Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,699)

Search Parameters:
Keywords = by-product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3035 KiB  
Article
A New Method for Growth Factor Enrichment from Dairy Products by Electrodialysis with Filtration Membranes: The Major Impact of Raw Product Pretreatment
by Sabita Kadel, Vladlen Nichka, Jacinthe Thibodeau, Behnaz Razi Parjikolaei and Laurent Bazinet
Int. J. Mol. Sci. 2024, 25(13), 7211; https://doi.org/10.3390/ijms25137211 (registering DOI) - 29 Jun 2024
Viewed by 132
Abstract
This study is focused on fractionation of insulin-like growth factor I (IGF-I) and transforming growth factor-β2 (TGF-β2) using a new electro-based membrane process calledelectrodialysis with filtration membranes (EDFM). Before EDFM, different pretreatments were tested, and four pH conditions (4.25, 3.85, 3.45, and 3.05) [...] Read more.
This study is focused on fractionation of insulin-like growth factor I (IGF-I) and transforming growth factor-β2 (TGF-β2) using a new electro-based membrane process calledelectrodialysis with filtration membranes (EDFM). Before EDFM, different pretreatments were tested, and four pH conditions (4.25, 3.85, 3.45, and 3.05) were used during EDFM. It was demonstrated that a 1:1 dilution of defatted colostrum with deionized water to decrease mineral content followed by the preconcentration of GFs by UF is necessary and allow for these compounds to migrate to the recovery compartment during EDFM. MS analyses confirmed the migration, in low quantity, of only α-lactalbumin (α-la) and β-lactoglobulin (β-lg) from serocolostrum to the recovery compartment during EDFM. Consequently, the ratio of GFs to total protein in recovery compartment compared to that of feed serocolostrum solution was 60× higher at pH value 3.05, the optimal pH favoring the migration of IGF-I and TGF-β2. Finally, these optimal conditions were tested on acid whey to also demonstrate the feasibility of the proposed process on one of the main by-products of the cheese industry; the ratio of GFs to total protein was 2.7× higher in recovery compartment than in feed acid whey solution, and only α-la migrated. The technology of GF enrichment for different dairy solutions by combining ultrafiltration and electrodialysis technologies was proposed for the first time. Full article
(This article belongs to the Special Issue Feature Papers in 'Physical Chemistry and Chemical Physics' 2024)
Show Figures

Figure 1

26 pages, 1215 KiB  
Article
Evaluating the Performance of Yarrowia lipolytica 2.2ab in Solid-State Fermentation under Bench-Scale Conditions in a Packed-Tray Bioreactor
by Alejandro Barrios-Nolasco, Carlos Omar Castillo-Araiza, Sergio Huerta-Ochoa, María Isabel Reyes-Arreozola, José Juan Buenrostro-Figueroa and Lilia Arely Prado-Barragán
Fermentation 2024, 10(7), 344; https://doi.org/10.3390/fermentation10070344 (registering DOI) - 29 Jun 2024
Viewed by 96
Abstract
Solid-State Fermentation (SSF) offers a valuable process for converting agri-food by-products (AFBP) into high-value metabolites, with Yarrowia lipolytica 2.2ab (Yl2.2ab) showing significant potential under laboratory-scale controlled conditions; however, its assessment in larger-scale bioreactor scenarios is needed. This work evaluates Yl2.2ab’s [...] Read more.
