Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (154)

Search Parameters:
Keywords = cavitation erosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 8090 KiB  
Article
Corrosion Failure Mechanism of 2507 Duplex Stainless Steel Circulation Pump Impeller
by Weihua Wang, Chengbao Hou, Jiaxing Li, Mingxiao Shi, Jiugong Chen and Gong Qian
Processes 2024, 12(9), 1897; https://doi.org/10.3390/pr12091897 (registering DOI) - 4 Sep 2024
Abstract
The circulation pump in a distillation column is a core device in a material circulation system, and its stable operation is crucial for the production process. The impeller of the circulation pump is prone to failure due to long-term contact with corrosive media, [...] Read more.
The circulation pump in a distillation column is a core device in a material circulation system, and its stable operation is crucial for the production process. The impeller of the circulation pump is prone to failure due to long-term contact with corrosive media, and subjected to a large amount of material erosion, which severely challenges the safety control of the distillation reaction system. Focusing on the corrosion failure phenomenon of circulation pump impellers, the failure mechanism was studied by means of macroscopic inspection, chemical composition analysis, metallographic examination, scanning electron microscopy (SEM), and energy dispersive spectrometer (EDS). Results indicated that the corrosion of circulation pump impellers was the result of the combined effects of surface wear, cavitation, and halogen element corrosion. The medium in contact with the impeller contained chloride ions, fluoride ions, and solid particles. During circulation pump operation, a low-pressure zone formed at the inlet, generating numerous water vapor bubbles. These bubbles burst in the high-pressure zone, creating highly localized impact forces. Combined with the abrasive action of solid particles on the impeller surface, this led to the destruction of the passivation film and the formation of numerous small pits. These corrosion pits and the surrounding environment formed micro-galvanic corrosion cells with small anodes and large cathodes. Under the accelerated corrosion caused by fluoride and chloride ions, the corrosion process towards the inner wall of the impeller intensified, ultimately leading to impeller failure. This study clarified the corrosion failure mechanism and its root causes in the 2507 duplex stainless steel circulation pump impeller and proposes corresponding improvement recommendations, providing a scientific basis for preventing similar issues from occurring in the future. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

32 pages, 9516 KiB  
Article
Numerical Simulation Study on Hydraulic Characteristics and Wear of Eccentric Semi-Ball Valve under Sediment Laden Water Flow
by Yixiong Cheng, Yuan Tang, Jianhua Wu, Hua Jin and Lixia Shen
Sustainability 2024, 16(17), 7266; https://doi.org/10.3390/su16177266 - 23 Aug 2024
Viewed by 399
Abstract
To investigate the variation laws of various hydraulic parameters and internal fluid flow patterns of eccentric semi-ball valves under different boundary conditions, the DPM model was used to numerically simulate the eccentric semi-ball valve based on Fluent 2021 R1 software. The flow velocity, [...] Read more.
To investigate the variation laws of various hydraulic parameters and internal fluid flow patterns of eccentric semi-ball valves under different boundary conditions, the DPM model was used to numerically simulate the eccentric semi-ball valve based on Fluent 2021 R1 software. The flow velocity, pressure distribution, and erosion wear rate on the valve wall were simulated under different combinations of opening, inlet flow velocity, and sediment concentration conditions, and hydraulic parameters such as drag coefficient, flow coefficient, and cavitation coefficient were calculated. The results show that as the opening of the eccentric semi-ball valve increases, the valve drag coefficient decreases, the flow coefficient increases, the cavitation coefficient increases, and the degree of cavitation decreases. The flow velocity in the high-velocity zone at both ends of the valve plate decreases, and the gradient of water flow velocity passing through the valve decreases. The area of the low-velocity zone at the rear of the valve plate decreases, and the vortex phenomenon gradually weakens; as the sediment content in the water increases, the valve drag coefficient increases, the flow coefficient decreases, and the cavitation coefficient first increases and then decreases. The maximum flow velocity of the pipeline decreases faster and faster, causing an increase in pressure gradient in the flow area and drastic changes. This results in higher pressure on the pipe wall near the valve plate, especially a significant increase in negative pressure; As the inlet flow rate increases, the valve drag coefficient decreases, the flow coefficient increases, and the cavitation coefficient gradually decreases. The flow velocity of the water passing through the valve increases, and the low-pressure area downstream of the valve plate increases. The pressure gradient at both ends of the valve port increases significantly from small to large, and the positive pressure upstream of the valve plate gradually increases. The force of the water flow on the valve plate is large, causing friction between the valve stem and the valve body, which is not conducive to long-term operation. With the increase in inlet flow rate, the maximum wear amount and wear range of the valve plate have significantly increased, and erosion wear is mainly distributed in point blocks at the edge of the valve plate. This study can provide certain references and solutions for the key technology research of eccentric semi-ball valves and assess the performance indicators of the operation being maintained. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

