Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (844)

Search Parameters:
Keywords = dendrimers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1002 KiB  
Review
Current Trends on Unique Features and Role of Nanomaterials in Personal Care Products
by Nimasha L. Rathnasinghe, Kotuwegoda G. Kaushani, Praveena S. Rajapakshe, Awanthi De Silva, Randika A. Jayasinghe, Renuka N. Liyanage, Nadeeka D. Tissera, Ruchira N. Wijesena and Gayan Priyadarshana
Cosmetics 2024, 11(5), 152; https://doi.org/10.3390/cosmetics11050152 - 4 Sep 2024
Abstract
Nanotechnology has applications in a variety of scientific specialties, encompassing health, technological devices, and now cosmetics under the generic term of nanocosmetics. Due to the improved particle qualities, such as color, transparency, and solubility, acquired at the nanoscale, nanotechnology significantly affects the cosmetic [...] Read more.
Nanotechnology has applications in a variety of scientific specialties, encompassing health, technological devices, and now cosmetics under the generic term of nanocosmetics. Due to the improved particle qualities, such as color, transparency, and solubility, acquired at the nanoscale, nanotechnology significantly affects the cosmetic industry. Skin penetration mechanism depends heavily on the nanoparticles’ physicochemical properties, including stiffness, hydrophobicity, size, and charge. An expanding industry that requires more research and development has been created by nanoparticle production technologies. Liposomes, solid lipid nanoparticles, cubosomes, dendrimers, and other nanomaterials offer advanced skincare properties. Cosmetics made using nanotechnology have the advantages of product diversity, increased bioavailability of active compounds, and enhanced pleasing appearance of cosmetics with long-lasting benefits. The various cosmetic brands’ utilization of various types of nanomaterials in their products is highlighted in this review. Full article
Show Figures

Figure 1

26 pages, 10708 KiB  
Article
Organic Heterostructures with Dendrimer Based Mixed Layer for Electronic Applications
by Oana Rasoga, Anne Lutgarde Djoumessi Yonkeu, Carmen Breazu, Marcela Socol, Nicoleta Preda, Florin Stanculescu, Anca Stanculescu and Emmanuel Iwuoha
Molecules 2024, 29(17), 4155; https://doi.org/10.3390/molecules29174155 - 1 Sep 2024
Viewed by 585
Abstract
Recently, much research has focused on the search for new mixed donor–acceptor layers for applications in organic electronics. Organic heterostructures with layers based on the generation 1 poly(propylene thiophenoimine) (G1PPT) dendrimer, N,N′-diisopropylnaphthalene diimide (MNDI), and a combination of the two were prepared and [...] Read more.
Recently, much research has focused on the search for new mixed donor–acceptor layers for applications in organic electronics. Organic heterostructures with layers based on the generation 1 poly(propylene thiophenoimine) (G1PPT) dendrimer, N,N′-diisopropylnaphthalene diimide (MNDI), and a combination of the two were prepared and their electrical properties were investigated. Single layers of G1PPT and MNDI and a mixed layer (G1PPT:MNDI) were obtained via spin coating on quartz glass, silicon, and glass/ITO substrates, using chloroform as a solvent. The absorption mechanism was investigated, the degree of disorder was estimated, and the emission properties of the layers were highlighted using spectroscopic methods (UV–Vis transmission and photoluminescence). The effects of the concentration and surface topographical particularities on the properties of the layers were analyzed via atomic force microscopy. All of the heterostructures realized with ITO and Au electrodes showed good conduction, with currents of the order of mA. Additionally, the heterostructure with a mixed layer exhibited asymmetry in the current–voltage curve between forward and reverse polarization in the lower range of the applied voltages, which was more significant at increased concentrations and could be correlated with rectifier diode behavior. Consequently, the mixed-layer generation 1 poly(propylene thiophenoimine) dendrimer with N,N′-diisopropylnaphthalene diimide can be considered promising for electronic applications. Full article
Show Figures

