Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,241)

Search Parameters:
Keywords = chitosan (CS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5387 KiB  
Article
Investigation of Chlorhexidine and Chitosan Gel-Based Coatings for the Prevention of Intravascular Catheter-Associated Infections Following Quality by Design Approach
by S P Yamini Kanti, Mahwash Mukhtar, Martin Cseh, László Orosz, Katalin Burián, Rita Ambrus, Orsolya Jójárt-Laczkovich and Ildikó Csóka
Biomedicines 2024, 12(9), 2032; https://doi.org/10.3390/biomedicines12092032 - 5 Sep 2024
Viewed by 288
Abstract
Intravascular catheter-associated infections pose a significant threat to the health of patients because of biofilm formation. Hence, it is imperative to exploit cost-effective approaches to improve patient compliance. With this aim, our present study reported the potential of an antimicrobial polymeric gel coating [...] Read more.
Intravascular catheter-associated infections pose a significant threat to the health of patients because of biofilm formation. Hence, it is imperative to exploit cost-effective approaches to improve patient compliance. With this aim, our present study reported the potential of an antimicrobial polymeric gel coating of chitosan (CS) and chlorhexidine (CHX) on the marketed urinary catheters to minimize the risk of biofilm formation. The study involved the implementation of the Quality by Design (QbD) approach by identifying the critical parameters that can affect the coating of the catheter’s surface in any possible way. Later, design of experiments (DoE) analysis affirmed the lack of linearity in the model for the studied responses in a holistic manner. Moreover, in vitro studies were conducted for the evaluation of various parameters followed by the antibiofilm study. The coating exhibited promising release of CHX in the artificial urinary media together with retention of the coating on the catheter’s surface. Therefore, this study aims to emphasize the importance of a systematic and quality-focused approach by contributing to the development of a safe, effective, and reliable catheter coating to enhance intravascular catheter safety. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

13 pages, 2427 KiB  
Article
Application of PLGA-PEG-PLGA Nanoparticles to Percutaneous Immunotherapy for Food Allergy
by Ryuse Sakurai, Hanae Iwata, Masaki Gotoh, Hiroyuki Ogino, Issei Takeuchi, Kimiko Makino, Fumio Itoh and Akiyoshi Saitoh
Molecules 2024, 29(17), 4123; https://doi.org/10.3390/molecules29174123 - 30 Aug 2024
Viewed by 394
Abstract
Compared with oral or injection administration, percutaneous immunotherapy presents a promising treatment modality for food allergies, providing low invasiveness and safety. This study investigated the efficacy of percutaneous immunotherapy using hen egg lysozyme (HEL)-loaded PLGA-PEG-PLGA nanoparticles (NPs), as an antigen model protein derived [...] Read more.
Compared with oral or injection administration, percutaneous immunotherapy presents a promising treatment modality for food allergies, providing low invasiveness and safety. This study investigated the efficacy of percutaneous immunotherapy using hen egg lysozyme (HEL)-loaded PLGA-PEG-PLGA nanoparticles (NPs), as an antigen model protein derived from egg white, compared with that of HEL-loaded chitosan hydroxypropyltrimonium chloride (CS)-modified PLGA NPs used in previous research. The intradermal retention of HEL in excised mouse skin was measured using Franz cells, which revealed a 2.1-fold higher retention with PLGA-PEG-PLGA NPs than that with CS-modified PLGA NPs. Observation of skin penetration pathways using fluorescein-4-isothiocyanate (FITC)-labeled HEL demonstrated successful delivery of HEL deep into the hair follicles with PLGA-PEG-PLGA NPs. These findings suggest that after NPs delivery into the skin, PEG prevents protein adhesion and NPs aggregation, facilitating stable delivery deep into the skin. Subsequently, in vivo percutaneous administration experiments in mice, with concurrent iontophoresis, demonstrated a significant increase in serum IgG1 antibody production with PLGA-PEG-PLGA NPs compared with that with CS-PLGA NPs after eight weeks of administration. Furthermore, serum IgE production in each NP administration group significantly decreased compared with that by subcutaneous administration of HEL solution. These results suggest that the combination of PLGA-PEG-PLGA NPs and iontophoresis is an effective percutaneous immunotherapy for food allergies. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in Catalysis, Sensing, and Biomedicine)
Show Figures