22 pages, 18002 KiB  
Article
Ultrasonic Cavitation Erosion Behavior of GX40CrNiSi25-20 Cast Stainless Steel through Yb-YAG Surface Remelting
by Daniela Cosma, Ion Mitelea, Ilare Bordeașu, Ion Dragoș Uțu and Corneliu Marius Crăciunescu
Materials 2024, 17(17), 4180; https://doi.org/10.3390/ma17174180 - 23 Aug 2024
Viewed by 271
Abstract
Laser beam remelting is a relatively simple and highly effective technique for the physical modification of surfaces to improve resistance to cavitation erosion. In this study, we investigated the effect of laser remelting on the surface of cast stainless steel with 0.40% C, [...] Read more.
Laser beam remelting is a relatively simple and highly effective technique for the physical modification of surfaces to improve resistance to cavitation erosion. In this study, we investigated the effect of laser remelting on the surface of cast stainless steel with 0.40% C, 25% Cr, 20% Ni, and 1.5% Si on cavitation erosion behavior in tap water. The investigation was conducted using a piezoceramic crystal vibrator apparatus. Base laser beam parameters were carefully selected to result in a defect-free surface (no porosity, material burn, cracks) with hardness capable of generating better resistance to cavitation erosion. The experimental results were compared with those of the reference material. Surface morphology and microstructure evolution after cavitation tests were analyzed using an optical metallographic microscope (OM), scanning electron microscope (SEM), and hardness tests to explore the mechanism of improving surface degradation resistance. The conducted research demonstrated that surfaces modified by laser remelting exhibit a 4.8–5.1 times greater increase in cavitation erosion resistance due to the homogenization of chemical composition and refinement of the microstructure, while maintaining the properties of the base material. Full article
Show Figures

Figure 1

15 pages, 4681 KiB  
Article
Behavior of Retained Austenite and Carbide Phases in AISI 440C Martensitic Stainless Steel under Cavitation
by Silvio Francisco Brunatto, Rodrigo Perito Cardoso and Leonardo Luis Santos
Eng 2024, 5(3), 1980-1994; https://doi.org/10.3390/eng5030105 - 17 Aug 2024
Viewed by 567
Abstract
In this work emphasis was given to determine the evolution of the retained austenite phase fraction via X-ray diffractometry technique in the as-hardened AISI 440C martensitic stainless steel surface subjected to cavitation for increasing test times. Scanning electron microscopy results confirmed the preferential [...] Read more.
In this work emphasis was given to determine the evolution of the retained austenite phase fraction via X-ray diffractometry technique in the as-hardened AISI 440C martensitic stainless steel surface subjected to cavitation for increasing test times. Scanning electron microscopy results confirmed the preferential carbide phase removal along the prior/parent austenite grain boundaries for the first cavitation test times on the polished sample surface during the incubation period. Results suggest that the strain-induced martensitic transformation of the retained austenite would be assisted by the elastic deformation and intermittent relaxation action of the harder martensitic matrix on the austenite crystals through the interfaces between both phases. In addition, an estimation of the stacking fault energy value on the order of 15 mJ m−2 for the retained austenite phase made it possible to infer that mechanical twinning and strain-induced martensite formation mechanisms could be effectively presented in the studied case. Finally, incubation period, maximum erosion rate, and erosion resistance on the order of 7.0 h, 0.30 mg h−1, and 4.8 h μm−1, respectively, were determined for the as-hardened AISI 440C MSS samples investigated here. Full article
Show Figures