Figure 1

15 pages, 1213 KiB  
Review
Dendrimers—Novel Therapeutic Approaches for Alzheimer’s Disease
by Magdalena Mroziak, Gracjan Kozłowski, Weronika Kołodziejczyk, Magdalena Pszczołowska, Kamil Walczak, Jan Aleksander Beszłej and Jerzy Leszek
Biomedicines 2024, 12(8), 1899; https://doi.org/10.3390/biomedicines12081899 - 20 Aug 2024
Viewed by 463
Abstract
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer’s disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated [...] Read more.
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer’s disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated as a drug-delivery system or as a drug per se. With their ability to inhibit amyloid formation and their anti-tau properties, they are a promising therapeutic option for AD patients. Studies have shown that dendrimers may inhibit amyloid formation in at least two ways: by blocking fibril growth and by breaking already existing fibrils. Neurofibrillary tangles (NFTs) are abnormal filaments built by tau proteins that can be accumulated in the cell, which leads to the loss of cytoskeletal microtubules and tubulin-associated proteins. Cationic phosphorus dendrimers, with their anti-tau properties, can induce the aggregation of tau into amorphous structures. Drug delivery to mitochondria is difficult due to poor transport across biological barriers, such as the inner mitochondrial membrane, which is highly negatively polarized. Dendrimers may be potential nanocarriers and increase mitochondria targeting. Another considered use of dendrimers in AD treatment is as a drug-delivery system, for example, carbamazepine (CBZ) or tacrine. They can also be used to transport siRNA into neuronal tissue and to carry antioxidants and anti-inflammatory drugs to act protectively on the nervous system. Full article
(This article belongs to the Special Issue Alzheimer's Disease—115 Years after Its Discovery 2.0)
Show Figures

Figure 1

36 pages, 1627 KiB  
Review
Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment
by Agata M. Gawel, Anna Betkowska, Ewa Gajda, Marlena Godlewska and Damian Gawel
Biomedicines 2024, 12(8), 1822; https://doi.org/10.3390/biomedicines12081822 - 11 Aug 2024
Viewed by 836
Abstract
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, [...] Read more.
The increase in the variety of nano-based tools offers new possibilities to approach the therapy of poorly treatable tumors, which includes glioblastoma multiforme (GBM; a primary brain tumor). The available nanocomplexes exhibit great potential as vehicles for the targeted delivery of anti-GBM compounds, including chemotherapeutics, nucleic acids, and inhibitors. The main advantages of nanoparticles (NPs) include improved drug stability, increased penetration of the blood–brain barrier, and better precision of tumor targeting. Importantly, alongside their drug-delivery ability, NPs may also present theranostic properties, including applications for targeted imaging or photothermal therapy of malignant brain cells. The available NPs can be classified into two categories according to their core, which can be metal or non-metal based. Among non-metal NPs, the most studied in regard to GBM treatment are exosomes, liposomes, cubosomes, polymeric NPs, micelles, dendrimers, nanogels, carbon nanotubes, and silica- and selenium-based NPs. They are characterized by satisfactory stability and biocompatibility, limited toxicity, and high accumulation in the targeted tumor tissue. Moreover, they can be easily functionalized for the improved delivery of their cargo to GBM cells. Therefore, the non-metal NPs discussed here, offer a promising approach to improving the treatment outcomes of aggressive GBM tumors. Full article
(This article belongs to the Special Issue Advances in Cancer Biology and Experimental Anticancer Therapies)
Show Figures

Figure 1

22 pages, 6796 KiB  
Article
A Novel PAMAM G3 Dendrimer-Based Foam with Polyether Polyol and Castor Oil Components as Drug Delivery System into Cancer and Normal Cells
by Magdalena Zaręba, Elżbieta Chmiel-Szukiewicz, Łukasz Uram, Justyna Noga, Magdalena Rzepna and Stanisław Wołowiec
Materials 2024, 17(16), 3905; https://doi.org/10.3390/ma17163905 - 7 Aug 2024
Viewed by 796
Abstract
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently [...] Read more.
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4′-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin—DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