Graphical abstract

28 pages, 12309 KiB  
Article
Study on Preparation and Performance of Acid pH-Responsive Intelligent Self-Healing Coating
by Jianguo Liu, Feiyu Chen, Qiaosheng Zhang, Xiao Xing and Gan Cui
Polymers 2024, 16(17), 2473; https://doi.org/10.3390/polym16172473 - 30 Aug 2024
Viewed by 319
Abstract
In this paper, microcapsules with acidic pH stimulus responsiveness were prepared through a one-step in situ polymerization method and a layer-by-layer assembly method. The effects of factors such as chitosan (CS) concentration, polymerization time, polymerization process temperature, and the number of polymerization layers [...] Read more.
In this paper, microcapsules with acidic pH stimulus responsiveness were prepared through a one-step in situ polymerization method and a layer-by-layer assembly method. The effects of factors such as chitosan (CS) concentration, polymerization time, polymerization process temperature, and the number of polymerization layers on the performance of microcapsules were explored, and microcapsules with optimal performance were prepared and added to the epoxy coating. The morphology and structure of the microcapsules were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential testing. The thermal stability and sustained release properties of the microcapsules were studied through thermogravimetric analysis and sustained release curve testing. Through scratch experiments, immersion experiments, salt spray experiments, and electrochemical impedance spectroscopy tests, the impact of the added amount of microcapsules on the self-healing performance and anti-corrosion performance of the coating in complex environments was explored. The results show that the optimal preparation process of acidic pH-responsive microcapsules requires that the concentration of chitosan is 2 mg/mL, the polymerization time of the polyelectrolyte layer is 8 h, the heating temperature during the polymerization process is 75 °C, and the number of polyelectrolyte layers is three. The prepared acidic pH-responsive microcapsules have good morphology, pH sensitivity, and thermal stability. The average particle size is approximately 203 μm, the drug loading rate reaches 59.74%, and the encapsulation rate reaches 63.99%. The optimal added amount of the acidic pH-responsive microcapsule coating is 15 wt%. The coating has a dual-trigger mechanism underlying it stimulus response capability and has an obvious stimulus response to acidic pH. It can inhibit corrosion in non-scratch areas, and its anti-corrosion ability is significantly stronger than that of epoxy coatings and ordinary self-healing coatings. The coating has a stronger repair effect and anti-corrosion ability when the environmental pH becomes acidic. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Figure 1

17 pages, 4238 KiB  
Article
Eco-Friendly Design of Chitosan-Based Films with Biodegradable Properties as an Alternative to Low-Density Polyethylene Packaging
by Johanna Fiallos-Núñez, Yaniel Cardero, Gustavo Cabrera-Barjas, Claudio M. García-Herrera, Matías Inostroza, Miriam Estevez, Beatriz Liliana España-Sánchez and Loreto M. Valenzuela
Polymers 2024, 16(17), 2471; https://doi.org/10.3390/polym16172471 - 30 Aug 2024
Viewed by 390
Abstract
Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) [...] Read more.
Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) was designed. A Response Surface Methodology (RSM) analysis was performed to determine the chitosan, gelatin, and glycerol content that improved the mechanical properties selected as response variables (thickness, tensile strength (TS), and elongation at break (EAB). The content of CS (1.1% w/v), GEL (1.1% w/v), and GLY (0.4% w/v) in the film-forming solution guarantees an optimized film (OPT-F) with a 0.046 ± 0.003 mm thickness, 11.48 ± 1.42 mPa TS, and 2.6 ± 0.3% EAB. The OPT-F was characterized in terms of thermal, optical, and biodegradability properties compared to LDPE films. Thermogravimetric analysis (TGA) revealed that the OPT-F was thermally stable at temperatures below 300 °C, which is relevant to thermal processes in the food industry of packaging. The reduced water solubility (WS) (24.34 ± 2.47%) and the improved biodegradability properties (7.1%) compared with LDPE suggests that the biopolymer-based film obtained has potential applications in the food industry as a novel packaging material and can serve as a basis for the design of bioactive packaging. Full article
Show Figures

