Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,344)

Search Parameters:
Keywords = cyanobacteria

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 563 KiB  
Article
Native Biocrust Cyanobacteria Strains Showing Antagonism against Three Soilborne Pathogenic Fungi
by Pilar Águila-Carricondo, Raúl Román, José Ignacio Marín-Guirao, Yolanda Cantón and Miguel de Cara
Pathogens 2024, 13(7), 579; https://doi.org/10.3390/pathogens13070579 - 11 Jul 2024
Viewed by 16
Abstract
The biocontrol potential of three native soil cyanobacteria from biological soil crusts (Nostoc commune, Scytonema hyalinum, and Tolypothrix distorta) was tested by means of in vitro mycelial growth inhibition assays for eighteen cyanobacteria-based products against three phytopathogenic soilborne fungi ( [...] Read more.
The biocontrol potential of three native soil cyanobacteria from biological soil crusts (Nostoc commune, Scytonema hyalinum, and Tolypothrix distorta) was tested by means of in vitro mycelial growth inhibition assays for eighteen cyanobacteria-based products against three phytopathogenic soilborne fungi (Phytophthora capsici, Pythium aphanidermatum, and Fusarium oxysporum f. sp. radicis-cucumerinum). Three cyanobacteria-based production factors were considered: (i) cyanobacterium strain, (ii) cyanobacterial culture growth phase, and (iii) different post-harvest treatments: raw cultures, cyanobacterial filtrates, and cyanobacterial extracts. Results showed that any of the factors considered are key points for successfully inhibiting fungal growth. N. commune showed the highest growth inhibition rates for the three phytopathogens; stationary phase treatments produced higher inhibition percentages than logarithmic ones; and all the post-harvest treatments of N. commune at the stationary phase inhibited the growth of P. capsici, up to 77.7%. Thus, N. commune products were tested in planta against P. capsici, but none of the products showed efficacy in delaying the onset nor reducing the damage due to P. capsici, demonstrating the complexity of the in planta assay’s success and encouraging further research to design an appropriate scaling up methodology. Full article
(This article belongs to the Section Fungal Pathogens)
16 pages, 1280 KiB  
Article
Are Harmful Algal Blooms Increasing in the Great Lakes?
by Karl R. Bosse, Gary L. Fahnenstiel, Cal D. Buelo, Matthew B. Pawlowski, Anne E. Scofield, Elizabeth K. Hinchey and Michael J. Sayers
Water 2024, 16(14), 1944; https://doi.org/10.3390/w16141944 - 10 Jul 2024
Viewed by 201
Abstract
This study used satellite remote sensing to investigate trends in harmful algal blooms (HABs) over the last 21 years, focusing on four regions within the Laurentian Great Lakes: western Lake Erie, Green Bay, Saginaw Bay, and western Lake Superior. HABs in the water [...] Read more.
This study used satellite remote sensing to investigate trends in harmful algal blooms (HABs) over the last 21 years, focusing on four regions within the Laurentian Great Lakes: western Lake Erie, Green Bay, Saginaw Bay, and western Lake Superior. HABs in the water column were identified from remote sensing-derived chlorophyll concentrations, and surface HAB scums were classified based on the Normalized Difference Vegetation Index (NDVI) band ratio index. Using imagery from the Moderate Resolution Imaging Spectroradiometer sensor on the Aqua satellite (MODIS-Aqua) from 2002 to 2022, we generated daily estimates of the HAB and surface scum extents for each region, which were then averaged to generate mean annual extents. We observed a significant decline in the Saginaw Bay mean annual HAB extents over the 21-year study period. Otherwise, no significant changes were observed over this period in any region for either the HAB or surface scum mean annual extents, thus suggesting that HABs are not increasing in the Great Lakes. Despite the lack of increasing trends, the blooms are still recurring annually and causing a negative impact on the nearby communities; thus, we believe that it is crucial to continue studying Great Lakes HABs to monitor the impact of current and future abatement strategies. Full article
Show Figures