17 pages, 2461 KiB  
Article
New Approaches for Basophil Activation Tests Employing Dendrimeric Antigen–Silica Nanoparticle Composites
by Silvia Calvo-Serrano, Esther Matamoros, Jose Antonio Céspedes, Rubén Fernández-Santamaría, Violeta Gil-Ocaña, Ezequiel Perez-Inestrosa, Cecilia Frecha, Maria I. Montañez, Yolanda Vida, Cristobalina Mayorga and Maria J. Torres
Pharmaceutics 2024, 16(8), 1039; https://doi.org/10.3390/pharmaceutics16081039 - 3 Aug 2024
Viewed by 604
Abstract
In vitro cell activation through specific IgE bound to high-affinity receptors on the basophil surface is a widely used strategy for the evaluation of IgE-mediated immediate hypersensitivity reactions to betalactams. Cellular activation requires drug conjugation to a protein to form a large enough [...] Read more.
In vitro cell activation through specific IgE bound to high-affinity receptors on the basophil surface is a widely used strategy for the evaluation of IgE-mediated immediate hypersensitivity reactions to betalactams. Cellular activation requires drug conjugation to a protein to form a large enough structure displaying a certain distance between haptens to allow the cross-linking of two IgE antibodies bound to the basophil’s surface, triggering their degranulation. However, no information about the size and composition of these conjugates is available. Routine in vitro diagnosis using the basophil activation test uses free amoxicillin, which is assumed to conjugate to a carrier present in blood. To standardize the methodology, we propose the use of well-controlled and defined nanomaterials functionalized with amoxicilloyl. Silica nanoparticles decorated with PAMAM–dendrimer–amoxicilloyl conjugates (NpDeAXO) of different sizes and amoxicilloyl densities (50–300 µmol amoxicilloyl/gram nanoparticle) have been prepared and chemically characterized. Two methods of synthesis were performed to ensure reproducibility and stability. Their functional effect on basophils was measured using an in-house basophil activation test (BAT) that determines CD63+ or CD203chigh activation markers. It was observed that NpDeAXO nanocomposites are not only able to specifically activate basophils but also do so in a more effective way than free amoxicillin, pointing to a translational potential diagnosis. Full article
Show Figures

Figure 1

14 pages, 5013 KiB  
Article
Selective Cellular Uptake and Druggability Efficacy through Functionalized Chitosan-Conjugated Polyamidoamine (PAMAM) Dendrimers
by Ye Hu, Jian Chen and Wenyan Hu
Sensors 2024, 24(15), 4853; https://doi.org/10.3390/s24154853 - 26 Jul 2024
Viewed by 464
Abstract
Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by [...] Read more.
Nanotechnology has ushered in significant advancements in drug design, revolutionizing the prevention, diagnosis, and treatment of various diseases. The strategic utilization of nanotechnology to enhance drug loading, delivery, and release has garnered increasing attention, leveraging the enhanced physical and chemical properties offered by these systems. Polyamidoamine (PAMAM) dendrimers have been pivotal in drug delivery, yet there is room for further enhancement. In this study, we conjugated PAMAM dendrimers with chitosan (CS) to augment cellular internalization in tumor cells. Specifically, doxorubicin (DOX) was initially loaded into PAMAM dendrimers to form DOX-loaded PAMAM (DOX@PAMAM) complexes via intermolecular forces. Subsequently, CS was linked onto the DOX-loaded PAMAM dendrimers to yield CS-conjugated PAMAM loaded with DOX (DOX@CS@PAMAM) through glutaraldehyde crosslinking via the Schiff base reaction. The resultant DOX@CS@PAMAM complexes were comprehensively characterized using Fourier-transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering (DLS). Notably, while the drug release profile of DOX@CS@PAMAM in acidic environments was inferior to that of DOX@PAMAM, DOX@CS@PAMAM demonstrated effective acid-responsive drug release, with a cumulative release of 70% within 25 h attributed to the imine linkage. Most importantly, DOX@CS@PAMAM exhibited significant selective cellular internalization rates and antitumor efficacy compared to DOX@PAMAM, as validated through cell viability assays, fluorescence imaging, and flow cytometry analysis. In summary, DOX@CS@PAMAM demonstrated superior antitumor effects compared to unconjugated PAMAM dendrimers, thereby broadening the scope of dendrimer-based nanomedicines with enhanced therapeutic efficacy and promising applications in cancer therapy. Full article
(This article belongs to the Special Issue Intelligent Medical Sensors and Applications)
Show Figures

Figure 1

16 pages, 4696 KiB  
Review
Polyamidoamine Dendrimers: Brain-Targeted Drug Delivery Systems in Glioma Therapy
by Xinyi Yan and Qi Chen
Polymers 2024, 16(14), 2022; https://doi.org/10.3390/polym16142022 - 15 Jul 2024
Viewed by 724
Abstract
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for [...] Read more.
Glioma is the most common primary intracranial tumor, which is formed by the malignant transformation of glial cells in the brain and spinal cord. It has the characteristics of high incidence, high recurrence rate, high mortality and low cure rate. The treatments for glioma include surgical removal, chemotherapy and radiotherapy. Due to the obstruction of the biological barrier of brain tissue, it is difficult to achieve the desired therapeutic effects. To address the limitations imposed by the brain’s natural barriers and enhance the treatment efficacy, researchers have effectively used brain-targeted drug delivery systems (DDSs) in glioma therapy. Polyamidoamine (PAMAM) dendrimers, as branched macromolecular architectures, represent promising candidates for studies in glioma therapy. This review focuses on PAMAM-based DDSs in the treatment of glioma, highlighting their physicochemical characteristics, structural properties as well as an overview of the toxicity and safety profiles. Full article
Show Figures