Solid-State Fermentation (SSF) offers a valuable process for converting agri-food by-products (AFBP) into high-value metabolites, with Yarrowia lipolytica 2.2ab (Yl2.2ab) showing significant potential under laboratory-scale controlled conditions; however, its assessment in larger-scale bioreactor scenarios is needed. This work evaluates Yl2.2ab’s performance in a bench-scale custom-designed packed-tray bioreactor. Key features of this bioreactor design include a short packing length, a wall-cooling system, and forced aeration, enhancing hydrodynamics and heat and mass transfer within the tray. Preliminary studies under both abiotic and biotic conditions assessed Yl2.2ab’s adaptability to extreme temperature variations. The results indicated effective oxygen transport but poor heat transfer within the tray bed, with Yl2.2ab leading to a maximum growth rate of 28.15 mgx gssdb−1 h−1 and maximum production of proteases of 40.10 U gssdb−1 h−1, even when temperatures at the packed-tray outlet were around 49 °C. Hybrid-based modeling, incorporating Computational Fluid Dynamics (CFD) and Pseudo-Continuous Simulations (PCSs), elucidated that the forced-aeration system successfully maintained necessary oxygen levels in the bed. However, the low thermal conductivity of AFBP posed challenges for heat transfer. The bioreactor design presents promising avenues for scaling up SSF to valorize AFBP using Yl2.2ab’s extremophilic capabilities. Full article
12 pages, 1743 KiB  
Article
Preparation of Transglutaminase-Catalyzed Rice Bran Protein Emulsion Gels as a Curcumin Vehicle
by Jie Liu, Siqi Yang, Jiayuan Liu, Hongzhi Liu and Ziyuan Wang
Foods 2024, 13(13), 2072; https://doi.org/10.3390/foods13132072 (registering DOI) - 29 Jun 2024
Viewed by 96
Abstract
Protein-based emulsion gels have tunable viscoelasticity that can be applied to improve the stability of bioactive ingredients. As the by-product of rice processing, rice bran protein (RBP) has high nutritional value and good digestibility, exhibiting unique value in the development of hypoallergenic formula. [...] Read more.
Protein-based emulsion gels have tunable viscoelasticity that can be applied to improve the stability of bioactive ingredients. As the by-product of rice processing, rice bran protein (RBP) has high nutritional value and good digestibility, exhibiting unique value in the development of hypoallergenic formula. In this study, the effect of transglutaminase (TGase) cross-linking on the physicochemical properties of RBP emulsion gels was investigated. To improve the stability of curcumin against environmental stress, the entrapment efficiency and stability of curcumin in the emulsion gel systems were also evaluated. The results indicated that TGase increased the viscoelastic modulus of RBP emulsion gels, resulting in a solid-like structure. Moreover, the entrapment efficiency of curcumin was increased to 93.73% after adding TGase. The thermal stability and photo-stability of curcumin were enhanced to 79.54% and 85.87%, respectively, compared with the sample without TGase addition. The FTIR results showed that TGase induced the cross-linking of protein molecules and the secondary structure change in RBP. Additionally, SEM observation confirmed that the incorporation of TGase promoted the formation of a compact network structure. This study demonstrated the potential of RBP emulsion gels in protecting curcumin and might provide an alternative strategy to stabilize functional ingredients. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
19 pages, 931 KiB  
Review
Exploitation of Natural By-Products for the Promotion of Healthy Outcomes in Humans: Special Focus on Antioxidant and Anti-Inflammatory Mechanisms and Modulation of the Gut Microbiota
by Luigi Santacroce, Lucrezia Bottalico, Ioannis Alexandros Charitos, Francesca Castellaneta, Elona Gaxhja, Skender Topi, Raffaele Palmirotta and Emilio Jirillo
Antioxidants 2024, 13(7), 796; https://doi.org/10.3390/antiox13070796 (registering DOI) - 29 Jun 2024
Viewed by 121
Abstract
Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products represent the major sources of unwanted by-products. The sustainability, waste recovery, and revalorization of food by-products have been proposed as the main goals of the so-called [...] Read more.