Figure 1

29 pages, 3388 KiB  
Article
Kinetics and Mechanism of Cyanobacteria Cell Removal Using Biowaste-Derived Activated Carbons with Assessment of Potential Human Health Impacts
by Irina Kandić, Milan Kragović, Sanja Živković, Jelena Knežević, Stefana Vuletić, Stefana Cvetković and Marija Stojmenović
Toxins 2024, 16(7), 310; https://doi.org/10.3390/toxins16070310 (registering DOI) - 9 Jul 2024
Viewed by 333
Abstract
Harmful cyanobacteria blooms and the escalating impact of cyanotoxins necessitates the effective removal of cyanobacteria from water ecosystems before they release cyanotoxins. In this study, cyanobacteria removal from water samples taken from the eutrophic Aleksandrovac Lake (southern Serbia) was investigated. For that purpose, [...] Read more.
Harmful cyanobacteria blooms and the escalating impact of cyanotoxins necessitates the effective removal of cyanobacteria from water ecosystems before they release cyanotoxins. In this study, cyanobacteria removal from water samples taken from the eutrophic Aleksandrovac Lake (southern Serbia) was investigated. For that purpose, novel activated carbons derived from waste biomass—date palm leaf stalk (P_AC), black alder cone-like flowers (A_AC), and commercial activated carbon from coconut shell (C_AC) as a reference were used. To define the best adsorption conditions and explain the adsorption mechanism, the influence of contact time, reaction volume, and adsorbent mass, as well as FTIR analysis of the adsorbents before and after cyanobacteria removal, were studied. The removal efficiency of P_AC and A_AC achieved for the applied concentration of 10 mg/mL after 15 min was ~99%, while for C_AC after 24 h was only ~92% for the same concentration. To check the safety of the applied materials for human health and the environment, the concentrations of potentially toxic elements (PTEs), the health impact (HI) after water purification, and the toxicity (MTT and Comet assay) of the materials were evaluated. Although the P_AC and A_AC achieved much better removal properties in comparison with the C_AC, considering the demonstrated genotoxicity and cytotoxicity of the P_AC and the higher HI value for the C_AC, only the A_AC was further investigated. Results of the kinetics, FTIR analysis, and examination of the A_AC mass influence on removal efficiency indicated dominance of the physisorption mechanism. Initially, the findings highlighted the superior performance of A_AC, with great potential to be globally commercialized as an effective cyanobacteria cell adsorbent. Full article
Show Figures

Graphical abstract

17 pages, 947 KiB  
Review
Progress in Research on Microplastic Prevalence in Tropical Coastal Environments: A Case Study of the Johor and Singapore Straits
by Emily Curren, Audrey Ern Lee, Denise Ching Yi Yu and Sandric Chee Yew Leong
Microplastics 2024, 3(3), 373-389; https://doi.org/10.3390/microplastics3030023 - 8 Jul 2024
Viewed by 170
Abstract
Microplastics are contaminants in marine ecosystems, posing great threats to biota and human health. In this work, we provide an overview of the progress made in understanding microplastic prevalence in tropical coastal environments, focusing on the Johor and the Singapore Straits as a [...] Read more.
Microplastics are contaminants in marine ecosystems, posing great threats to biota and human health. In this work, we provide an overview of the progress made in understanding microplastic prevalence in tropical coastal environments, focusing on the Johor and the Singapore Straits as a case study. We examine the sources, distribution, transport, and ecological impact of microplastic pollution in this region through a systematic review. All papers relating to marine microplastics in Singapore’s sand and benthic sediments, seawater, and marine biota were used for analysis, from 2004 to 2023. In addition, we discuss the influence of envi-ronmental factors such as coastal morphology and anthropogenic activities on patterns of microplastic accumulation. We emphasize that microplastic pollution is more prevalent along the eutrophic Johor Strait compared to the Singapore Strait due to hydrological conditions. Rainfall is also a key factor that influences mi-croplastic abundance during the monsoon seasons. Furthermore, the bacterial and plankton assemblages of organisms on microplastic surfaces are diverse, with eutrophic waters enhancing the diversity of organisms on microplastic surfaces. Novel harmful cyanobacteria and bloom species of phytoplankton were also found on microplastic surfaces. By synthesizing existing research findings and highlighting regional characteristics, this paper contributes to ongoing efforts to mitigate microplastic pollution in tropical regions. Full article
(This article belongs to the Special Issue Microplastics in Aquatic Enviroments)
Show Figures