Figure 1

16 pages, 2668 KiB  
Article
ROS–Responsive Ferrocenyl Amphiphilic PAMAM Dendrimers for On–Demand Delivery of siRNA Therapeutics to Cancer Cells
by Peng Chen, Zhihui Wang, Xinmo Wang, Junni Gong, Ju Sheng, Yufei Pan, Dandan Zhu and Xiaoxuan Liu
Pharmaceutics 2024, 16(7), 936; https://doi.org/10.3390/pharmaceutics16070936 - 13 Jul 2024
Viewed by 645
Abstract
Small interfering RNA (siRNA) therapeutics, characterized by high specificity, potency, and durability, hold great promise in the treatment of cancer and other diseases. However, the clinic implementation of siRNA therapeutics critically depends on the safe and on–demand delivery of siRNA to the target [...] Read more.
Small interfering RNA (siRNA) therapeutics, characterized by high specificity, potency, and durability, hold great promise in the treatment of cancer and other diseases. However, the clinic implementation of siRNA therapeutics critically depends on the safe and on–demand delivery of siRNA to the target cells. Here, we reported a family of ferrocenyl amphiphilic dendrimers (Fc-AmDs) for on–demand delivery of siRNA in response to the high ROS content in cancer cells. These dendrimers bear ROS–sensitive ferrocene moieties in the hydrophobic components and positively chargeable poly(amidoamine) dendrons as the hydrophilic entities, possessing favorable safety profiles and ROS responsive properties. One of these ferrocenyl amphiphilic dendrimers, Fc-C8-AmD 8A, outperforms in siRNA delivery, benefiting from its optimal balance of hydrophobicity and hydrophilicity. Its ROS feature facilitates specific and efficient disassembly of its complex with siRNA in ROS–rich cancer cells for effective siRNA delivery and gene silencing. Moreover, Fc-C8-AmD 8A also integrates the features and beneficial properties of both lipid and dendrimer vectors. Therefore, it represents a novel on–demand delivery system for cancer cell–specific siRNA delivery. This work opens new perspectives for designing self–assembly nanosystems for on–demand drug delivery. Full article
(This article belongs to the Special Issue Applications of Dendrimers in Biomedicine, 2nd Edition)
Show Figures

Figure 1

32 pages, 3644 KiB  
Review
Analytical Model to Deduce the Conformational and Dynamical Behavior in Dendrimers: A Review
by Shelly Bhardwaj and Amit Kumar
Polymers 2024, 16(13), 1918; https://doi.org/10.3390/polym16131918 - 5 Jul 2024
Viewed by 540
Abstract
This review utilizes an optimized Rouse–Zimm discrete hydrodynamic model and the preaveraged Oseen tensor, which accurately consider hydrodynamic interactions to study model dendrimers. We report the analytical theories that have been previously developed for the creation of generalized analytical models for dendrimers. These [...] Read more.
This review utilizes an optimized Rouse–Zimm discrete hydrodynamic model and the preaveraged Oseen tensor, which accurately consider hydrodynamic interactions to study model dendrimers. We report the analytical theories that have been previously developed for the creation of generalized analytical models for dendrimers. These generalized theories were used to assess the conformational and dynamical behavior of the dendrimers. By including stiffness in the bonds, the neglect of excluded volume interactions may be somewhat offset. This is true at least in the case of short spacers. While the topological limitations on the directions and orientations of the individual bond vectors in dendrimers implement semiflexibility, the intensity of these contacts was determined by the potential geometric orientations of the bonds, and later on the excluded volume interactions in dendrimers, which were described in terms of the effective co-volume between nearest non-bonded monomers and modeled using the delta function pseudopotential. With the aid of the models developed, the authors condensed various conformational and dynamic properties of dendrimers that depend on their degree of semiflexibility and the strength of the excluded volume. These analyses came to the conclusion that the flexible dendrimer in one limit and the earlier described freely rotating model of dendrimers in the other constitute a highly generalized way of capturing a wide range of conformations in the developed mathematical model in dendrimers. Full article
(This article belongs to the Special Issue Research on Polymer Simulation, Modeling and Computation: 2nd Edition)
Show Figures