Daily, a lot of food is wasted, and vegetables, fruit, and cereals as well as marine products represent the major sources of unwanted by-products. The sustainability, waste recovery, and revalorization of food by-products have been proposed as the main goals of the so-called circular economy. In fact, food wastes are enriched in by-products endowed with beneficial effects on human health. Grape, olives, vegetables, and rice contain different compounds, such as polyphenols, dietary fibers, polysaccharides, vitamins, and proteins, which exert antioxidant and anti-inflammatory activities, inhibiting pro-oxidant genes and the Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-kβ) pathway, as demonstrated by in vitro and in vivo experiments. Dietary fibers act upon the gut microbiota, expanding beneficial bacteria, which contribute to healthy outcomes. Furthermore, marine foods, even including microalgae, arthropods, and wastes of fish, are rich in carotenoids, polyphenols, polyunsaturated fatty acids, proteins, and chitooligosaccharides, which afford antioxidant and anti-inflammatory protection. The present review will cover the major by-products derived from food wastes, describing the mechanisms of action involved in the antioxidant and anti-inflammatory activities, as well as the modulation of the gut microbiota. The effects of some by-products have also been explored in clinical trials, while others, such as marine by-products, need more investigation for their full exploitation as bioactive compounds in humans. Full article
Show Figures

Figure 1

28 pages, 10556 KiB  
Review
A Review of the Vaporization Behavior of Some Metal Elements in the LPBF Process
by Guanglei Shi, Runze Zhang, Yachao Cao and Guang Yang
Micromachines 2024, 15(7), 846; https://doi.org/10.3390/mi15070846 (registering DOI) - 29 Jun 2024
Viewed by 107
Abstract
Metal additive manufacturing technology has developed by leaps and bounds in recent years; selective laser melting technology is a major form in metal additive manufacturing, and its application scenarios are numerous. For example, it is involved in many fields including aerospace field, automotive, [...] Read more.
Metal additive manufacturing technology has developed by leaps and bounds in recent years; selective laser melting technology is a major form in metal additive manufacturing, and its application scenarios are numerous. For example, it is involved in many fields including aerospace field, automotive, mechanical processing, and the nuclear industry. At the same time, it also indirectly provides more raw materials for all walks of life in our country. However, during the selective laser melting process, due to the action of high-energy-density lasers, the temperature of most metal powders can reach above the vaporization temperature. Light metals with relatively low vaporization temperatures such as magnesium and zinc have more significant vaporization and other behaviors. At the same time, during the metal vaporization process, a variety of by-products are generated, which seriously affect the forming quality and mechanical properties of the workpiece, resulting in the workpiece quality possibly not reaching the expected target. This paper mainly interprets the metal vaporization behavior in the LPBF process and summarizes the international research progress and suppression methods for vaporization. Full article
(This article belongs to the Special Issue Laser Additive Manufacturing of Metallic Materials, 2nd Edition)
Show Figures

Figure 1

14 pages, 2384 KiB  
Article
Plant Cadmium Toxicity and Biomarkers Are Differentially Modulated by Degradable and Nondegradable Microplastics in Soil
by Jun Liu, Zihan Yu, Ningning Song, Haiying Zong, Fangli Wang, Rui Guo and Shaojing Li
Toxics 2024, 12(7), 473; https://doi.org/10.3390/toxics12070473 (registering DOI) - 29 Jun 2024
Viewed by 112
Abstract
The impact of microplastics (MPs) as emerging pollutants on plant heavy metal toxicity has been extensively reported in vegetable–soil systems over recent years. However, little attention has been given to cultivar variations between degradable and non-degradable MPs. This study investigated the effects of [...] Read more.