Figure 1

13 pages, 6742 KiB  
Article
Dihydromyricetin Nanoparticles Alleviate Lipopolysaccharide-Induced Acute Kidney Injury by Decreasing Inflammation and Cell Apoptosis via the TLR4/NF-κB Pathway
by Hongmei Yin, Qiaohua Yan, Yinglun Li and Huaqiao Tang
J. Funct. Biomater. 2024, 15(9), 249; https://doi.org/10.3390/jfb15090249 - 29 Aug 2024
Viewed by 392
Abstract
Acute kidney injury (AKI) is the most severe and fatal complication of sepsis resulting from infectious trauma. Currently, effective treatment options are still lacking. Dihydromyricetin is the main component extracted from Vine tea (Ampelopsis megalophylla Diels et Gilg). In our previous [...] Read more.
Acute kidney injury (AKI) is the most severe and fatal complication of sepsis resulting from infectious trauma. Currently, effective treatment options are still lacking. Dihydromyricetin is the main component extracted from Vine tea (Ampelopsis megalophylla Diels et Gilg). In our previous research, chitosan–tripolyphosphate-encapsulated nanoparticles of dihydromyricetin (CS-DMY-NPs) have been proven to have potential protective effects against cisplatin-induced AKI. Here, we investigated the protective effects and mechanisms of DMY and its nano-formulations against LPS-induced AKI by assessing pathological and inflammatory changes in mice. In mice with LPS-AKI treated with 300 mg/kg CS-DMY-NPs, the levels of creatinine (Cr), blood urea nitrogen (BUN), and KIM-1 were significantly reduced by 56%, 49%, and 88%, respectively. CS-DMY-NPs can upregulate the levels of GSH, SOD, and CAT by 47%, 7%, and 14%, respectively, to inhibit LPS-induced oxidative stress. Moreover, CS-DMY-NPs decreased the levels of IL-6, IL-1β, and MCP-1 by 31%, 49%, and 35%, respectively, to alleviate the inflammatory response. TUNEL and immunohistochemistry showed that CS-DMY-NPs reduced the number of apoptotic cells, increased the Bcl-2/Bax ratio by 30%, and attenuated renal cell apoptosis. Western blot analysis of renal tissue indicated that CS-DMY-NPs inhibited TLR4 expression and downregulated the phosphorylation of NF-κB p65 and IκBα. In summary, DMY prevented LPS-induced AKI by increasing antioxidant capacity, reducing inflammatory responses, and blocking apoptosis, and DMY nanoparticles were shown to have a better protective effect for future applications. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

20 pages, 2623 KiB  
Article
A Highly Sensitive Chitosan-Based SERS Sensor for the Trace Detection of a Model Cationic Dye
by Bahareh Vafakish and Lee D. Wilson
Int. J. Mol. Sci. 2024, 25(17), 9327; https://doi.org/10.3390/ijms25179327 - 28 Aug 2024
Viewed by 262
Abstract
The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is [...] Read more.
The rapid detection of contaminants in water resources is vital for safeguarding the environment, where the use of eco-friendly materials for water monitoring technologies has become increasingly prioritized. In this context, the role of biocomposites in the development of a SERS sensor is reported in this study. Grafted chitosan was employed as a matrix support for Ag nanoparticles (NPs) for the surface-enhanced Raman spectroscopy (SERS). Chitosan (CS) was decorated with thiol and carboxylic acid groups by incorporating S-acetyl mercaptosuccinic anhydride (SAMSA) to yield CS-SAMSA. Then, Ag NPs were immobilized onto the CS-SAMSA (Ag@CS-SAMSA) and characterized by spectral methods (IR, Raman, NIR, solid state 13C NMR with CP-MAS, XPS, and TEM). Ag@CS-SAMSA was evaluated as a substrate for SERS, where methylene blue (MB) was used as a model dye adsorbate. The Ag@CS-SAMSA sensor demonstrated a high sensitivity (with an enhancement factor ca. 108) and reusability over three cycles, with acceptable reproducibility and storage stability. The Raman imaging revealed a large SERS effect, whereas the MB detection varied from 1–100 μM. The limits of detection (LOD) and quantitation (LOQ) of the biocomposite sensor were characterized, revealing properties that rival current state-of-the-art systems. The dye adsorption profiles were studied via SERS by fitting the isotherm results with the Hill model to yield the ΔG°ads for the adsorption process. This research demonstrates a sustainable dual-function biocomposite with tailored adsorption and sensing properties suitable for potential utility in advanced water treatment technology and environmental monitoring applications. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