Graphical abstract

23 pages, 3493 KiB  
Article
Dendrimer Platforms for Targeted Doxorubicin Delivery—Physicochemical Properties in Context of Biological Responses
by Magdalena Szota, Urszula Szwedowicz, Nina Rembialkowska, Anna Janicka-Klos, Daniel Doveiko, Yu Chen, Julita Kulbacka and Barbara Jachimska
Int. J. Mol. Sci. 2024, 25(13), 7201; https://doi.org/10.3390/ijms25137201 - 29 Jun 2024
Cited by 1 | Viewed by 848
Abstract
The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The [...] Read more.
The unique structure of G4.0 PAMAM dendrimers allows a drug to be enclosed in internal spaces or immobilized on the surface. In the conducted research, the conditions for the formation of the active G4.0 PAMAM complex with doxorubicin hydrochloride (DOX) were optimized. The physicochemical properties of the system were monitored using dynamic light scattering (DLS), circular dichroism (CD), and fluorescence spectroscopy. The Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) method was chosen to determine the preferential conditions for the complex formation. The highest binding efficiency of the drug to the cationic dendrimer was observed under basic conditions when the DOX molecule was deprotonated. The decrease in the zeta potential of the complex confirms that DOX immobilizes through electrostatic interaction with the carrier’s surface amine groups. The binding constants were determined from the fluorescence quenching of the DOX molecule in the presence of G4.0 PAMAM. The two-fold way of binding doxorubicin in the structure of dendrimers was visible in the Isothermal calorimetry (ITC) isotherm. Fluorescence spectra and release curves identified the reversible binding of DOX to the nanocarrier. Among the selected cancer cells, the most promising anticancer activity of the G4.0-DOX complex was observed in A375 malignant melanoma cells. Moreover, the preferred intracellular location of the complexes concerning the free drug was found, which is essential from a therapeutic point of view. Full article
Show Figures

Figure 1

17 pages, 1769 KiB  
Perspective
Nanoengineering Solutions for Cancer Therapy: Bridging the Gap between Clinical Practice and Translational Research
by Pankaj Garg, Siddhika Pareek, Prakash Kulkarni, Ravi Salgia and Sharad S. Singhal
J. Clin. Med. 2024, 13(12), 3466; https://doi.org/10.3390/jcm13123466 - 13 Jun 2024
Viewed by 802
Abstract
Nanoengineering has emerged as a progressive method in cancer treatment, offering precise and targeted delivery of therapeutic agents while concurrently reducing overall toxicity. This scholarly article delves into the innovative strategies and advancements in nanoengineering that bridge the gap between clinical practice and [...] Read more.
Nanoengineering has emerged as a progressive method in cancer treatment, offering precise and targeted delivery of therapeutic agents while concurrently reducing overall toxicity. This scholarly article delves into the innovative strategies and advancements in nanoengineering that bridge the gap between clinical practice and research in the field of cancer treatment. Various nanoengineered platforms such as nanoparticles, liposomes, and dendrimers are scrutinized for their capacity to encapsulate drugs, augment drug efficacy, and enhance pharmacokinetics. Moreover, the article investigates research breakthroughs that drive the progression and enhancement of nanoengineered remedies, encompassing the identification of biomarkers, establishment of preclinical models, and advancement of biomaterials, all of which are imperative for translating laboratory findings into practical medical interventions. Furthermore, the integration of nanotechnology with imaging modalities, which amplify cancer detection, treatment monitoring, and response assessment, is thoroughly examined. Finally, the obstacles and prospective directions in nanoengineering, including regulatory challenges and issues related to scalability, are examined. This underscores the significance of fostering collaboration among various entities in order to efficiently translate nanoengineered interventions into enhanced cancer therapies and patient management. Full article
Show Figures