Figure 1

13 pages, 9997 KiB  
Article
The Influence of Variable Plasma Welding Parameters on Weld Geometry, Dilution Factor, and Microhardness
by Sylwia Bazychowska, Katarzyna Panasiuk and Robert Starosta
Appl. Sci. 2024, 14(16), 7248; https://doi.org/10.3390/app14167248 - 17 Aug 2024
Viewed by 480
Abstract
Weld surfacing is the process of applying a layer of metal to the surface of metal objects by simultaneously melting the substrate. As a result of this process, the metal content of the padding weld can be as high as several tens of [...] Read more.
Weld surfacing is the process of applying a layer of metal to the surface of metal objects by simultaneously melting the substrate. As a result of this process, the metal content of the padding weld can be as high as several tens of percents. It is a method used to regenerate machine parts and improve the properties of the surface layer, increasing its resistance to abrasion, corrosion, erosion, and cavitation. It also supports the repair and creation of permanent protective coatings in the engineering, automotive, energy, and aerospace industries. This makes it possible to repair damaged parts instead of completely replacing them, saving time and production costs. Plasma surfacing technology is used for components that require high hardness and corrosion resistance under various environmental conditions. Plasma wire surfacing is not sufficiently presented and described in the current literature, which creates problems in determining the appropriate process parameters. The influence of variable plasma surfacing parameters on steel C45 significantly affects surfacing weld geometry, the dilution factor, and microhardness. Higher currents can increase the dilution factor, integrating more base metal into the weld pool, which may alter the chemical composition and mechanical properties of the weld. Variations in surfacing speed and heat input also affect the microhardness of the surfaced joint, with higher heat inputs potentially leading to softer welds due to slower cooling rates. Optimizing these parameters is essential to achieving desired surfacing weld characteristics and ensuring the structural integrity of C45 steel joints. This paper presents the influence of varying plasma surfacing parameters on the surfacing geometry, the dilution factor, and microhardness. The tests were carried out on a Panasonic TM-1400 GIII automated surfacing machine with CastoMag 45554S solid wire as the filler material. Flat bars of C45 steel were prepared, and then the variable parameters of the surfacing process were developed. Tests were carried out to determine the dilution factor, followed by microhardness measurements. The results showed a significant dependence of the effect of the parameters on the surfacing geometry and the dilution factor. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

17 pages, 6251 KiB  
Article
Effects of Materials and Riblets on Erosion Mitigation Induced by Multiple Collapses of Cavitation Bubbles
by Ebrahim Kadivar, Sasan Rezaee, Udo Löschner and Ould el Moctar
Appl. Sci. 2024, 14(15), 6452; https://doi.org/10.3390/app14156452 - 24 Jul 2024
Viewed by 448
Abstract
The current research investigates the effects of materials and riblets on cavitation-induced erosion morphology, depth, and cross-sectional area through experimental approaches. To achieve these aims, the erosion of pure aluminum (1xxxAl or Al) and alpha brass (CuZn37 or CZ108), in the presence and [...] Read more.
The current research investigates the effects of materials and riblets on cavitation-induced erosion morphology, depth, and cross-sectional area through experimental approaches. To achieve these aims, the erosion of pure aluminum (1xxxAl or Al) and alpha brass (CuZn37 or CZ108), in the presence and absence of bio-inspired sawtooth riblets, was examined after exposure to multiple collapses of single cavitation bubbles with a wall distance of 1.8 (dimensionless). The results indicate that the erosion morphology resembles a rounded cone with a circular cross-section. Brass provides 21.6% more erosion resistance compared to that of Al in terms of material properties. Furthermore, the erosion for both Al (depth by 3.8% and width by 18.3%) and brass (depth by 7.9% and width by 27.4%) decreases in the presence of riblets compared to the results for flat surfaces. The greater erosion resistance of brass compared to Al is attributed to the superior mechanical stability of brass, making it a potentially suitable alloy for use in propellers and hulls in the shipping industry. In summary, the results reveal that riblet-equipped materials with high mechanical durability are promising erosion-resistant materials for the shipping industry. However, the potential for chemical reactions in a cathodic environment should be addressed to provide a comprehensive perspective in regards to reducing corrosion intensity. Full article
(This article belongs to the Special Issue Advances in Active and Passive Techniques for Fluid Flow Manipulation)
Show Figures

