Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (178)

Search Parameters:
Keywords = dielectric elastomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3035 KiB  
Article
Fiber-Reinforced Equibiaxial Dielectric Elastomer Actuator for Out-of-Plane Displacement
by Simon Holzer, Stefania Konstantinidi, Markus Koenigsdorff, Thomas Martinez, Yoan Civet, Gerald Gerlach and Yves Perriard
Materials 2024, 17(15), 3672; https://doi.org/10.3390/ma17153672 - 25 Jul 2024
Viewed by 324
Abstract
Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address [...] Read more.
Dielectric elastomer actuators (DEAs) have gained significant attention due to their potential in soft robotics and adaptive structures. However, their performance is often limited by their in-plane strain distribution and limited mechanical stability. We introduce a novel design utilizing fiber reinforcement to address these challenges. The fiber reinforcement provides enhanced mechanical integrity and improved strain distribution, enabling efficient energy conversion and out-of-plane displacement. We discuss an analytical model and the fabrication process, including material selection, to realize fiber-reinforced DEAs. Numerical simulations and experimental results demonstrate the performance of the fiber-reinforced equibiaxial DEAs and characterize their displacement and force capabilities. Actuators with four and eight fibers are fabricated with 100 μm and 200 μm dielectric thicknesses. A maximal out-of-plane displacement of 500 μm is reached, with a force of 0.18 N, showing promise for the development of haptic devices. Full article
(This article belongs to the Special Issue Interactive Fiber Rubber Composites—Volume II)
Show Figures

Graphical abstract

31 pages, 5661 KiB  
Review
Solid-State Electromechanical Smart Material Actuators for Pumps—A Review
by Eva Ann Sideris, Hendrik Cornelis de Lange, Urmas Johanson and Tarmo Tamm
Actuators 2024, 13(7), 232; https://doi.org/10.3390/act13070232 - 22 Jun 2024
Viewed by 593
Abstract
Solid-state electromechanical smart material actuators are versatile as they permit diverse shapes and designs and can exhibit different actuation modes. An important advantage of these actuators compared to conventional ones is that they can be easily miniaturized to a sub-millimeter scale. In recent [...] Read more.
Solid-state electromechanical smart material actuators are versatile as they permit diverse shapes and designs and can exhibit different actuation modes. An important advantage of these actuators compared to conventional ones is that they can be easily miniaturized to a sub-millimeter scale. In recent years, there has been a great surge in novel liquid pumps operated by these smart material actuators. These devices create opportunities for applications in fields ranging from aerospace and robotics to the biomedical and drug delivery industries. Although these have mainly been prototypes, a few products have already entered the market. To assist in the further development of this research track, we provide a taxonomy of the electromechanical smart material actuators available, and subsequently focus on the ones that have been utilized for operating pumps. The latter includes unidirectional shape memory alloy-, piezoelectric ceramic-, ferroelectric polymer-, dielectric elastomer-, ionic polymer metal composite- and conducting polymer-based actuators. Their properties are reviewed in the context of engineering pumps and summarized in comprehensive tables. Given the diverse requirements of pumps, these varied smart materials and their actuators offer exciting possibilities for designing and constructing devices for a wide array of applications. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

14 pages, 5235 KiB  
Article
Continuous Optical Zoom Compound Eye Imaging Using Alvarez Lenses Actuated by Dielectric Elastomers
by Chuanxun Chen, Qun Hao, Lin Liu, Jie Cao, Zhibo Qiao and Yang Cheng
Biomimetics 2024, 9(6), 374; https://doi.org/10.3390/biomimetics9060374 - 20 Jun 2024
Viewed by 562
Abstract
The compound eye is a natural multi-aperture optical imaging system. In this paper, a continuous optical zoom compound eye imaging system based on Alvarez lenses is proposed. The main optical imaging part of the proposed system consists of a curved Alvarez lens array [...] Read more.
The compound eye is a natural multi-aperture optical imaging system. In this paper, a continuous optical zoom compound eye imaging system based on Alvarez lenses is proposed. The main optical imaging part of the proposed system consists of a curved Alvarez lens array (CALA) and two Alvarez lenses. The movement of the CALA and two Alvarez lenses perpendicular to the optical axis is realized by the actuation of the dielectric elastomers (DEs). By adjusting the focal length of the CALA and the two Alvarez lenses, the proposed system can realize continuous zoom imaging without any mechanical movement vertically to the optical axis. The experimental results show that the paraxial magnification of the target can range from ∼0.30× to ∼0.9×. The overall dimensions of the optical imaging part are 54 mm × 36 mm ×60 mm (L × W × H). The response time is 180 ms. The imaging resolution can reach up to 50 lp/mm during the optical zoom process. The proposed continuous optical zoom compound eye imaging system has potential applications in various fields, including large field of view imaging, medical diagnostics, machine vision, and distance detection. Full article
(This article belongs to the Special Issue Bionic Imaging and Optical Devices: 2nd Edition)
Show Figures