Figure 1

19 pages, 5877 KiB  
Review
Metabolic and Lipid Biomarkers for Pathogenic Algae, Fungi, Cyanobacteria, Mycobacteria, Gram-Positive Bacteria, and Gram-Negative Bacteria
by Paul L. Wood
Metabolites 2024, 14(7), 378; https://doi.org/10.3390/metabo14070378 - 6 Jul 2024
Viewed by 474
Abstract
The utilization of metabolomics and lipidomics analytical platforms in the study of pathogenic microbes is slowly expanding. These research approaches will significantly contribute to the establishment of microbial metabolite and lipid databases of significant value to all researchers in microbiology. In this review, [...] Read more.
The utilization of metabolomics and lipidomics analytical platforms in the study of pathogenic microbes is slowly expanding. These research approaches will significantly contribute to the establishment of microbial metabolite and lipid databases of significant value to all researchers in microbiology. In this review, we present a high-level overview of some examples of biomarkers that can be used to detect the presence of microbes, monitor the expansion/decline of a microbe population, and add to our understanding of microbe biofilms and pathogenicity. In addition, increased knowledge of the metabolic functions of pathogenic microbes can contribute to our understanding of microbes that are utilized in diverse industrial applications. Our review focuses on lipids, secondary metabolites, and non-ribosomal peptides that can be monitored using electrospray ionization high-resolution mass spectrometry (ESI-HRMS). Full article
Show Figures

Figure 1

24 pages, 771 KiB  
Review
Application of Cyanobacteria as Chassis Cells in Synthetic Biology
by Xueli Liu, Kaixin Tang and Jinlu Hu
Microorganisms 2024, 12(7), 1375; https://doi.org/10.3390/microorganisms12071375 - 5 Jul 2024
Viewed by 521
Abstract
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it [...] Read more.
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it possible to break through laboratory research into large-scale industrial applications. The synthesis of a range of biochemicals has been demonstrated in cyanobacteria; however, low product titers are the biggest barrier to the commercialization of cyanobacterial biotechnology. This review summarizes the applied improvement strategies from the perspectives of cyanobacteria chassis cells and synthetic biology. The harvest advantages of cyanobacterial products and the latest progress in improving production strategies are discussed according to the product status. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in the application and development of cyanobacteria genetic tool kits in biochemical synthesis, environmental monitoring, and remediation were assessed. Full article
(This article belongs to the Special Issue Advances in Research on Cyanobacteria)
Show Figures