Figure 1

25 pages, 6854 KiB  
Article
Unified Paradigm of Start-Up Strategy for Pumped Storage Hydropower Stations: Variable Universe Fuzzy PID Controller and Integrated Operation Optimization
by Baonan Liu, Mengyao Li, Yuan Yuan and Jie Liu
Energies 2024, 17(13), 3293; https://doi.org/10.3390/en17133293 - 4 Jul 2024
Viewed by 560
Abstract
A pumped storage unit is a crucial guarantee in the pursuit of increased clean energy, especially in the progressively severe circumstances of low energy utilization and poor coordination of the integration of volatile renewable energy. However, due to their bidirectional operation design, pumped [...] Read more.
A pumped storage unit is a crucial guarantee in the pursuit of increased clean energy, especially in the progressively severe circumstances of low energy utilization and poor coordination of the integration of volatile renewable energy. However, due to their bidirectional operation design, pumped turbines possess an S-characteristic attribution, wherein the unsteady phenomena of unit vibration, pressure pulsation, and cavitation erosion happen during the start-up process and greatly impact the stable connection to the power grid. Therefore, a systematic study concentrating on an optimal unified paradigm of a start-up strategy for a pumped storage plant is conducted. Model construction, effective analysis, controller design, and collaborative optimization are sequentially expounded. Firstly, a refined start-up nonlinear model of a pumped storage plant with complex boundary conditions is constructed, wherein the delay time of frequency measurement, saturation, and dead zone features are comprehensively taken account. Furthermore, a variable universe fuzzy PID controller and its operation laws are proposed and specifically designed for the speed governing system of the pumped storage plant; the control quality and anti-disturbance performance are verified by a no-load frequency disturbance experiment. On this basis, taking speed overshoot for stationarity and speed rising time for rapidity, a novel open–close loop collaborative fuzzy control strategy is proposed with rotational speed feedback and a variable universe fuzzy PID control. The experiment results show that the proposed unified paradigm has better control performance in various performance indexes, and more balanced control quality and dynamic performance under various complex start-up conditions, which has great application value for ensuring the unit’s timely response to the power grid regulation task and improving the operating stability of the power system. Full article
Show Figures

Figure 1

19 pages, 3121 KiB  
Article
The Effect of Fuel Quality on Cavitation Phenomena in Common-Rail Diesel Injector—A Numerical Study
by Luka Kevorkijan, Ignacijo Biluš, Eloisa Torres-Jiménez and Luka Lešnik
Sustainability 2024, 16(12), 5074; https://doi.org/10.3390/su16125074 - 14 Jun 2024
Viewed by 587
Abstract
Plastic is one of the most widely used materials worldwide. The problem with plastic arises when it becomes waste, which needs to be treated. One option is to transform plastic waste into synthetic fuels, which can be used as replacements or additives for [...] Read more.
Plastic is one of the most widely used materials worldwide. The problem with plastic arises when it becomes waste, which needs to be treated. One option is to transform plastic waste into synthetic fuels, which can be used as replacements or additives for conventional fossil fuels and can contribute to more sustainable plastic waste treatment compared with landfilling and other traditional waste management processes. Thermal and catalytic pyrolysis are common processes in which synthetic fuels can be produced from plastic waste. The properties of pyrolytic oil are similar to those of fossil fuels, but different additives and plastic stabilizers can affect the quality of these synthetic fuels. The quality of fuels and the permissible particle sizes and number density are regulated by fuel standards. Particle size in fuels is also regulated by fuel filters in vehicles, which are usually designed to capture particles larger than 4 μm. Problems can arise with the number density (quantity) of particles in synthetic fuels compared to that in fossil fuels. The present work is a numerical study of how particle size and number density (quantity) influence cavitation phenomena and cavitation erosion (abrasion) in common-rail diesel injectors. The results provide more information on whether pyrolysis oil (synthetic fuel) from plastic waste can be used as a substitute for fossil fuels and whether their use can contribute to more sustainable plastic waste treatments. The results indicate that the particle size and number density slightly influence cavitation phenomena in diesel injectors and significantly influence abrasion. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