18 pages, 5106 KiB  
Article
Fabrication of Mupirocin-Loaded PEGylated Chitosan Nanoparticulate Films for Enhanced Wound Healing
by Shajahan Azeez, Anbazhagan Sathiyaseelan, Kaviyarasan Venkatesan and Myeong-Hyeon Wang
Int. J. Mol. Sci. 2024, 25(17), 9188; https://doi.org/10.3390/ijms25179188 - 24 Aug 2024
Viewed by 375
Abstract
Chitosan-based biomaterials are being investigated for their unique properties that support skin regeneration and wound healing. This study focused on the preparation and characterization of a mupirocin (Mup)-loaded PEGylated chitosan (CS-PEG) nanoparticulate film (NF) [CBNF]. The CBNF was characterized using FTIR spectroscopy and [...] Read more.
Chitosan-based biomaterials are being investigated for their unique properties that support skin regeneration and wound healing. This study focused on the preparation and characterization of a mupirocin (Mup)-loaded PEGylated chitosan (CS-PEG) nanoparticulate film (NF) [CBNF]. The CBNF was characterized using FTIR spectroscopy and SEM analysis. The results demonstrated that CBNF was successfully incorporated into the composites, as shown by functional group modification through FTIR analysis. Additionally, the SEM micrograph revealed the deposition of nanoparticles (<200 nm) on the surface of transparent CBNF. The film has higher water absorption (≥1700%) and moderate water retention ability within 6 h. Furthermore, histological findings showed significant development, with re-epithelialization and granulation of tissues after 19 days, indicating the healing efficiency of CNBF. These results suggest that drug-loaded films could be an effective carrier and delivery agent for Mup-like anti-inflammatory drugs. Full article
(This article belongs to the Special Issue Biopolymers as Nanoparticles Carriers, 2nd Edition)
Show Figures

Figure 1

12 pages, 3435 KiB  
Article
Composite Mineralized Collagen/Polycaprolactone Scaffold-Loaded Microsphere System with Dual Osteogenesis and Antibacterial Functions
by Yuzhu He, Qindong Wang, Yuqi Liu, Zijiao Zhang, Zheng Cao, Shuo Wang, Xiaoxia Ying, Guowu Ma, Xiumei Wang and Huiying Liu
Polymers 2024, 16(17), 2394; https://doi.org/10.3390/polym16172394 - 23 Aug 2024
Viewed by 307
Abstract
Biomaterials play an important role in treating bone defects. The functional characteristics of scaffolds, such as their structure, mechanical strength, and antibacterial and osteogenesis activities, effectively promote bone regeneration. In this study, mineralized collagen and polycaprolactone were used to prepare loaded porous scaffolds [...] Read more.
Biomaterials play an important role in treating bone defects. The functional characteristics of scaffolds, such as their structure, mechanical strength, and antibacterial and osteogenesis activities, effectively promote bone regeneration. In this study, mineralized collagen and polycaprolactone were used to prepare loaded porous scaffolds with bilayer-structured microspheres with dual antibacterial and osteogenesis functions. The different drug release mechanisms of PLGA and chitosan in PLGA/CS microspheres caused differences in the drug release models in terms of the duration and rate of Pac-525 and BMP-2 release. The prepared PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffolds were analyzed in terms of physical characteristics, bioactivity, and antibacterial properties. The scaffolds with a dimensional porous structure showed similar porosity and pore diameter to cancellous bone. The release curve of the microspheres and scaffolds with high encapsulation rates displayed the two-stage release of Pac-525 and BMP-2 over 30 days. It was found that the scaffolds could inhibit S. aureus and E. coli and then promote ALP activity. The PLGA(BMP-2)/CS(Pac-525)@MC/PCL scaffold could be used as a dual delivery system to promote bone regeneration. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers)
Show Figures