Figure 1

14 pages, 1620 KiB  
Review
Molecular Mechanisms of the Cyanobacterial Response to Different Phosphorus Sources
by Qi Zhang, Lu Jia, Yuchen Chen, Hanlu Yan, Qiuwen Chen, Jianmin Zhang and Hao Sun
Sustainability 2024, 16(13), 5642; https://doi.org/10.3390/su16135642 - 1 Jul 2024
Viewed by 363
Abstract
There are different phosphorus (P) sources of varied concentrations in aquatic ecosystems. The sensing of P by cyanobacteria in the environment is predominantly regulated by two-component signal transduction systems in which the phosphate (Pho) regulon plays a crucial role in maintaining phosphate homeostasis. [...] Read more.
There are different phosphorus (P) sources of varied concentrations in aquatic ecosystems. The sensing of P by cyanobacteria in the environment is predominantly regulated by two-component signal transduction systems in which the phosphate (Pho) regulon plays a crucial role in maintaining phosphate homeostasis. It responds rapidly and connects to metabolic processes through cross-talk mechanisms. However, the physiological and biochemical mechanisms of the cyanobacterial response to different P sources remain unclear. This review article aims to integrate the physiological and molecular information on the regulatory mechanisms of the cyanobacterial response to different P sources in terms of hydrolysis, transport, and inorganic P (DIP) utilization strategies. Topics covered include enzymatic utilization of DOP (C-O-P, C-P), phosphate transport systems, and exploring the potential P metabolic pathways that might occur in cyanobacteria. This is of great significance for mitigating eutrophication and maintaining the sustainable development of aquatic systems. Full article
Show Figures

Figure 1

18 pages, 6929 KiB  
Article
Combined Effects of Lactic Acid Bacteria and Protease on the Fermentation Quality and Microbial Community during 50 Kg Soybean Meal Fermentation Simulating Actual Production Scale
by Huili Pang, Xinyu Zhang, Chen Chen, Hao Ma, Zhongfang Tan, Miao Zhang, Yaoke Duan, Guangyong Qin, Yanping Wang, Zhen Jiao and Yimin Cai
Microorganisms 2024, 12(7), 1339; https://doi.org/10.3390/microorganisms12071339 - 30 Jun 2024
Viewed by 638
Abstract
The improvement in the utilization rate and nutritional value of soybean meal (SBM) represents a significant challenge in the feed industry. This study conducted a 50 kg SBM fermentation based on the 300 g small-scale fermentation of SBM in early laboratory research, to [...] Read more.
The improvement in the utilization rate and nutritional value of soybean meal (SBM) represents a significant challenge in the feed industry. This study conducted a 50 kg SBM fermentation based on the 300 g small-scale fermentation of SBM in early laboratory research, to explore the combined effects of lactic acid bacteria (LAB) and acid protease on fermentation quality, chemical composition, microbial population, and macromolecular protein degradation during fermentation and aerobic exposure of SBM in simulated actual production. The results demonstrated that the increase in crude protein content and reduction in crude fiber content were considerably more pronounced after fermentation for 30 days (d) and subsequent aerobic exposure, compared to 3 d. It is also noteworthy that the treated group exhibited a greater degree of macromolecular protein degradation relative to the control and 30 d of fermentation relative to 3 d. Furthermore, after 30 d of fermentation, adding LAB and protease significantly inhibited the growth of undesired microbes including coliform bacteria and aerobic bacteria. In the mixed group, the microbial diversity decreased significantly, and Firmicutes replaced Cyanobacteria for bacteria in both groups’ fermentation. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