The impact of microplastics (MPs) as emerging pollutants on plant heavy metal toxicity has been extensively reported in vegetable–soil systems over recent years. However, little attention has been given to cultivar variations between degradable and non-degradable MPs. This study investigated the effects of degradable polylactic acid (PLA) and nondegradable polypropylene (PP) MPs on plant growth and biomarker (malonaldehyde (MDA) and antioxidant enzymes) performance in Cd-contaminated arable soil. The results show that both types of MPs significantly impacted plant biomass and biomarker contents across all three Cd levels. The degree of impact was significantly sensitive to both the type and dose of MPs, as they reduced the soil pH and cation exchange capacity (CEC) while increasing soil dissolved organic carbon (DOC), microbial biomass carbon, and nitrogen. PP exhibited greater root growth inhibition and phytotoxicity at higher doses of 1% and 5% compared to PLA. Specifically, the highest MDA contents were 1.44 and 2.20 mmol mg−1 protein for shoots and roots, respectively, in the 5% PLA treatment under a 10.1 mg kg−1 Cd level, which were 1.22 and 1.18 times higher than those in corresponding treatments of 5% PP. Overall, PLA had less significant effects on plant phytotoxicity, Cd availability, and soil properties compared to PP. Regression pathway analysis indicated that MPs increased shoot Cd uptake by altering both soil physical–chemical and microbial characteristics. Among the soil variables, pH, CEC, and Cd bioavailability were found to play vital roles. Yet, no single variable acts alone in the mechanism for plant Cd uptake. PLAs are suggested to replace conventional non-biodegradable plastics to control environmental MP pollution, particularly in agricultural systems with higher Cd contamination. However, the long-term effects of the by-products generated during the biodegradation process require further investigation. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

24 pages, 22870 KiB  
Article
Maximizing N-Nitrosamine Rejection via RO Membrane Plugging with Hexylamine and Hexamethylenediamine
by Silvia Morović, Katarina Marija Drmić, Sandra Babić and Krešimir Košutić
Nanomaterials 2024, 14(13), 1117; https://doi.org/10.3390/nano14131117 (registering DOI) - 28 Jun 2024
Viewed by 195
Abstract
The rapid expansion of urban areas and the increasing demand for water resources necessitate substantial investments in technologies that enable the reuse of municipal wastewater for various purposes. Nonetheless, numerous challenges remain, particularly regarding disinfection by-products (DBPs), especially carcinogenic compounds such as N [...] Read more.
The rapid expansion of urban areas and the increasing demand for water resources necessitate substantial investments in technologies that enable the reuse of municipal wastewater for various purposes. Nonetheless, numerous challenges remain, particularly regarding disinfection by-products (DBPs), especially carcinogenic compounds such as N-nitrosamines (NTRs). To tackle the ongoing issues associated with reverse osmosis (RO) membranes, this study investigated the rejection of NTRs across a range of commercially available RO membranes. In addition, the research aimed to improve rejection rates by integrating molecular plugs into the nanopores of the polyamide (PA) layer. Hexylamine (HEX) and hexamethylenediamine (HDMA), both linear chain amines, have proven to be effective as molecular plugs for enhancing the removal of NTRs. Given the environmental and human health concerns associated with linear amines, the study also aimed to assess the feasibility of diamine molecules as potential alternatives. The application of molecular plugs led to changes in pore size distribution (PSD) and effective pore number, resulting in a decrease in membrane permeability (from 5 to 33%), while maintaining levels suitable for RO processes. HEX and HDMA exhibited a positive effect on NTR rejection with ACM1, ACM5 and BW30LE membranes. In particular, NDMA rejection, the smallest molecule of the tested NTRs, with ACM1 was improved by 65.5% and 70.6% after treatment with HEX and HDMA, respectively. Full article
15 pages, 903 KiB  
Review
New Origins of Yeast, Plant and Bacterial-Derived Extracellular Vesicles to Expand and Advance Compound Delivery
by María Fernández-Rhodes, Cristina Lorca, Julia Lisa, Iolanda Batalla, Alfredo Ramos-Miguel, Xavier Gallart-Palau and Aida Serra
Int. J. Mol. Sci. 2024, 25(13), 7151; https://doi.org/10.3390/ijms25137151 (registering DOI) - 28 Jun 2024
Viewed by 162
Abstract
Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant [...] Read more.