Graphical abstract

27 pages, 14954 KiB  
Article
Oral Administration of Berberine Hydrochloride Based on Chitosan/Carboxymethyl-β-Cyclodextrin Hydrogel
by Bukatuka Futila Clemence, Lin Xiao and Guang Yang
Polymers 2024, 16(16), 2368; https://doi.org/10.3390/polym16162368 - 21 Aug 2024
Viewed by 430
Abstract
In this study, a novel oral formulation of berberine hydrochloride (BBH) hydrogel was successfully synthesized through physical cross-linking using chitosan (CS) and carboxymethyl-β-cyclodextrin (CMCD). The characterization results confirmed the successful synthesis of the CS/CMCD hydrogel and the subsequent loading of BBH into this [...] Read more.
In this study, a novel oral formulation of berberine hydrochloride (BBH) hydrogel was successfully synthesized through physical cross-linking using chitosan (CS) and carboxymethyl-β-cyclodextrin (CMCD). The characterization results confirmed the successful synthesis of the CS/CMCD hydrogel and the subsequent loading of BBH into this composite (CS/CMCD/BBH) was effectively accomplished. The BBH was used as a model drug and the resulting hydrogel demonstrated a sustained drug release profile. In addition to its improved solubility and sustained release characteristics, the hydrogel exhibited excellent antibacterial activity against common pathogens such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans). Additionally, in vitro studies indicated that the hydrogel was not cytotoxic to NIH3T3 and HaCaT cells, suggesting its safety for biomedical applications. This lack of cytotoxic effects, combined with the mechanical strength, solubility improvements, and antibacterial properties of the hydrogel, positions the CS/CMCD/BBH hydrogel as a promising candidate for the effective oral delivery of BBH. By addressing the solubility and delivery challenges of BBH, this hydrogel offers a viable solution for the oral administration of BBH, with potential applications in various biomedical fields. Full article
(This article belongs to the Special Issue Biomedical Applications of Polymeric Materials II)
Show Figures

Graphical abstract

11 pages, 2014 KiB  
Article
Applying Different Conditions in the OphthalMimic Device Using Polymeric and Hydrogel-Based Hybrid Membranes to Evaluate Gels and Nanostructured Ophthalmic Formulations
by Jonad L. A. Contarato, Geisa N. Barbalho, Marcilio Cunha-Filho, Guilherme M. Gelfuso and Tais Gratieri
Gels 2024, 10(8), 538; https://doi.org/10.3390/gels10080538 - 20 Aug 2024
Viewed by 356
Abstract
The OphthalMimic is a 3D-printed device that simulates human ocular conditions with artificial lacrimal flow, cul-de-sac area, moving eyelid, and a surface to interact with ophthalmic formulations. All tests with such a device have used a continuous artificial tear flow rate of 1 [...] Read more.
The OphthalMimic is a 3D-printed device that simulates human ocular conditions with artificial lacrimal flow, cul-de-sac area, moving eyelid, and a surface to interact with ophthalmic formulations. All tests with such a device have used a continuous artificial tear flow rate of 1 mL/min for 5 min. Here, we implemented protocol variations regarding the application time and simulated tear flow to increase the test’s discrimination and achieve reliable performance results. The new protocols incorporated the previously evaluated 0.2% fluconazole formulations containing or not chitosan as a mucoadhesive component (PLX16CS10 and PLX16, respectively) and novel moxifloxacin 5% formulations, either in a conventional formulation and a microemulsion (CONTROL and NEMOX, respectively). The flow rate was reduced by 50%, and a pre-flow application period was also included to allow formulation interaction with the membrane. The OphthalMimic model was used with both polymeric and hydrogel-based hybrid membranes, including a simulated eyelid. Lowering the flow made it feasible to prolong the testing duration, enhancing device discrimination potential. The hydrogel membrane was adequate for testing nanostructure formulations. The OphthalMimic device demonstrated once again to be a versatile method for evaluating the performance of ophthalmic drug formulations with the potential of reducing the use of animals for experimentation. Full article
(This article belongs to the Special Issue Designing Hydrogels for Sustained Delivery of Therapeutic Agents)
Show Figures