Figure 1

17 pages, 2893 KiB  
Article
DE-AFO: A Robotic Ankle Foot Orthosis for Children with Cerebral Palsy Powered by Dielectric Elastomer Artificial Muscle
by Vahid Mohammadi, Mohammad Tajdani, Mobina Masaei, Sahel Mohammadi Ghalehney, Samuel C. K. Lee and Ahad Behboodi
Sensors 2024, 24(12), 3787; https://doi.org/10.3390/s24123787 - 11 Jun 2024
Cited by 1 | Viewed by 1056
Abstract
Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO [...] Read more.
Conventional passive ankle foot orthoses (AFOs) have not seen substantial advances or functional improvements for decades, failing to meet the demands of many stakeholders, especially the pediatric population with neurological disorders. Our objective is to develop the first comfortable and unobtrusive powered AFO for children with cerebral palsy (CP), the DE-AFO. CP is the most diagnosed neuromotor disorder in the pediatric population. The standard of care for ankle control dysfunction associated with CP, however, is an unmechanized, bulky, and uncomfortable L-shaped conventional AFO. These passive orthoses constrain the ankle’s motion and often cause muscle disuse atrophy, skin damage, and adverse neural adaptations. While powered orthoses could enhance natural ankle motion, their reliance on bulky, noisy, and rigid actuators like DC motors limits their acceptability. Our innovation, the DE-AFO, emerged from insights gathered during customer discovery interviews with 185 stakeholders within the AFO ecosystem as part of the NSF I-Corps program. The DE-AFO is a biomimetic robot that employs artificial muscles made from an electro-active polymer called dielectric elastomers (DEs) to assist ankle movements in the sagittal planes. It incorporates a gait phase detection controller to synchronize the artificial muscles with natural gait cycles, mimicking the function of natural ankle muscles. This device is the first of its kind to utilize lightweight, compact, soft, and silent artificial muscles that contract longitudinally, addressing traditional actuated AFOs’ limitations by enhancing the orthosis’s natural feel, comfort, and acceptability. In this paper, we outline our design approach and describe the three main components of the DE-AFO: the artificial muscle technology, the finite state machine (the gait phase detection system), and its mechanical structure. To verify the feasibility of our design, we theoretically calculated if DE-AFO can provide the necessary ankle moment assistance for children with CP—aligning with moments observed in typically developing children. To this end, we calculated the ankle moment deficit in a child with CP when compared with the normative moment of seven typically developing children. Our results demonstrated that the DE-AFO can provide meaningful ankle moment assistance, providing up to 69% and 100% of the required assistive force during the pre-swing phase and swing period of gait, respectively. Full article
(This article belongs to the Special Issue Sensing Technologies in Medical Robot)
Show Figures