Extracellular vesicles (EVs) constitute a sophisticated molecular exchange mechanism highly regarded for their potential as a next-generation platform for compound delivery. However, identifying sustainable and biologically safe sources of EVs remains a challenge. This work explores the emergence of novel sources of plant and bacterial-based EVs, such as those obtained from food industry by-products, known as BP-EVs, and their potential to be used as safer and biocompatible nanocarriers, addressing some of the current challenges of the field. These novel sources exhibit remarkable oral bioavailability and biodistribution, with minimal cytotoxicity and a selective targeting capacity toward the central nervous system, liver, and skeletal tissues. Additionally, we review the ease of editing these recently uncovered nanocarrier-oriented vesicles using common EV editing methods, examining the cargo-loading processes applicable to these sources, which involve both passive and active functionalization methods. While the primary focus of these novel sources of endogenous EVs is on molecule delivery to the central nervous system and skeletal tissue based on their systemic target preference, their use, as reviewed here, extends beyond these key applications within the biotechnological and biomedical fields. Full article
14 pages, 529 KiB  
Article
The Effects of Different Doses of Canthaxanthin in the Diet of Laying Hens on Egg Quality, Physical Characteristics, Metabolic Mechanism, and Offspring Health
by Junnan Zhang, Zhiqiong Mao, Jiangxia Zheng, Congjiao Sun and Guiyun Xu
Int. J. Mol. Sci. 2024, 25(13), 7154; https://doi.org/10.3390/ijms25137154 (registering DOI) - 28 Jun 2024
Viewed by 100
Abstract
Currently, there is a dearth of in-depth analysis and research on the impact of canthaxanthin on the production performance, egg quality, physical characteristics, and offspring health of laying hens. Furthermore, the metabolic mechanism of cantharidin in the body remains unclear. Therefore, to solve [...] Read more.
Currently, there is a dearth of in-depth analysis and research on the impact of canthaxanthin on the production performance, egg quality, physical characteristics, and offspring health of laying hens. Furthermore, the metabolic mechanism of cantharidin in the body remains unclear. Therefore, to solve the above issues in detail, our study was conducted with a control group (C group), a low-dose canthaxanthin group (L group), and a high-dose canthaxanthin group (H group), each fed for a period of 40 days. Production performance was monitored during the experiment, in which L and H groups showed a significant increase in ADFI. Eggs were collected for quality analysis, revealing no significant differences in qualities except for yolk color (YC). The YC of the C group almost did not change, ranging from 6.08 to 6.20; however, the trend in YC change in other groups showed an initial intense increase, followed by a decrease, and eventually reached dynamic equilibrium. By detecting the content of canthaxanthin in the yolk, the YC change trend was found to be correlated with canthaxanthin levels in the yolk. The content of unsaturated fatty acid increased slightly in L and H groups. Following the incubation period, the physical characteristics and blood biochemical indices of chicks were evaluated. It was observed that the shank color of chicks in the L and H groups was significantly higher than that in the C group at birth. However, by the 35th day, there were no significant differences in shank color among the three groups. Further investigation into the metabolic mechanism involving canthaxanthin revealed that the substance underwent incomplete metabolism upon entering the body, resulting in its accumulation as well as metabolic by-product accumulation in the yolk. In summary, this study highlighted the importance of understanding canthaxanthin’s role in production performance, egg quality, and offspring health, providing valuable insights for breeders to optimize feeding strategies. Full article
(This article belongs to the Special Issue Advances in Animal Models in Biomedical Research, 2nd Edition)
25 pages, 3083 KiB  
Article
Integrating Natural Deep Eutectic Solvents into Nanostructured Lipid Carriers: An Industrial Look
by Luísa Schuh, Luane Almeida Salgado, Tathyana Benetis Piau, Ariane Pandolfo Silveira, Caio Leal, Luís Felipe Romera, Marina Arantes Radicchi, Mac-Kedson Medeiros Salviano Santos, Leila Falcao, Cesar Koppe Grisolia, Eliana Fortes Gris, Luis Alexandre Muehlmann, Sônia Nair Báo and Victor Carlos Mello
Pharmaceuticals 2024, 17(7), 855; https://doi.org/10.3390/ph17070855 (registering DOI) - 28 Jun 2024
Viewed by 178
Abstract
The industries are searching for greener alternatives for their productions due to the rising concern about the environment and creation of waste and by-products without industrial utility for that specific line of products. This investigation describes the development of two stable nanostructured lipid [...] Read more.