Graphical abstract

19 pages, 5338 KiB  
Article
Exploring the Feasibility of Polysaccharide-Based Mulch Films with Controlled Ammonium and Phosphate Ions Release for Sustainable Agriculture
by Veronica Ciaramitaro, Elena Piacenza, Sara Paliaga, Giuseppe Cavallaro, Luigi Badalucco, Vito Armando Laudicina and Delia Francesca Chillura Martino
Polymers 2024, 16(16), 2298; https://doi.org/10.3390/polym16162298 - 14 Aug 2024
Viewed by 471
Abstract
Bio-based polymers are a promising material with which to tackle the use of disposable and non-degradable plastics in agriculture, such as mulching films. However, their poor mechanical properties and the high cost of biomaterials have hindered their widespread application. Hence, in this study, [...] Read more.
Bio-based polymers are a promising material with which to tackle the use of disposable and non-degradable plastics in agriculture, such as mulching films. However, their poor mechanical properties and the high cost of biomaterials have hindered their widespread application. Hence, in this study, we improved polysaccharide-based films and enriched them with plant nutrients to make them suitable for mulching and fertilizing. Films were produced combining sodium carboxymethyl cellulose (CMC), chitosan (CS), and sodium alginate (SA) at different weight ratios with glycerol and CaCl2 as a plasticizer and crosslinker, respectively, and enriched with ammonium phosphate monobasic (NH4H2PO4). A polysaccharide weight ratio of 1:1 generated a film with a more crosslinked structure and a lower expanded network than that featuring the 17:3 ratio, whereas CaCl2 increased the films’ water resistance, thermal stability, and strength characteristics, slowing the release rates of NH4+ and PO43−. Thus, composition and crosslinking proved crucial to obtaining promising films for soil mulching. Full article
(This article belongs to the Special Issue Advances in Biocompatible and Biodegradable Polymers III)
Show Figures

Figure 1

27 pages, 9013 KiB  
Article
Lyophilized Polyvinyl Alcohol and Chitosan Scaffolds Pre-Loaded with Silicon Dioxide Nanoparticles for Tissue Regeneration
by Andrés Felipe Niebles Navas, Daniela G. Araujo-Rodríguez, Carlos-Humberto Valencia-Llano, Daniel Insuasty, Johannes Delgado-Ospina, Diana Paola Navia-Porras, Paula A. Zapata, Alberto Albis and Carlos David Grande-Tovar
Molecules 2024, 29(16), 3850; https://doi.org/10.3390/molecules29163850 - 14 Aug 2024
Viewed by 680
Abstract
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO [...] Read more.
Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of −50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 μm) and large pores (between 100 and 160 μm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties. Full article
(This article belongs to the Special Issue Biobased Materials for Tissue Engineering)
Show Figures

Figure 1

27 pages, 4365 KiB  
Article
Biochar/Biopolymer Composites for Potential In Situ Groundwater Remediation
by Marco Petrangeli Papini, Sara Cerra, Damiano Feriaud, Ida Pettiti, Laura Lorini and Ilaria Fratoddi
Materials 2024, 17(16), 3899; https://doi.org/10.3390/ma17163899 - 6 Aug 2024
Viewed by 753
Abstract
This study explores the use of pine wood biochar (BC) waste gasified at 950 °C as fillers in polymer matrices to create BC@biopolymer composites with perspectives in groundwater remediation. Four biochar samples underwent different sieving and grinding processes and were extensively characterized via [...] Read more.
This study explores the use of pine wood biochar (BC) waste gasified at 950 °C as fillers in polymer matrices to create BC@biopolymer composites with perspectives in groundwater remediation. Four biochar samples underwent different sieving and grinding processes and were extensively characterized via UV–Vis, FTIR, and FESEM–EDS, highlighting the fact that that BCs are essentially graphitic in nature with a sponge-like morphology. The grinding process influences the particle size, reducing the specific surface area by about 30% (evaluated by BET). The adsorption performances of raw BC were validated via an adsorption isotherm using trichloroethylene (TCE) as a model contaminant. A selected BC sample was used to produce hydrophilic, stable polymer composites with chitosan (CS), alginate (ALG), potato starch (PST), and sodium carboxymethylcellulose (CMC) via a simple blending approach. Pilot sedimentation tests over 7 days in water identified BC@PST and BC@CMC as the most stable suspensions due to a combination of both hydrogen bonds and physical entrapment, as studied by FTIR. BC@CMC showed optimal distribution and retention properties without clogging in breakthrough tests. The study concludes that biopolymer-based biochar composites with improved stability in aqueous environments hold significant promise for addressing various groundwater pollution challenges. Full article
(This article belongs to the Special Issue Environmentally Friendly Adsorption Materials)
Show Figures