23 pages, 10665 KiB  
Article
The Impact of Artificial Afforestation on the Soil Microbial Community and Function in Desertified Areas of NW China
by Yan Li, Lamei Jiang, Hongfei Yuan, Eryang Li and Xiaodong Yang
Forests 2024, 15(7), 1140; https://doi.org/10.3390/f15071140 - 29 Jun 2024
Viewed by 578
Abstract
Afforestation is a widely used method of controlling desertification globally as it significantly impacts the soil quality, microbial community structure, and function. Investigating the effects of various artificial vegetation restoration models on soil microbial communities is crucial in understanding the mechanisms involved in [...] Read more.
Afforestation is a widely used method of controlling desertification globally as it significantly impacts the soil quality, microbial community structure, and function. Investigating the effects of various artificial vegetation restoration models on soil microbial communities is crucial in understanding the mechanisms involved in combating desertification. However, research on this topic in arid, desertified regions is limited. In this study, we collected soil samples from two types of artificial forests (single species and mixed species) and bare desert soils in desertified areas of Northwest China to explore the impact of afforestation on soil nutrients, the microbial community composition, network relationships, and carbohydrate degradation abilities using metagenomic sequencing techniques. Our findings indicate that afforestation significantly enhances the soil moisture, total carbon, available phosphorus, and total nitrogen levels. The soil under mixed-species forests exhibited significantly higher levels of total carbon, total phosphorus, available phosphorus, and total nitrogen than that under single-species forests. Following afforestation, the populations of Pseudomonadota, Acidobacteriota, and Cyanobacteria increased significantly, whereas Actinomycetota decreased markedly. In single-species forests, Pseudomonadota and Bacillota were enriched, whereas Chloroflexota, Planctomycetota, and Acidobacteriota were more prevalent in mixed-species plantations. Afforestation increases the complexity and stability of microbial community networks. Afforestation enhances microbial metabolic activity, particularly increasing the abundance of carbon degradation functional genes in forest soils compared to bare desert soils. Mixed-species plantations outperform single-species forests in enhancing carbohydrate metabolism, amino acid metabolism, and the biodegradation and metabolism of xenobiotics. The abundance of functional genes associated with the degradation of starch, cellulose, hemicellulose, chitin, and pectin in mixed-species forests was significantly greater than in single-species plantations. Our study shows that mixed-species afforestation effectively improves the soil quality, enhances the stability of soil microbial communities, and bolsters the carbon cycle in arid regions prone to desertification. The reciprocal relationship between microorganisms and plants may serve as an intrinsic mechanism by which mixed-species afforestation more effectively controls desertification. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

16 pages, 726 KiB  
Article
Isolation and Total Synthesis of PM170453, a New Cyclic Depsipeptide Isolated from Lyngbya sp.
by Rogelio Fernández, Marta Pérez, Alejandro Losada, Silvia Reboredo, Asier Gómez-San Juan, María Jesús Martín, Andrés Francesch, Simon Munt and Carmen Cuevas
Mar. Drugs 2024, 22(7), 303; https://doi.org/10.3390/md22070303 - 28 Jun 2024
Viewed by 633
Abstract
In our continuing search for biologically active new chemical entities from marine organisms, we have isolated a new cyclic depsipeptide, PM170453 (1), from a cyanobacterium of the genus Lyngbya sp., collected in the Indo-Pacific Ocean. Structure elucidation of the isolated compound [...] Read more.
In our continuing search for biologically active new chemical entities from marine organisms, we have isolated a new cyclic depsipeptide, PM170453 (1), from a cyanobacterium of the genus Lyngbya sp., collected in the Indo-Pacific Ocean. Structure elucidation of the isolated compound was determined by spectroscopic methods including MS, 1H, 13C and 2D-NMR. To solve the supply problem for 1 and progress pharmaceutical development, the total synthesis of 1 that involves a total of 20 chemical steps in a convergent process was carried out. Its in vitro cytotoxic activity against four human tumor cell lines, as well as the inhibition of the interaction between the programmed cell death protein 1 PD-1 and its ligand PD-L1 were also evaluated. Full article
(This article belongs to the Section Synthesis and Medicinal Chemistry of Marine Natural Products)
15 pages, 2675 KiB  
Article
Effects of Soil Conditioner (Volcanic Ash) on Yield Quality and Rhizosphere Soil Characteristics of Melon
by Dongxu Xue, Yangyang Wang, Hong Sun, Lina Fu, Lihe Zhu, Jiaqi Liu, Zhenyi Zhi, Jiayi He, Wei Wang and Chunyan Wu
Plants 2024, 13(13), 1787; https://doi.org/10.3390/plants13131787 - 27 Jun 2024
Viewed by 327
Abstract
In this study, the effects of soil conditioners on the growth and development of melons and the rhizosphere soil environment were explored. The optimal amount of added soil conditioner was screened to solve the practical production problems of high-quality and high-yield thin-skinned melon. [...] Read more.
In this study, the effects of soil conditioners on the growth and development of melons and the rhizosphere soil environment were explored. The optimal amount of added soil conditioner was screened to solve the practical production problems of high-quality and high-yield thin-skinned melon. The melon variety “Da Shetou” was used as the material. Under the conditions of conventional fertilization and cultivation technology management, different soil conditioners were set up for potted melons. The effects of Pastoral soil (CK), 95% Pastoral soil + 5% volcanic ash soil conditioner (KT1), 85% Pastoral soil + 15% volcanic ash soil conditioner (KT2), 75% Pastoral soil + 25% volcanic ash soil conditioner (KT3), 65% Pastoral soil + 35% volcanic ash soil conditioner (KT4), and 55% Pastoral soil + 45% volcanic ash soil conditioner (KT5) on melon yield, quality, and rhizosphere soil characteristics were investigated. The soil microbial community was analyzed using Illumina MiSeq technology. Compared to CK, KT1, KT3, KT4, and KT5, the KT2 treatment could improve the single fruit yield of melon, increasing it by 4.35%, 2.48%, 2.31%, 5.92%, and 2.92%. Meanwhile, the highest contents of soluble protein, soluble solid, and soluble sugar in the KT2 treatment were 1.89 mg·100 g−1, 16.35%, and 46.44 mg·g−1, which were significantly higher than those in the control treatment. The contents of organic matter, total nitrogen, alkali-soluble nitrogen, nitrate nitrogen, ammonium nitrogen, available potassium, and available phosphorus in melon rhizosphere soil were the highest in the KT2 treatment. Through Alpha diversity analysis, it was found that the Chao1 index, Shannon index, and ACE index were significantly higher in the KT1 treatment than in the control, while, among all groups, the Simpson index and coverage were not significantly different. The dominant bacteria in the six treated samples were mainly Actinobacteriota, Proteobacteria, Cyanobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Myxomycota, Firmicutes, Gemmatimonadota, Verrucomicrobia, and Planctomycetes, which accounted for 96.59~97.63% of the relative abundance of all bacterial groups. Through redundancy analysis (RDA), it was found that the organic matter, electrical conductivity, available phosphorus, and nitrate nitrogen of melon rhizosphere soil were the dominant factors of bacterial community change at the dominant genus level. In summary, 15% ash soil conditioner applied on melon was the selected treatment to provide a theoretical reference for the application of soil conditioner in facility cultivation. Full article
(This article belongs to the Special Issue The Growth and Development of Vegetable Crops)
Show Figures