The industries are searching for greener alternatives for their productions due to the rising concern about the environment and creation of waste and by-products without industrial utility for that specific line of products. This investigation describes the development of two stable nanostructured lipid carriers (NLCs): one is the formulation of a standard NLC, and the other one is the same NLC formulation associated with a natural deep eutectic solvent (NaDES). The research presents the formulation paths of the NLCs through completeness, which encompass dynamic light scattering (DLS), zeta potential tests, and pH. Transmission electron microscopy (TEM) and confocal microscopy were performed to clarify the morphology. Cytotoxicity tests with zebrafish were realized, and the results are complementary to the in vitro outcomes reached with fibroblast L132 tests by the MTT technique and the zymography test. Infrared spectroscopy and X-ray diffractometry tests elucidated the link between the physicochemical characteristics of the formulation and its behavior and properties. Different cooling techniques were explored to prove the tailorable properties of the NLCs for any industrial applications. In conclusion, the compiled results show the successful formulation of new nanocarriers based on a sustainable, eco-friendly, and highly tailorable technology, which presents low cytotoxic potential. Full article
(This article belongs to the Section Natural Products)
20 pages, 904 KiB  
Article
Antioxidant, Anti-Inflammation, and Melanogenesis Inhibition of Sang 5 CMU Rice (Oryza sativa) Byproduct for Cosmetic Applications
by Pichchapa Linsaenkart, Warintorn Ruksiriwanich, Anurak Muangsanguan, Sarana Rose Sommano, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Juan M. Castagnini, Romchat Chutoprapat and Korawinwich Boonpisuttinant
Plants 2024, 13(13), 1795; https://doi.org/10.3390/plants13131795 (registering DOI) - 28 Jun 2024
Viewed by 125
Abstract
Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its [...] Read more.
Prolonged exposure to environmental oxidative stress can result in visible signs of skin aging such as wrinkles, hyperpigmentation, and thinning of the skin. Oryza sativa variety Sang 5 CMU, an inbred rice cultivar from northern Thailand, contains phenolic and flavonoid compounds in its bran and husk portions that are known for their natural antioxidant properties. In this study, we evaluated the cosmetic properties of crude extracts from rice bran and husk of Sang 5 CMU, focusing on antioxidant, anti-inflammatory, anti-melanogenesis, and collagen-regulating properties. Our findings suggest that both extracts possess antioxidant potential against DPPH, ABTS radicals, and metal ions. Additionally, they could downregulate TBARS levels from 125% to 100% of the control, approximately, while increasing the expression of genes related to the NRF2-mediated antioxidant pathway, such as NRF2 and HO-1, in H2O2-induced human fibroblast cells. Notably, rice bran and husk extracts could increase mRNA levels of HO-1 more greatly than the standard L-ascorbic acid, by about 1.29 and 1.07 times, respectively. Furthermore, the crude extracts exhibited anti-inflammatory activity by suppressing nitric oxide production in both mouse macrophage and human fibroblast cells. Specifically, the bran and husk extracts inhibited the gene expression of the inflammatory cytokine IL-6 in LPS-induced inflammation in fibroblasts. Moreover, both extracts demonstrated potential for inhibiting melanin production and intracellular tyrosinase activity in human melanoma cells by decreasing the expression of the transcription factor MITF and the pigmentary genes TYR, TRP-1, and DCT. They also exhibit collagen-stimulating effects by reducing MMP-2 expression in H2O2-induced fibroblasts from 135% to 80% of the control, approximately, and increasing the gene associated with type I collagen production, COL1A1. Overall, the rice bran and husk extracts of Sang 5 CMU showed promise as effective natural ingredients for cosmetic applications. Full article
26 pages, 487 KiB  
Review
Neurodevelopmental Disorders Associated with Gut Microbiome Dysbiosis in Children
by Alejandro Borrego-Ruiz and Juan J. Borrego
Children 2024, 11(7), 796; https://doi.org/10.3390/children11070796 (registering DOI) - 28 Jun 2024
Viewed by 75
Abstract
The formation of the human gut microbiome initiates in utero, and its maturation is established during the first 2–3 years of life. Numerous factors alter the composition of the gut microbiome and its functions, including mode of delivery, early onset of breastfeeding, exposure [...] Read more.