Figure 1

17 pages, 11970 KiB  
Article
Preparation of PANI/CuPc/PDMS Composite Elastomer with High Dielectric Constant and Low Modulus Assisted by Electric Fields
by Jinjin Hu, Beizhi Chu, Xueqing Liu, Huaixiao Wei, Jianwen Wang, Xue Kan, Yumin Xia, Shuohan Huang and Yuwei Chen
Polymers 2024, 16(11), 1549; https://doi.org/10.3390/polym16111549 - 30 May 2024
Viewed by 372
Abstract
Dielectric elastomer is a kind of electronic electroactive polymer, which plays an important role in the application of soft robots and flexible electronics. In this study, an all-organic polyaniline/copper phthalocyanine/silicone rubber (PANI/CuPc/PDMS) dielectric composite with superior comprehensive properties was prepared by manipulating the [...] Read more.
Dielectric elastomer is a kind of electronic electroactive polymer, which plays an important role in the application of soft robots and flexible electronics. In this study, an all-organic polyaniline/copper phthalocyanine/silicone rubber (PANI/CuPc/PDMS) dielectric composite with superior comprehensive properties was prepared by manipulating the arrangement of filler in a polymer matrix assisted by electric fields. Both CuPc particles and PANI particles can form network structures in the PDMS matrix by self-assembly under electric fields, which can enhance the dielectric properties of the composites at low filler content. The dielectric constant of the assembled PANI/CuPc/PDMS composites can reach up to 140 at 100 Hz when the content of CuPc and PANI particles is 4 wt% and 2.5 wt%, respectively. Moreover, the elastic modulus of the composites remains below 2 MPa, which is important for electro-deforming. The strain of assembled PANI/CuPc/PDMS three-phase composites at low electric field strength (2 kV/mm) can increase up to five times the composites with randomly dispersed particles, which makes this composite have potential application in the field of soft robots and flexible electronics. Full article
Show Figures

Figure 1

18 pages, 5743 KiB  
Article
Optimizing Capacitive Pressure Sensor Geometry: A Design of Experiments Approach with a Computer-Generated Model
by Kiran Keshyagol, Shivashankarayya Hiremath, Vishwanatha H. M., Achutha Kini U., Nithesh Naik and Pavan Hiremath
Sensors 2024, 24(11), 3504; https://doi.org/10.3390/s24113504 - 29 May 2024
Viewed by 989
Abstract
This study presents a comprehensive investigation into the design and optimization of capacitive pressure sensors (CPSs) for their integration into capacitive touch buttons in electronic applications. Using the Finite Element Method (FEM), various geometries of dielectric layers were meticulously modeled and analyzed for [...] Read more.
This study presents a comprehensive investigation into the design and optimization of capacitive pressure sensors (CPSs) for their integration into capacitive touch buttons in electronic applications. Using the Finite Element Method (FEM), various geometries of dielectric layers were meticulously modeled and analyzed for their capacitive and sensitivity parameters. The flexible elastomer polydimethylsiloxane (PDMS) is used as a diaphragm, and polyvinylidene fluoride (PVDF) is a flexible material that acts as a dielectric medium. The Design of Experiment (DoE) techniques, aided by statistical analysis, were employed to identify the optimal geometric shapes of the CPS model. From the prediction using the DoE approach, it is observed that the cylindrical-shaped dielectric medium has better sensitivity. Using this optimal configuration, the CPS was further examined across a range of dielectric layer thicknesses to determine the capacitance, stored electrical energy, displacement, and stress levels at uniform pressures ranging from 0 to 200 kPa. Employing a 0.1 mm dielectric layer thickness yields heightened sensitivity and capacitance values, which is consistent with theoretical efforts. At a pressure of 200 kPa, the sensor achieves a maximum capacitance of 33.3 pF, with a total stored electric energy of 15.9 × 10−12 J and 0.468 pF/Pa of sensitivity for 0.1 dielectric thickness. These findings underscore the efficacy of the proposed CPS model for integration into capacitive touch buttons in electronic devices and e-skin applications, thereby offering promising advancements in sensor technology. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 3641 KiB  
Article
Strain Effect on Dielectricity of Elastic Thermoplastic Polyurethanes
by Yubo Wang, Huali Yang, Yali Xie, Xilai Bao, Lili Pan, Dan Zhao, Jinxia Chen, Mengting Zou, Tian Tian and Runwei Li
Polymers 2024, 16(11), 1465; https://doi.org/10.3390/polym16111465 - 22 May 2024
Viewed by 597
Abstract
Dielectric elastomers, such as thermoplastic polyurethanes (TPUs), are widely used as the dielectric layer, encapsulation layer, and substrate of flexible and stretchable devices. To construct capacitors and actuators that work stably upon deformation, it has become urgent to investigate the evolution of dielectricity [...] Read more.
Dielectric elastomers, such as thermoplastic polyurethanes (TPUs), are widely used as the dielectric layer, encapsulation layer, and substrate of flexible and stretchable devices. To construct capacitors and actuators that work stably upon deformation, it has become urgent to investigate the evolution of dielectricity under stress and strain. However, the lack of effective methods for estimating the dielectric constant of elastomers under strain poses a big challenge. This study reports a device for the in situ measurement of the dielectric constant of TPU under strain. It is found that upon stretching TPU to a strain of 400%, its dielectric constant decreases from 8.02 ± 0.01 to 2.88 ± 0.25 (at 1 MHz). In addition, combined Fourier-transform infrared spectroscopy, the X-ray scattering technique, and atomic force microscopy were utilized to characterize the evolution of the microstructure under strain. The investigation under tensile strain reveals a decreased density and average size of polarized hard domains, along with a tendency of the molecular chains to align in parallel with the tensile stress. The evolution of the microstructures results in a reduction in the measured dielectric constant in TPU. Full article
Show Figures