Figure 1

14 pages, 1845 KiB  
Article
Viromic and Metagenomic Analyses of Commercial Spirulina Fermentations Reveal Remarkable Microbial Diversity
by Brian McDonnell, Elvina Parlindungan, Erika Vasiliauskaite, Francesca Bottacini, Keith Coughlan, Lakshmi Priyadarshini Krishnaswami, Tom Sassen, Gabriele Andrea Lugli, Marco Ventura, Felice Mastroleo, Jennifer Mahony and Douwe van Sinderen
Viruses 2024, 16(7), 1039; https://doi.org/10.3390/v16071039 - 27 Jun 2024
Viewed by 782
Abstract
Commercially produced cyanobacteria preparations sold under the name spirulina are widely consumed, due to their traditional use as a nutrient-rich foodstuff and subsequent marketing as a superfood. Despite their popularity, the microbial composition of ponds used to cultivate these bacteria is understudied. A [...] Read more.
Commercially produced cyanobacteria preparations sold under the name spirulina are widely consumed, due to their traditional use as a nutrient-rich foodstuff and subsequent marketing as a superfood. Despite their popularity, the microbial composition of ponds used to cultivate these bacteria is understudied. A total of 19 pond samples were obtained from small-scale spirulina farms and subjected to metagenome and/or virome sequencing, and the results were analysed. A remarkable level of prokaryotic and viral diversity was found to be present in the ponds, with Limnospira sp. and Arthrospira sp. sometimes being notably scarce. A detailed breakdown of prokaryotic and viral components of 15 samples is presented. Twenty putative Limnospira sp.-infecting bacteriophage contigs were identified, though no correlation between the performance of these cultures and the presence of phages was found. The high diversity of these samples prevented the identification of clear trends in sample performance over time, between ponds or when comparing successful and failed fermentations. Full article
(This article belongs to the Special Issue Diversity and Evolution of Viruses in Ecosystem)
Show Figures