15 pages, 5798 KiB  
Article
A Study of Cavitation Erosion in Artificial Submerged Water Jets
by Haonan Li, Jiawang Chen, Jin Guo, Hai Zhu, Yuan Lin and Han Ge
Appl. Sci. 2024, 14(11), 4804; https://doi.org/10.3390/app14114804 - 2 Jun 2024
Viewed by 655
Abstract
The artificially submerged cavitation water jet is effectively utilized by ejecting a high-pressure water stream into a low-pressure water stream through concentric nozzles and utilizing the cavitation phenomenon generated by the shear layer formed between the two streams. In this study, we investigated [...] Read more.
The artificially submerged cavitation water jet is effectively utilized by ejecting a high-pressure water stream into a low-pressure water stream through concentric nozzles and utilizing the cavitation phenomenon generated by the shear layer formed between the two streams. In this study, we investigated the cavitation characteristics of artificially submerged cavitation water jets by combining numerical simulations and erosion experiments. The results indicate that an appropriate standoff distance can generate more cavitation clouds on the workpiece surface, and the erosion characteristics of the artificially submerged cavitation water jet are most pronounced at a dimensionless standoff distance of SD = 30. The shear effect formed between the two jets plays a crucial role in generating initial cavitation bubbles within the flow field of the artificially submerged cavitation water jet. Moreover, increasing the convergent angle between the two jets can significantly enhance the cavitation effect between them and lead to a more substantial cavitation effect. Simultaneously, increasing the pressure of the high-pressure inner nozzle also contributes to enhancing the cavitation effect of the artificially submerged cavitation water jet. Full article
(This article belongs to the Special Issue Fluid Mechanics: From Theories to Applications)
Show Figures

Figure 1

11 pages, 7137 KiB  
Article
Effect of Co Contents on Microstructure and Cavitation Erosion Resistance of NiTiAlCrCoxN Films
by Hongjuan Yan, Fangying Cheng, Lina Si, Ye Yang, Zhaoliang Dou and Fengbin Liu
Coatings 2024, 14(5), 603; https://doi.org/10.3390/coatings14050603 - 10 May 2024
Viewed by 746
Abstract
In order to investigate the effect of Co contents on the structure and cavitation erosion property, NiTiAlCrCoxN films were prepared by the magnetron sputtering system. The X-ray diffractometer (XRD), the scanning electron microscope (SEM) and the energy dispersive spectrometer (EDS) were [...] Read more.
In order to investigate the effect of Co contents on the structure and cavitation erosion property, NiTiAlCrCoxN films were prepared by the magnetron sputtering system. The X-ray diffractometer (XRD), the scanning electron microscope (SEM) and the energy dispersive spectrometer (EDS) were used to characterize the structure and morphology of the films. The nanoindenter and the scratch tester were used to analyze the mechanical properties of the films. Cavitation erosion experiments were carried out by the ultrasonic vibration cavitation machine. The results show that NiTiAlCrCoxN films with different Co contents have a simple face-centered cubic (FCC) structure and show a preferred orientation on the (200) crystal plane. The diffraction angle on the (200) crystal plane decreases and the interplanar spacing increases with the increase in Co content in NiTiAlCrCoxN films. NiTiAlCrCoxN films exhibit a typical columnar crystalline structure. With the increase in Co content, the nanohardness of the films increases and the elastic modulus of the films decreases, while the mass loss of cavitation erosion monotonously increases except for the film with a 1.2 Co molar ratio. The NiTiAlCrCo1.4N film has a minimum hardness of 13.264 GPa, a maximum elastic modulus of 253.22 GPa and a minimum mass loss of 0.72 mg in the cavitation erosion experiment. The NiTiAlCrCo1.4N film exhibits the best cavitation corrosion resistance because the addition of the Co element enhances the solid solution strengthening effect and the NiTiAlCrCox1.4N film with the biggest elastic modulus has better elasticity to reduce the micro jet impact. Full article
(This article belongs to the Special Issue Investigation on Corrosion Behaviour of Metallic Materials)
Show Figures