Figure 1

14 pages, 7380 KiB  
Article
Dielectric Elastomer Actuators with Enhanced Durability by Introducing a Reservoir Layer
by Sumin Jung, Minchae Kang and Min-Woo Han
Polymers 2024, 16(9), 1277; https://doi.org/10.3390/polym16091277 - 2 May 2024
Viewed by 765
Abstract
A Dielectric Elastomer Actuator (DEA) consists of electrodes with a dielectric layer between them. By controlling the design of the electrodes, voltage, and frequency, the operating range and speed of the DEA can be adjusted. These DEAs find applications in biomimetic robots, artificial [...] Read more.
A Dielectric Elastomer Actuator (DEA) consists of electrodes with a dielectric layer between them. By controlling the design of the electrodes, voltage, and frequency, the operating range and speed of the DEA can be adjusted. These DEAs find applications in biomimetic robots, artificial muscles, and similar fields. When voltage is applied to the DEA, the dielectric layer undergoes compression and expansion due to electrostatic forces, which can lead to electrical breakdown. This phenomenon is closely related to the performance and lifespan of the DEA. To enhance stability and improve dielectric properties, a DEA Reservoir layer is introduced. Here, stability refers to the ability of the DEA to perform its functions even as the applied voltage increases. The Reservoir layer delays electrical breakdown and enhances stability due to its enhanced thickness. The proposed DEA in this paper is composed of a Reservoir layer and electrode layer. The Reservoir layer is placed between the electrode layers and is independently configured, not subjected to applied voltage like the electrode layers. The performance of the DEA was evaluated by varying the number of polymer layers in the Reservoir and electrode designs. Introducing the Reservoir layer improved the dielectric properties of the DEA and delayed electrical breakdown. Increasing the dielectric constant through the DEA Reservoir can enhance output characteristics in response to electrical signals. This approach can be utilized in various applications in wearable devices, artificial muscles, and other fields. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