Figure 1

14 pages, 1255 KiB  
Review
Neuroprotective Effects of Curcumin in Neurodegenerative Diseases
by Giuseppe Genchi, Graziantonio Lauria, Alessia Catalano, Alessia Carocci and Maria Stefania Sinicropi
Foods 2024, 13(11), 1774; https://doi.org/10.3390/foods13111774 - 5 Jun 2024
Viewed by 5262
Abstract
Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson’s Disease (PD), Alzheimer’s Disease (AD), Huntington’s Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion [...] Read more.
Curcumin, a hydrophobic polyphenol extracted from the rhizome of Curcuma longa, is now considered a candidate drug for the treatment of neurological diseases, including Parkinson’s Disease (PD), Alzheimer’s Disease (AD), Huntington’s Disease (HD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), and prion disease, due to its potent anti-inflammatory, antioxidant potential, anticancerous, immunomodulatory, neuroprotective, antiproliferative, and antibacterial activities. Traditionally, curcumin has been used for medicinal and dietary purposes in Asia, India, and China. However, low water solubility, poor stability in the blood, high rate of metabolism, limited bioavailability, and little capability to cross the blood–brain barrier (BBB) have limited the clinical application of curcumin, despite the important pharmacological activities of this drug. A variety of nanocarriers, including liposomes, micelles, dendrimers, cubosome nanoparticles, polymer nanoparticles, and solid lipid nanoparticles have been developed with great success to effectively deliver the active drug to brain cells. Functionalization on the surface of nanoparticles with brain-specific ligands makes them target-specific, which should significantly improve bioavailability and reduce harmful effects. The aim of this review is to summarize the studies on curcumin and/or nanoparticles containing curcumin in the most common neurodegenerative diseases, highlighting the high neuroprotective potential of this nutraceutical. Full article
Show Figures

Figure 1

14 pages, 1621 KiB  
Article
Cationic Glucan Dendrimer Gel-Mediated Local Delivery of Anti-OC-STAMP-siRNA for Treatment of Pathogenic Bone Resorption
by Kenta Yamamoto, Shin-Ichi Sawada, Satoru Shindo, Shin Nakamura, Young M. Kwon, Nazanin Kianinejad, Saynur Vardar, Maria Hernandez, Kazunari Akiyoshi and Toshihisa Kawai
Gels 2024, 10(6), 377; https://doi.org/10.3390/gels10060377 - 31 May 2024
Viewed by 658
Abstract
Osteoclast stimulatory transmembrane protein (OC-STAMP) plays a pivotal role in the promotion of cell fusion during osteoclast differentiation (osteoclastogenesis) in the context of pathogenic bone resorption. Thus, it is plausible that the suppression of OC-STAMP through a bioengineering approach could lead to the [...] Read more.
Osteoclast stimulatory transmembrane protein (OC-STAMP) plays a pivotal role in the promotion of cell fusion during osteoclast differentiation (osteoclastogenesis) in the context of pathogenic bone resorption. Thus, it is plausible that the suppression of OC-STAMP through a bioengineering approach could lead to the development of an effective treatment for inflammatory bone resorptive diseases with minimum side effects. Here, we synthesized two types of spermine-bearing (Spe) cationic glucan dendrimer (GD) gels (with or without C12) as carriers of short interfering RNA (siRNA) to silence OC-STAMP. The results showed that amphiphilic C12-GD-Spe gel was more efficient in silencing OC-STAMP than GD-Spe gel and that the mixture of anti-OC-STAMP siRNA/C12-GD-Spe significantly downregulated RANKL-induced osteoclastogenesis. Also, local injection of anti-OC-STAMP-siRNA/C12-GD-Spe could attenuate bone resorption induced in a mouse model of periodontitis. These results suggest that OC-STAMP is a promising target for the development of a novel bone regenerative therapy and that C12-GD-Spe gel provides a new nanocarrier platform of gene therapies for osteolytic disease. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

19 pages, 2724 KiB  
Article
1,3,5-Triazine as Branching Connector for the Construction of Novel Antimicrobial Peptide Dendrimers: Synthesis and Biological Characterization
by Rotimi Sheyi, Jessica T. Mhlongo, Marta Jorba, Ester Fusté, Anamika Sharma, Miguel Viñas, Fernando Albericio, Paula Espinal and Beatriz G. de la Torre
Int. J. Mol. Sci. 2024, 25(11), 5883; https://doi.org/10.3390/ijms25115883 - 28 May 2024
Viewed by 669
Abstract
Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in [...] Read more.
Peptides displaying antimicrobial properties are being regarded as useful tools to evade and combat antimicrobial resistance, a major public health challenge. Here we have addressed dendrimers, attractive molecules in pharmaceutical innovation and development displaying broad biological activity. Triazine-based dendrimers were fully synthesized in the solid phase, and their antimicrobial activity and some insights into their mechanisms of action were explored. Triazine is present in a large number of compounds with highly diverse biological targets with broad biological activities and could be an excellent branching unit to accommodate peptides. Our results show that the novel peptide dendrimers synthesized have remarkable antimicrobial activity against Gram-negative bacteria (E. coli and P. aeruginosa) and suggest that they may be useful in neutralizing the effect of efflux machinery on resistance. Full article
Show Figures

Figure 1

Back to TopTop