Figure 1

13 pages, 5561 KiB  
Article
Study on Dynamic Evolution and Erosion Characteristics of Cavitation Clouds in Submerged Cavitating Water Jets
by Yanyu Cui, Manjun Zhao, Qingmiao Ding and Bin Cheng
J. Mar. Sci. Eng. 2024, 12(4), 641; https://doi.org/10.3390/jmse12040641 - 10 Apr 2024
Cited by 1 | Viewed by 1030
Abstract
The dynamic evolution behavior of submerged water jet cavitation clouds was studied by combining experiments and simulation. The formation, development, shedding, and collapsing process of a void cloud was analyzed by high-speed camera technology, and the influence of jet pressure was studied. Cavitation [...] Read more.
The dynamic evolution behavior of submerged water jet cavitation clouds was studied by combining experiments and simulation. The formation, development, shedding, and collapsing process of a void cloud was analyzed by high-speed camera technology, and the influence of jet pressure was studied. Cavitation water jet erosion experiments were carried out on AL6061 specimens with standard cylindrical nozzles, and the correlation between cavitation cloud evolution and material erosion was studied by surface analysis. The results showed that the evolution of a cavitation cloud has obvious periodicity, that one period is about 0.8 ms, and its action region can be divided according to the attenuation rate of the jet velocity of the nozzle axis. The attenuation rate of the jet velocity at the nozzle axis in the central jet action zone is less than or equal to 82.5%, in the mixed action zone greater than 82.5% and less than 96%, and in the cavitation action zone greater than or equal to 96%. The erosion damage characteristics in different regions of the mixed action zone are significantly different. Full article
Show Figures

Figure 1

17 pages, 7742 KiB  
Article
Cavitation Erosion of the Austenitic Manganese Layers Deposited by Pulsed Current Electric Arc Welding on Duplex Stainless Steel Substrates
by Ion Mitelea, Daniel Mutașcu, Ion-Dragoș Uțu, Corneliu Marius Crăciunescu and Ilare Bordeașu
Crystals 2024, 14(4), 315; https://doi.org/10.3390/cryst14040315 - 28 Mar 2024
Viewed by 2638
Abstract
Fe-Mn-Cr-Ni alloys like Citomangan, delivered in the form of powders, tubular wires, and coated electrodes, are intended for welding deposition operations to create wear-resistant layers. Their main characteristic is their high capacity for surface mechanical work-hardening under high shock loads, along with high [...] Read more.
Fe-Mn-Cr-Ni alloys like Citomangan, delivered in the form of powders, tubular wires, and coated electrodes, are intended for welding deposition operations to create wear-resistant layers. Their main characteristic is their high capacity for surface mechanical work-hardening under high shock loads, along with high toughness and wear resistance. In order to increase the resistance to cavitation erosion, hardfacing of Duplex stainless steel X2CrNiMoN22-5-3 with Citomangan alloy was performed using a new welding technique, namely one that uses a universal TIG source adapted for manual welding with a coated electrode in pulsed current. Cavitation tests were conducted in accordance with the requirements of ASTM G32—2016 standard. Comparing the characteristic cavitation erosion parameters of the manganese austenitic layer, deposited by this new welding technique, with those of the reference steel, highlights an 8–11 times increase in its resistance to cavitation erosion. Metallographic investigations by optical microscopy and scanning electron microscopy (SEM), as well as hardness measurements, were carried out to understand the cavitation phenomena. Full article
Show Figures

Figure 1

18 pages, 10706 KiB  
Article
Wear Behavior of Epoxy Resin Reinforced with Ceramic Nano- and Microparticles
by Juana Abenojar, Yolanda Ballesteros, Mohsen Bahrami, Miguel Angel Martínez and Juan Carlos del Real
Polymers 2024, 16(7), 878; https://doi.org/10.3390/polym16070878 - 22 Mar 2024
Viewed by 988
Abstract
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of [...] Read more.
Cavitation erosion poses a significant challenge in fluid systems like hydraulic turbines and ship propellers due to pulsed pressure from collapsing vapor bubbles. To combat this, various materials and surface engineering methods are employed. In this study, nano and micro scale particles of silicon carbide (SiC) or boron carbide (B4C) were incorporated as reinforcement at 6% and 12% ratios, owing to their exceptional resistance to abrasive wear and high hardness. Microparticles were incorporated to assess the damage incurred during the tests in comparison to nanoparticles. Wear tests were conducted on both bulk samples and coated aluminum sheets with a 1mm of composite. Additionally, cavitation tests were performed on coated aluminum tips until stability of mass loss was achieved. The results indicated a distinct wear behavior between the coatings and the bulk samples. Overall, wear tended to be higher for the coated samples with nanocomposites than bulk, except for the nano-composite material containing 12% SiC and pure resin. With the coatings, higher percentages of nanometric particles correlated with increased wear. The coefficient of friction remained within the range of 0.4 to 0.5 for the coatings. Regarding the accumulated erosion in the cavitation tests for 100 min, it was observed that for all nanocomposite materials, it was lower than in pure resin. Particularly, the composite with 6% B4C was slightly lower than the rest. In addition, the erosion rate was also lower for the composites. Full article
(This article belongs to the Special Issue Modification and Study on the Properties of Epoxy Resin)
Show Figures

