2713 KiB  
Article
Chemical Characterization and Beneficial Effects of Walnut Oil on a Drosophila melanogaster Model of Parkinson’s Disease
by Rossella Avallone, Cecilia Rustichelli, Monica Filaferro and Giovanni Vitale
Molecules 2024, 29(17), 4190; https://doi.org/10.3390/molecules29174190 - 4 Sep 2024
Viewed by 247
Abstract
A nutritional approach could be a promising strategy to prevent or decrease the progression of neurodegenerative disorders such as Parkinson’s disease (PD). The neuroprotective role of walnut oil (WO) was investigated in Drosophila melanogaster treated with rotenone (Rot), as a PD model, WO, [...] Read more.
A nutritional approach could be a promising strategy to prevent or decrease the progression of neurodegenerative disorders such as Parkinson’s disease (PD). The neuroprotective role of walnut oil (WO) was investigated in Drosophila melanogaster treated with rotenone (Rot), as a PD model, WO, or their combination, and compared to controls. WO reduced mortality and improved locomotor activity impairment after 3 and 7 days, induced by Rot. LC-MS analyses of fatty acid levels in Drosophila heads showed a significant increase in linolenic (ALA) and linoleic acid (LA) both in flies fed with the WO-enriched diet and in those treated with the association of WO with Rot. Flies supplemented with the WO diet showed an increase in brain dopamine (DA) level, while Rot treatment significantly depleted dopamine content; conversely, the association of Rot with WO did not modify DA content compared to controls. The greater intake of ALA and LA in the enriched diet enhanced their levels in Drosophila brain, suggesting a neuroprotective role of polyunsaturated fatty acids against Rot-induced neurotoxicity. The involvement of the dopaminergic system in the improvement of behavioral and biochemical parameters in Drosophila fed with WO is also suggested. Full article
(This article belongs to the Special Issue Chemical Analysis of Functional Foods)
Show Figures

Graphical abstract

14 pages, 2783 KiB  
Article
The Effects of Rice Bran on Neuroinflammation and Gut Microbiota in Ovariectomized Mice Fed a Drink with Fructose
by Yu-Wen Chao, Yu-Tang Tung, Suh-Ching Yang, Hitoshi Shirakawa, Li-Han Su, Pei-Yu Loe and Wan-Chun Chiu
Nutrients 2024, 16(17), 2980; https://doi.org/10.3390/nu16172980 - 4 Sep 2024
Viewed by 397
Abstract
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation [...] Read more.
Rice bran, which is abundant in dietary fiber and phytochemicals, provides multiple health benefits. Nonetheless, its effects on neuroinflammation and gut microbiota in postmenopausal conditions are still not well understood. This study investigated the effects of rice bran and/or tea seed oil supplementation in d-galactose-injected ovariectomized (OVX) old mice fed a fructose drink. The combination of d-galactose injection, ovariectomy, and fructose drink administration creates a comprehensive model that simulates aging in females under multiple metabolic stressors, including oxidative stress, estrogen deficiency, and high-sugar diets, and allows the study of their combined impact on metabolic disorders and related diseases. Eight-week-old and 6–8-month-old female C57BL/6 mice were used. The mice were divided into six groups: a sham + young mice, a sham + old mice, an OVX + soybean oil, an OVX + soybean oil with rice bran, an OVX + tea seed oil (TO), and an OVX + TO with rice bran diet group. The OVX groups were subcutaneously injected with d-galactose (100 mg/kg/day) and received a 15% (v/v) fructose drink. The rice bran and tea seed oil supplementation formed 10% of the diet (w/w). The results showed that the rice bran with TO diet increased the number of short-chain fatty acid (SCFA)-producing Clostridia and reduced the number of endotoxin-producing Tannerellaceae, which mitigated imbalances in the gut–liver–brain axis. Rice bran supplementation reduced the relative weight of the liver, levels of hepatic triglycerides and total cholesterol; aspartate transaminase and alanine aminotransferase activity; brain levels of proinflammatory cytokines, including interleukin-1β and tumor necrosis factor-α; and plasma 8-hydroxy-2-deoxyguanosine. This study concludes that rice bran inhibits hepatic fat accumulation, which mitigates peripheral metaflammation and oxidative damage and reduces neuroinflammation in the brain. Full article
(This article belongs to the Special Issue Dietary Fiber, Gut Microbiota and Metabolic Disorder)
Show Figures

Figure 1

Back to TopTop