36 pages, 2377 KiB  
Review
Dielectric Elastomer-Based Actuators: A Modeling and Control Review for Non-Experts
by Hector Medina, Carson Farmer and Isaac Liu
Actuators 2024, 13(4), 151; https://doi.org/10.3390/act13040151 - 17 Apr 2024
Cited by 1 | Viewed by 1743
Abstract
Soft robotics are attractive to researchers and developers due to their potential for biomimicry applications across a myriad of fields, including biomedicine (e.g., surgery), the film industry (e.g., animatronics), ecology (e.g., physical ‘animats’), human–robot interactions (e.g., social robots), and others. In contrast to [...] Read more.
Soft robotics are attractive to researchers and developers due to their potential for biomimicry applications across a myriad of fields, including biomedicine (e.g., surgery), the film industry (e.g., animatronics), ecology (e.g., physical ‘animats’), human–robot interactions (e.g., social robots), and others. In contrast to their rigid counterparts, soft robotics offer obvious actuation benefits, including their many degrees of freedom in motion and their potential to mimic living organisms. Many material systems have been proposed and used for soft robotic applications, involving soft actuators, sensors, and generators. This review focuses on dielectric elastomer (DE)-based actuators, which are more general electro-active polymer (EAP) smart materials. EAP-based soft robots are very attractive for various reasons: (a) energy can be efficiently (and readily) stored in electrical form; (b) both power and information can be transferred rapidly via electrical phenomena; (c) computations using electronic means are readily available. Due to their potential and benefits, DE-based actuators are attractive to researchers and developers from multiple fields. This review aims to (1) provide non-experts with an “easy-to-follow” survey of the most important aspects and challenges to consider when implementing DE-based soft actuators, and (2) emphasize current solutions and challenges related to the materials, controls, and portability of DE-based soft-actuator systems. First, we start with some fundamental functions, applications, and configurations; then, we review the material models and their selection. After, we outline material limitations and challenges along with some thermo-mechano-chemical treatments to overcome some of those limitations. Finally, we outline some of the control schemes, including modern techniques, and suggest using rewritable hardware for faster and more adaptive controls. Full article
(This article belongs to the Special Issue Actuators in 2024)
Show Figures

Figure 1

24 pages, 4300 KiB  
Review
Electromechanical Deformations and Bifurcations in Soft Dielectrics: A Review
by Yipin Su, Xudong Shen, Zinan Zhao, Bin Wu and Weiqiu Chen
Materials 2024, 17(7), 1499; https://doi.org/10.3390/ma17071499 - 26 Mar 2024
Cited by 1 | Viewed by 753
Abstract
Dielectric elastomers have attracted considerable attention both from academia and industry alike over the last two decades due to their superior mechanical properties. In parallel, research on the mechanical properties of dielectrics has been steadily advancing, including the theoretical, experimental, and numerical aspects. [...] Read more.
Dielectric elastomers have attracted considerable attention both from academia and industry alike over the last two decades due to their superior mechanical properties. In parallel, research on the mechanical properties of dielectrics has been steadily advancing, including the theoretical, experimental, and numerical aspects. It has been recognized that the electromechanical coupling property of dielectric materials can be utilized to drive deformations in functional devices in a more controllable and intelligent manner. This paper reviews recent advances in the theory of dielectrics, with specific attention focused on the theory proposed by Dorfmann and Ogden. Additionally, we provide examples illustrating the application of this theory to analyze the electromechanical deformations and the associated bifurcations in soft dielectrics. We compared the bifurcations in elastic and dielectric materials and found that only compressive bifurcation modes exist in elastic structures, whereas both compressive and tensile modes coexist in dielectric structures. We summarize two proposed ways to suppress and prevent the tensile bifurcations in dielectric materials. We hope that this literature survey will foster further advancements in the field of the electroelastic theory of soft dielectrics. Full article
Show Figures

Figure 1

14 pages, 7814 KiB  
Article
Finger Prosthesis Driven by DEA Pairs as Agonist–Antagonist Artificial Muscles
by Alexandre B. S. da Silva, Gabriel E. P. Mendes, Eduardo S. Bragato, Guilherme L. Novelli, Marina Monjardim and Rafhael M. Andrade
Biomimetics 2024, 9(2), 110; https://doi.org/10.3390/biomimetics9020110 - 13 Feb 2024
Viewed by 1369
Abstract
Loss of an upper limb exerts a negative influence on an individual’s ability to perform their activities of daily living (ADLs), reducing quality of life and self-esteem. A prosthesis capable of performing basic ADLs functions has the capability of restoring independence and autonomy [...] Read more.
Loss of an upper limb exerts a negative influence on an individual’s ability to perform their activities of daily living (ADLs), reducing quality of life and self-esteem. A prosthesis capable of performing basic ADLs functions has the capability of restoring independence and autonomy to amputees. However, current technologies present in robotic prostheses are based on rigid actuators with several drawbacks, such as high weight and low compliance. Recent advances in robotics have allowed for the development of flexible actuators and artificial muscles to overcome the limitations of rigid actuators. Dielectric elastomer actuators (DEAs) consist of a thin elastomer membrane arranged between two compliant electrodes capable of changing dimensions when stimulated with an electrical potential difference. In this work, we present the design and testing of a finger prosthesis driven by two DEAs arranged as agonist–antagonist pairs as artificial muscles. The soft actuators are designed as fiber-constrained dielectric elastomers (FCDE), enabling displacement in just one direction as natural muscles. The finger prosthesis was designed and modeled to show bend movement using just one pair of DEAs and was made of PLA in an FDM 3D printer to be lightweight. The experimental results show great agreement with the proposed model and indicate that the proposed finger prosthesis is promising in overcoming the limitations of the current rigid based actuators. Full article
(This article belongs to the Special Issue Bionic Technology—Robotic Exoskeletons and Prostheses: 2nd Edition)
Show Figures