Figure 1

20 pages, 3166 KiB  
Review
Review of the Uses of Acoustic Emissions in Monitoring Cavitation Erosion and Crack Propagation
by Ismael Fernández-Osete, David Bermejo, Xavier Ayneto-Gubert and Xavier Escaler
Foundations 2024, 4(1), 114-133; https://doi.org/10.3390/foundations4010009 - 24 Feb 2024
Viewed by 1450
Abstract
Nowadays, hydropower plants are being used to compensate for the variable power produced by the new fluctuating renewable energy sources, such as wind and solar power, and to stabilise the grid. Consequently, hydraulic turbines are forced to work more often in off-design conditions, [...] Read more.
Nowadays, hydropower plants are being used to compensate for the variable power produced by the new fluctuating renewable energy sources, such as wind and solar power, and to stabilise the grid. Consequently, hydraulic turbines are forced to work more often in off-design conditions, far from their best efficiency point. This new operation strategy increases the probability of erosive cavitation and of hydraulic instabilities and pressure fluctuations that increase the risk of fatigue damage and reduce the life expectancy of the units. To monitor erosive cavitation and fatigue damage, acoustic emissions induced by very-high-frequency elastic waves within the solid have been traditionally used. Therefore, acoustic emissions are becoming an important tool for hydraulic turbine failure detection and troubleshooting. In particular, artificial intelligence is a promising signal analysis research hotspot, and it has a great potential in the condition monitoring of hydraulic turbines using acoustic emissions as a key factor in the digitalisation process. In this paper, a brief introduction of acoustic emissions and a description of their main applications are presented. Then, the research works carried out for cavitation and fracture detection using acoustic emissions are summarised, and the different levels of development are compared and discussed. Finally, the role of artificial intelligence is reviewed, and expected directions for future works are suggested. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

19 pages, 10450 KiB  
Review
A Review of Cavitation Erosion on Pumps and Valves in Nuclear Power Plants
by Guiyan Gao, Shusheng Guo and Derui Li
Materials 2024, 17(5), 1007; https://doi.org/10.3390/ma17051007 - 22 Feb 2024
Cited by 1 | Viewed by 1143
Abstract
The cavitation erosion failure of pumps or valves induces the low efficiency and reduced service life of nuclear reactors. This paper reviews works regarding the cavitation erosion of pumps and valves in the nuclear power industry and academic research field. The cavitation erosion [...] Read more.
The cavitation erosion failure of pumps or valves induces the low efficiency and reduced service life of nuclear reactors. This paper reviews works regarding the cavitation erosion of pumps and valves in the nuclear power industry and academic research field. The cavitation erosion mechanisms of materials of pumps and valves are related to the microstructure and mechanical properties of the surface layer. The cavitation erosion resistance of austenitic stainless steel can be ten times higher than that of ferritic steel. The cavitation erosion of materials is related to the hardness, toughness, and martensitic transformation capacity. Erosion wear and erosion–corrosion research is also reviewed. Erosion wear is mainly influenced by the hardness of the material surface. Erosion–corrosion behavior is closely connected with the element composition. Measures for improving the cavitation erosion of pumps and valves are summarized in this paper. The cavitation erosion resistance of metallic materials can be enhanced by adding elements and coatings. Adhesion, inclusion content, and residual stress impact the cavitation erosion of materials with coatings. Full article
(This article belongs to the Special Issue Key Materials in Nuclear Reactors)
Show Figures

Figure 1

Back to TopTop