The formation of the human gut microbiome initiates in utero, and its maturation is established during the first 2–3 years of life. Numerous factors alter the composition of the gut microbiome and its functions, including mode of delivery, early onset of breastfeeding, exposure to antibiotics and chemicals, and maternal stress, among others. The gut microbiome–brain axis refers to the interconnection of biological networks that allow bidirectional communication between the gut microbiome and the brain, involving the nervous, endocrine, and immune systems. Evidence suggests that the gut microbiome and its metabolic byproducts are actively implicated in the regulation of the early brain development. Any disturbance during this stage may adversely affect brain functions, resulting in a variety of neurodevelopmental disorders (NDDs). In the present study, we reviewed recent evidence regarding the impact of the gut microbiome on early brain development, alongside its correlation with significant NDDs, such as autism spectrum disorder, attention-deficit/hyperactivity disorder, Tourette syndrome, cerebral palsy, fetal alcohol spectrum disorders, and genetic NDDs (Rett, Down, Angelman, and Turner syndromes). Understanding changes in the gut microbiome in NDDs may provide new chances for their treatment in the future. Full article
14 pages, 514 KiB  
Article
Analysis of the Variation in Antioxidant Activity and Chemical Composition upon the Repeated Thermal Treatment of the By-Product of the Red Ginseng Manufacturing Process
by Yu-Dan Wang, Hui-E Zhang, Lu-Sheng Han, Gen-Yue Li, Kai-Li Yang, Yuan Zhao, Jia-Qi Wang, Yang-Bin Lai, Chang-Bao Chen and En-Peng Wang
Molecules 2024, 29(13), 3092; https://doi.org/10.3390/molecules29133092 (registering DOI) - 28 Jun 2024
Viewed by 152
Abstract
Steamed ginseng water (SGW) is a by-product of the repeated thermal processing of red ginseng, which is characterized by a high bioactive content, better skin care activity, and a large output. However, its value has been ignored, resulting in environmental pollution and resource [...] Read more.
Steamed ginseng water (SGW) is a by-product of the repeated thermal processing of red ginseng, which is characterized by a high bioactive content, better skin care activity, and a large output. However, its value has been ignored, resulting in environmental pollution and resource waste. In this study, UHPLC-Q-Exactive-MS/MS liquid chromatography–mass spectrometry and multivariate statistical analysis were conducted to characterize the compositional features of the repeated thermal-treated SGW. The antioxidant activity (DPPH, ABTS, FRAP, and OH) and chemical composition (total sugars, total saponins, and reducing and non-reducing sugars) were comprehensively evaluated based on the entropy weighting method. Four comparison groups (groups 1 and 3, groups 1 and 5, groups 1 and 7, and groups 1 and 9) were screened for 37 important common difference markers using OPLS-DA analysis. The entropy weight method was used to analyze the weights of the indicators; the seventh SGW sample was reported to have a significant weight. The results of this study suggest that heat treatment time and frequency can be an important indicator value for the quality control of SGW cycling operations, which have great potential in antioxidant products. Full article
20 pages, 1312 KiB  
Article
Effect of Pretreatments on the Chemical, Bioactive and Physicochemical Properties of Cinnamomum camphora Seed Kernel Extracts
by Pengbo Wang, Zhixin Wang, Manqi Zhang, Xianghui Yan, Jiaheng Xia, Junxin Zhao, Yujing Yang, Xiansi Gao, Qifang Wu, Deming Gong, Ping Yu and Zheling Zeng
Foods 2024, 13(13), 2064; https://doi.org/10.3390/foods13132064 (registering DOI) - 28 Jun 2024
Viewed by 136
Abstract
Cinnamomum camphora seed kernels (CCSKs) are rich in phytochemicals, especially plant extracts. Phytochemicals play a vital role in therapy due to their strong antioxidant and anti-inflammatory activities. Extracts from CCSK can be obtained through multiple steps, including pretreatment, extraction and purification, and [...] Read more.