Figure 1

14 pages, 3403 KiB  
Article
Dielectric Behavior of Stretchable Silicone Rubber–Barium Titanate Composites
by Argyri Drymiskianaki, Klytaimnistra Katsara, Alexandra Manousaki, Zacharias Viskadourakis and George Kenanakis
Crystals 2024, 14(2), 160; https://doi.org/10.3390/cryst14020160 - 2 Feb 2024
Viewed by 1416
Abstract
In this study, elastomer composites, including silicone rubber and barium titanate, were fabricated by mechanical mixing, a low-cost, fast, and easy technique to produce highly dielectric materials. The resulting composites were investigated in terms of their dielectric and mechanical properties in terms of [...] Read more.
In this study, elastomer composites, including silicone rubber and barium titanate, were fabricated by mechanical mixing, a low-cost, fast, and easy technique to produce highly dielectric materials. The resulting composites were investigated in terms of their dielectric and mechanical properties in terms of filler percentage in the mixture. Dielectric permittivity measurements were taken using the microwave regime, and uniaxial tensile tests were carried out for the study of the materials’ mechanical properties, while combined experiments were also carried out to investigate potential correlations between them. The experimental results show that barium titanate inclusions in silicone matrix significantly improve the dielectric constant while reducing the mechanical properties of composites. In addition, combined experiments show that the composites exhibit a nearly stable dielectric profile under mechanical deformations. Consequently, mechanically mixed barium titanate–silicone elastomer composites could potentially become a cost-effective alternative in the extensive market for insulating materials and flexible electronics. Full article
(This article belongs to the Special Issue Mechanical Metamaterials)
Show Figures

Figure 1

14 pages, 7084 KiB  
Article
Influence of Active-to-Passive Ratio on the Deformation in Circular Dielectric Elastomer Actuators
by Markus Koenigsdorff, Hans Liebscher, Petr Osipov, Johannes Mersch and Gerald Gerlach
Micromachines 2024, 15(1), 125; https://doi.org/10.3390/mi15010125 - 11 Jan 2024
Cited by 2 | Viewed by 894
Abstract
To further improve the performance of dielectric elastomer actuaotrs (DEAs), the development of novel elastomers with enhanced electro-mechanical properties is focal for the advancement of the technology. Hence, reliable techniques to assess their electro-mechanical performance are necessary. Characterization of the actuator materials is [...] Read more.
To further improve the performance of dielectric elastomer actuaotrs (DEAs), the development of novel elastomers with enhanced electro-mechanical properties is focal for the advancement of the technology. Hence, reliable techniques to assess their electro-mechanical performance are necessary. Characterization of the actuator materials is often achieved by fabricating circular DEAs with the pre-stretch of the membrane fixed by a stiff frame. Because of this set-up, the electrode size relative to the carrier frame’s dimension has an impact on actuator strain and displacement. To allow for comparable results across different studies, the influence of this effect needs to be quantified and taken into account. This paper presents an in-depth study of the active-to-passive ratio by proposing two simplified analytical models for circular DEA and comparing them. The first model is taking the hyperelastic material properties of the dielectric film into account while the second model is a linear elastic lumped parameter model based on the electro-mechanical analogy. Both models lie in good agreement and show a significant linear impact of the radial active-to-passive ratio on the electro-active strain and a resulting maximum of displacement around 50% radial coverage ratio. These findings are validated by experiments with actuators fabricated using silicone membranes. It is shown that the electrode size is not only an important parameter in the experimental design, but in some cases of higher significance for the accuracy of analytical models than the hyperelastic properties of the material. Furthermore, it could be shown that a radial coverage ratio of around 50% is desirable when measuring displacement as it maximizes the displacement and lowers the impact of deviations in electrode sizes due to fabrication errors. Full article
Show Figures