Figure 1

12 pages, 4476 KiB  
Article
Flame-Retardant Coating on Wood Surface by Natural Biomass Polyelectrolyte via a Layer-by-Layer Self-Assembly Approach
by Mengyun Weng, Yanchun Fu and Wei Xu
Forests 2024, 15(8), 1362; https://doi.org/10.3390/f15081362 - 4 Aug 2024
Viewed by 525
Abstract
In this study, environmentally friendly and low-cost biomass materials were selected as wood flame retardants. Three polyelectrolyte flame-retardant coatings made from chitosan (CS), tea polyphenols (TP), soybean isolate protein (SPI), and banana peel powder (BBP) were constructed on wood surfaces by layer-by-layer (LBL) [...] Read more.
In this study, environmentally friendly and low-cost biomass materials were selected as wood flame retardants. Three polyelectrolyte flame-retardant coatings made from chitosan (CS), tea polyphenols (TP), soybean isolate protein (SPI), and banana peel powder (BBP) were constructed on wood surfaces by layer-by-layer (LBL) self-assembly. The results of SEM-EDS and FT-IR analyses confirmed the successful deposition of CS-TP, CS-SPI, and CS-BPP on the wood surface, and the content of N element increased. The TG results showed that the initial decomposition temperature and the maximum thermal decomposition temperature of the coated wood specimens decreased, while the char residue increased significantly. This is due to the earlier pyrolysis of CS-TP, CS-SPI, and CS-BBP. This shows that the three polyelectrolyte flame-retardant coatings can improve the thermal stability of wood. The combustion behavior of the wood specimen was observed by exposure to combustion; the coated wood could self-extinguish within a certain period of time after ignition, and the flame-retardant performance was improved to a certain extent. SEM and EDS characterization analyses of the carbon residue after combustion showed that the coated wood charcoal layer was denser, which could effectively block heat and combustible gas. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

19 pages, 5575 KiB  
Article
Chitosan-Coated Liposome Formulations for Encapsulation of Ciprofloxacin and Etoposide
by Rubén Gil-Gonzalo, D. Alonzo Durante-Salmerón, Saeedeh Pouri, Ernesto Doncel-Pérez, Andrés R. Alcántara, Inmaculada Aranaz and Niuris Acosta
Pharmaceutics 2024, 16(8), 1036; https://doi.org/10.3390/pharmaceutics16081036 - 2 Aug 2024
Viewed by 580
Abstract
Cancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior [...] Read more.
Cancer and bacterial infections rank among the most significant global health threats. accounting for roughly 25 million fatalities each year. This statistic underscores the urgent necessity for developing novel drugs, enhancing current treatments, and implementing systems that boost their bioavailability to achieve superior therapeutic outcomes. Liposomes have been recognised as effective carriers; nonetheless, they encounter issues with long-term stability and structural integrity, which limit their pharmaceutical applicability. Chitosomes (chitosan-coated liposomes) are generally a good alternative to solve these issues. This research aims to demonstrate the effective individual encapsulation of ciprofloxacin (antibacterial, hydrophilic) and etoposide (anticancer, hydrophobic), within chitosomes to create more effective drug delivery systems (oral administration for ciprofloxacin, parenteral administration for etoposide). Thus, liposomes and chitosomes were prepared using the thin-film hydration technique and were characterised through ATR-FTIR, Dynamic Light Scattering (DLS), zeta potential, and release profiling. In both cases, the application of chitosomes enhanced long-term stability in size and surface charge. Chitosome-encapsulated ciprofloxacin formulations exhibited a slower and sustained release profile, while the combined effect of etoposide and chitosan showed heightened efficacy against the glioblastoma cell line U373. Therefore, coating liposomes with chitosan improved the encapsulation system’s properties, resulting in a promising method for drug delivery. Full article
Show Figures

Figure 1

Back to TopTop