Figure 1

17 pages, 4226 KiB  
Article
C-Phycocyanin Prevents Oxidative Stress, Inflammation, and Lung Remodeling in an Ovalbumin-Induced Rat Asthma Model
by Zayra Mundo-Franco, Julieta Luna-Herrera, Jorge Ismael Castañeda-Sánchez, José Iván Serrano-Contreras, Plácido Rojas-Franco, Vanessa Blas-Valdivia, Margarita Franco-Colín and Edgar Cano-Europa
Int. J. Mol. Sci. 2024, 25(13), 7031; https://doi.org/10.3390/ijms25137031 - 27 Jun 2024
Viewed by 456
Abstract
Asthma is a chronic immunological disease related to oxidative stress and chronic inflammation; both processes promote airway remodeling with collagen deposition and matrix thickening, causing pulmonary damage and lost function. This study investigates the immunomodulation of C-phycocyanin (CPC), a natural blue pigment purified [...] Read more.
Asthma is a chronic immunological disease related to oxidative stress and chronic inflammation; both processes promote airway remodeling with collagen deposition and matrix thickening, causing pulmonary damage and lost function. This study investigates the immunomodulation of C-phycocyanin (CPC), a natural blue pigment purified from cyanobacteria, as a potential alternative treatment to prevent the remodeling process against asthma. We conducted experiments using ovalbumin (OVA) to induce asthma in Sprague Dawley rats. Animals were divided into five groups: (1) sham + vehicle, (2) sham + CPC, (3) asthma + vehicle, (4) asthma + CPC, and (5) asthma + methylprednisolone (MP). Our findings reveal that asthma promotes hypoxemia, leukocytosis, and pulmonary myeloperoxidase (MPO) activity by increasing lipid peroxidation, reactive oxygen and nitrogen species, inflammation associated with Th2 response, and airway remodeling in the lungs. CPC and MP treatment partially prevented these physiological processes with similar action on the biomarkers evaluated. In conclusion, CPC treatment enhanced the antioxidant defense system, thereby preventing oxidative stress and reducing airway inflammation by regulating pro-inflammatory and anti-inflammatory cytokines, consequently avoiding asthma-induced airway remodeling. Full article
(This article belongs to the Special Issue Advances in Lung Inflammation, Injury, and Repair)
Show Figures