Cinnamomum camphora seed kernels (CCSKs) are rich in phytochemicals, especially plant extracts. Phytochemicals play a vital role in therapy due to their strong antioxidant and anti-inflammatory activities. Extracts from CCSK can be obtained through multiple steps, including pretreatment, extraction and purification, and the purpose of pretreatment is to separate the oil from other substances in CCSKs. However, C. camphora seed kernel extracts (CKEs) were usually considered as by-products and discarded, and their potential bioactive values were underestimated. Additionally, little has been known about the effect of pretreatment on CKE. This study aimed to investigate the effects of pretreatment methods (including the solvent extraction method, cold pressing method, aqueous extraction method and sub-critical fluid extraction method) on the extraction yields, phytochemical profiles, volatile compounds and antioxidant capacities of different CKE samples. The results showed that the CKE samples were rich in phenolic compounds (15.28–20.29%) and alkaloids (24.44–27.41%). The extraction yield, bioactive substances content and in vitro antioxidant capacity of CKE pretreated by the sub-critical fluid extraction method (CKE-SCFE) were better than CKEs obtained by other methods. CKE pretreated by the solvent extraction method (CKE-SE) showed the best lipid emulsion protective capacity. Moreover, the volatile substances composition of the CKE samples was greatly influenced by the pretreatment method. The results provided a fundamental basis for evaluating the quality and nutritional value of CKE and increasing the economic value of by-products derived from CCSK. Full article
(This article belongs to the Section Plant Foods)
13 pages, 1837 KiB  
Article
In Vitro Multi-Bioactive Potential of Enzymatic Hydrolysis of a Non-Toxic Jatropha curcas Cake Protein Isolate
by Olloqui Enrique Javier, González-Rodríguez Maurilio Alejandro, Contreras-López Elizabeth, Pérez-Flores Jesús Guadalupe, Pérez-Escalante Emmanuel, Moreno-Seceña Juan Carlos and Martínez-Carrera Daniel
Molecules 2024, 29(13), 3088; https://doi.org/10.3390/molecules29133088 (registering DOI) - 28 Jun 2024
Viewed by 128
Abstract
The Jatropha curcas cake, a protein-rich by-product of biofuel production, was the subject of our study. We identified and quantified the ACE inhibitory, antioxidant, and antidiabetic activities of bioactive peptides from a Jatropha curcas L. var Sevangel protein isolate. The protein isolate (20.44% [...] Read more.
The Jatropha curcas cake, a protein-rich by-product of biofuel production, was the subject of our study. We identified and quantified the ACE inhibitory, antioxidant, and antidiabetic activities of bioactive peptides from a Jatropha curcas L. var Sevangel protein isolate. The protein isolate (20.44% recovered dry matter, 38.75% protein content, and 34.98% protein yield) was subjected to two enzyme systems for hydrolysis: alcalase (PEJA) and flavourzyme (PEJF), recording every 2 h until 8 h had passed. The highest proteolytic capacity in PEJA was reached at 2 h (4041.38 ± 50.89), while in PEJF, it was reached at 6 h (3435.16 ± 59.31). Gel electrophoresis of the PEJA and PEJF samples showed bands corresponding to peptides smaller than 10 kDa in both systems studied. The highest values for the antioxidant capacity (DPPH) were obtained at 4 h for PEJA (56.17 ± 1.14), while they were obtained at 6 h for PEJF (26.64 ± 0.52). The highest values for the antihypertensive capacity were recorded at 6 h (86.46 ± 1.85) in PEJF. The highest antidiabetic capacity obtained for PEJA and PEJF was observed at 6 h, 68.86 ± 8.27 and 52.75 ± 2.23, respectively. This is the first report of their antidiabetic activity. Notably, alcalase hydrolysate outperformed flavourzyme hydrolysate and the cereals reported in other studies, confirming its better multi-bioactivity. Full article
(This article belongs to the Special Issue Bioactive Compounds from Functional Foods, 2nd Edition)
Back to TopTop