Figure 1

9 pages, 1583 KiB  
Communication
Transparent and Flexible Actuator Based on a Hybrid Dielectric Layer of Wavy Polymer and Dielectric Fluid Mixture
by Mallappa Mahanthappa, Hyun-U Ko and Sang-Youn Kim
Polymers 2024, 16(2), 188; https://doi.org/10.3390/polym16020188 - 8 Jan 2024
Viewed by 911
Abstract
Transparent and flexible vibrotactile actuators play an essential role in human–machine interaction applications by providing mechanical stimulations that can effectively convey haptic sensations. In the present study, we fabricated an electroactive, flexible, and transparent vibrotactile actuator with a dielectric layer including a dielectric [...] Read more.
Transparent and flexible vibrotactile actuators play an essential role in human–machine interaction applications by providing mechanical stimulations that can effectively convey haptic sensations. In the present study, we fabricated an electroactive, flexible, and transparent vibrotactile actuator with a dielectric layer including a dielectric elastomer and dielectric fluid mixture. The dielectric fluid mixture of propylene carbonate (PC) and acetyl tributyl citrate (ATBC) was injected to obtain a transparent dielectric layer. To further improve the haptic performance, different weight ratios of dielectric fluid (PC: ATBC) were injected. The fabricated vibrotactile actuators based on a transparent dielectric layer were investigated for their electrical and electromechanical behavior. The proposed actuators generate a large vibrational intensity (~2.5 g) in the range of 200–250 Hz. Hence, the proposed actuators open up a new class of vibrotactile actuators for possible use in various domains, including robotics, smart textiles, teleoperation, and the metaverse. Full article
(This article belongs to the Special Issue Advanced Stimuli-Responsive Polymer Composites)
Show Figures

Figure 1

15 pages, 3981 KiB  
Article
The Effect of Magnetically Induced Local Structure and Volume Fraction on the Electromagnetic Properties of Elastomer Samples with Ferrofluid Droplet Inserts
by Catalin N. Marin and Iosif Malaescu
Magnetochemistry 2024, 10(1), 4; https://doi.org/10.3390/magnetochemistry10010004 - 2 Jan 2024
Viewed by 1528
Abstract
The magnetic permeability (μ), dielectric permittivity (ε) and electrical conductivity (σ) of six elastomer samples obtained by mixing silicone rubber (RTV-530) with a kerosene-based ferrofluid in different volume fractions (φ), 1.31%, 2.59% and 3.84%, were [...] Read more.
The magnetic permeability (μ), dielectric permittivity (ε) and electrical conductivity (σ) of six elastomer samples obtained by mixing silicone rubber (RTV-530) with a kerosene-based ferrofluid in different volume fractions (φ), 1.31%, 2.59% and 3.84%, were determined using complex impedance measurements over a frequency range of 500 Hz–2 MHz. Three samples (A0, B0 and C0) were manufactured in the absence of a magnetic field, and the other three samples (Ah, Bh and Ch) were manufactured in the presence of a magnetic field, H = 43 kA/m. The component μ″ of the complex effective magnetic permeability of all samples presents a maximum at a frequency, fmax, that moves to higher values by increasing φ, with this maximum being attributed to Brownian relaxation processes. The conductivity spectrum, σ (f), of all samples follows the Jonscher universal law, which allows for both the determination of the static conductivity, σDC, and the barrier energy of the electrical conduction process, Wm. For the same φ, Wm is lower, and σDC is higher in the samples Ah, Bh and Ch than in the samples A0, B0 and C0. The performed study is useful in manufacturing elastomers with predetermined properties and for possible applications such as magneto-dielectric flexible electronic devices, which can be controlled by the volume fraction of particles or by an external magnetic field. Full article
(This article belongs to the Section Magnetic Materials)
Show Figures

Figure 1

Back to TopTop