Figure 1

13 pages, 8213 KiB  
Article
The Recycling Characteristics of Different Silicon Forms and Biogenic Silicon in the Surface Sediments of Dianchi Lake, Southwest China
by Yong Liu, Jv Liu, Guoli Xu, Jingfu Wang, Kai Xu, Zuxue Jin and Guojia Huang
Water 2024, 16(13), 1824; https://doi.org/10.3390/w16131824 - 26 Jun 2024
Viewed by 692
Abstract
Silicon (Si) is one of the main biogenic elements in the aquatic ecosystem of lakes, significantly affecting the primary productivity of lakes. Lake sediment is an important sink of Si, which exists in different Si forms and will be released and participate in [...] Read more.
Silicon (Si) is one of the main biogenic elements in the aquatic ecosystem of lakes, significantly affecting the primary productivity of lakes. Lake sediment is an important sink of Si, which exists in different Si forms and will be released and participate in the recycling of Si when the sediment environment changes. Compared to carbon (C), nitrogen (N) and phosphorus (P), the understanding of different Si forms in sediments and their biogeochemical cycling is currently insufficient. Dianchi Lake, a typical eutrophic lake in southwest China, was selected as an example, and the contents of different Si forms and biogenic silicon (BSi), as well as their correlations with total organic carbon (TOC), total nitrogen (TN), and chlorophyll a in the surface sediments, were systematically investigated to explore Si’s recycling characteristics. The results showed that the coupling relationship of the four different Si forms in the surface sediments of Dianchi Lake was poor (p > 0.05), indicating that their sources were relatively independent. Moreover, their formation may be greatly influenced by the adsorption, fixation and redistribution of dissolved silicon by different lake substances. The contents of different Si forms in the surface sediments of Dianchi Lake were ranked as iron-manganese-oxide-bonded silicon (IMOF-Si) > organic sulfide-bonded silicon (OSF-Si) > ion-exchangeable silicon (IEF-Si) > carbonate-bound silicon (CF-Si). In particular, the contents of IMOF-Si and OSF-Si reached 2983.7~3434.7 mg/kg and 1067.6~1324.3 mg/kg, respectively, suggesting that the release and recycling of Si in surface sediments may be more sensitive to changes in redox conditions at the sediment–water interface, which become the main pathway for Si recycling, and the slow degradation of organic matter rich in OSF-Si may lead to long-term and continuous endogenous Si recycling. The low proportion (0.3~0.6%) and spatial differences of biogenic silicon (BSi) in the surface sediments of Dianchi Lake, as well as the poor correlation between BSi and TOC, TN, and chlorophyll a, indicated that the primary productivity of Dianchi Lake was still dominated by cyanobacteria and other algal blooms, while the relative abundance of siliceous organisms such as diatoms was low and closer to the central area of Dianchi Lake. Additionally, BSi may have a faster release capability relative to TOC and may participate in Si recycling. Full article
(This article belongs to the Special Issue Soil Erosion and Contaminant Management in Watersheds)
Show Figures

Figure 1

16 pages, 4204 KiB  
Article
Eco-Engineering Improves Water Quality and Mediates Plankton–Nutrient Interactions in a Restored Wetland
by Xue Tian, Lei Qin, Yuanchun Zou, Han Yu, Yu Li, Yuxiang Yuan and Ming Jiang
Water 2024, 16(13), 1821; https://doi.org/10.3390/w16131821 - 26 Jun 2024
Viewed by 767
Abstract
Eco-engineering is an important tool for wetland restoration, but there are still large theoretical and application gaps in the knowledge of the effects of eco-engineering implementation on the interactions between environmental conditions and organisms during wetland restoration processes. In this study, we investigated [...] Read more.
Eco-engineering is an important tool for wetland restoration, but there are still large theoretical and application gaps in the knowledge of the effects of eco-engineering implementation on the interactions between environmental conditions and organisms during wetland restoration processes. In this study, we investigated water quality parameters and plankton communities in a national wetland park to clarify the mechanism of changes in plankton community structure and their ecological networks before and after the eco-engineering project. Undoubtedly, we found water quality was significantly improved with increased metazooplankton diversity after the implementation of eco-engineering. Ecological engineering reduced the effect of farmland drainage on the restored wetland and changed the phytoplankton community structure, which significantly reduced the relative abundance of Cyanobacteria and increased the relative abundance of Bacillariophyta. The structural equation modeling revealed that the total effect of metazooplankton on phytoplankton was significantly enhanced and associated with weakened relationships between phytoplankton and environmental variables after eco-engineering. In addition, the ecological network analysis also showed that the network connection between phytoplankton and metazooplankton was stronger after the eco-engineering implementation, leading to an enhanced biotic interactions in different trophic levels. These results indicate that the main approach to regulating primary producers in wetland ecosystems changed from “bottom-up” control to a combination of “bottom-up” and “top-down” control under the intervention of artificial recovery measures. Our findings shed new light on the effects of eco-engineering on the interactions between water quality and organisms and provide a scientific basis for the sustainable management of wetland ecosystems. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

Back to TopTop