Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,036)

Search Parameters:
Keywords = engine friction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4769 KiB  
Article
An Efficient Solution for Probabilistic Slope Seismic Stability Analysis Based on Polynomial Chao Kriging Metamodel
by Tingting Zhang and Daniel Dias
GeoHazards 2024, 5(2), 530-546; https://doi.org/10.3390/geohazards5020027 (registering DOI) - 13 Jun 2024
Viewed by 126
Abstract
Slope stability analysis plays a crucial role in geotechnical engineering, particularly in regions susceptible to seismic activity. The inherent non-homogeneity and uncertainty of soil properties pose significant challenges in assessing slope stability under seismic conditions. To address these complexities, a novel and efficient [...] Read more.
Slope stability analysis plays a crucial role in geotechnical engineering, particularly in regions susceptible to seismic activity. The inherent non-homogeneity and uncertainty of soil properties pose significant challenges in assessing slope stability under seismic conditions. To address these complexities, a novel and efficient methodology named DUBLA-PDM-PCK is proposed. In this methodology, the effects of soil non-homogeneity and uncertainty, along with the time and spatial variations of seismic loading, are systematically considered. The deterministic framework integrates discretized upper bound limit analysis (DUBLA) to accommodate soil non-homogeneous characteristics, and the pseudo-dynamic method (PDM) to model seismic loading variability. Then, a robust and efficient probabilistic analysis method, PCK-MA, is implemented utilizing adaptive Polynomial Chaos Kriging metamodeling, Monte Carlo Simulation, and Analysis of Covariance to investigate the uncertainty of the parameters. This approach treats nine key parameters, including soil cohesion, friction angle, non-homogeneous coefficients, horizontal and vertical seismic coefficients, period, and amplification factor, as random variables to assess their uncertainty effects on failure probability (stability level) and sensitivity indices. The DUBLA-PDM-PCK methodology offers a streamlined and reliable tool tailored for assessing slope stability in seismic environments, demonstrating notable efficiency in addressing soil variability and seismic loading uncertainties. Its application holds promise for guiding engineering practices and enhancing understanding of slope behavior in regions prone to seismic hazards. Full article
Show Figures

Figure 1

18 pages, 4186 KiB  
Article
Study on the Impact of Deep Foundation Excavation of Reclaimed Land on the Deformation of Adjacent Subway Tunnels
by Fenghai Ma, Senlin Li and Qiongyi Wang
Buildings 2024, 14(6), 1771; https://doi.org/10.3390/buildings14061771 - 12 Jun 2024
Viewed by 206
Abstract
The objective of this research is to investigate the characteristics of the deformation response in adjacent subway tunnels caused by deep foundation excavation of reclaimed land. Focusing on a deep foundation excavation project situated in proximity to Line 11 of the subway in [...] Read more.
The objective of this research is to investigate the characteristics of the deformation response in adjacent subway tunnels caused by deep foundation excavation of reclaimed land. Focusing on a deep foundation excavation project situated in proximity to Line 11 of the subway in Shenzhen, this study employs theoretical analysis, numerical simulation, and on-site measurements to thoroughly investigate the deformation issues induced by the unloading of the excavation. The research results are as follows: using the energy method to calculate the uneven deformation of adjacent subway tunnels caused by the excavation can overcome the limitations of traditional algorithms, which treat the subway tunnel as a uniformly elastic foundation beam, resulting in more reasonable calculation results. Increasing the self-stiffness (EI)eq of the tunnel can effectively reduce the maximum displacement (wmax) of the tunnel, and as (EI)eq increases, its “weakening effect” on wmax gradually diminishes. Underground continuous walls can effectively control tunnel deformation, with tunnel displacement decreasing as the thickness and concrete strength of the continuous walls increase. “Long excavation” deep foundation excavations can impact the displacement and uplift range of the tunnel, with the maximum tunnel displacement showing a nonlinear decrease with increasing excavation depth. Tunnel displacement decreases as geotechnical parameters (elastic modulus E, internal friction angle φ, and cohesion C) increase, with the elastic modulus being the most sensitive parameter. The research findings can be applied to tunnel construction, maintenance, and safety evaluations, providing valuable references for similar engineering projects in the future. Full article
Show Figures

Figure 1

19 pages, 9521 KiB  
Article
Experimental Study on Preparation of Tungsten-Carbide-Particle-Reinforced Nickel-Based Alloy Plasma Surfacing Layer on Descaling Roller Surface
by Lei Feng, Chang Li, Xing Han, Fenghua Luo and Han Sun
Coatings 2024, 14(6), 729; https://doi.org/10.3390/coatings14060729 - 6 Jun 2024
Viewed by 381
Abstract
The descaling roller is a significant component in steel rolling production. Under harsh service conditions, the descaling roller is subjected to the dynamic impact caused by high-pressure water erosion and a high-temperature billet descaling process for a long time. Under the harsh conditions [...] Read more.
The descaling roller is a significant component in steel rolling production. Under harsh service conditions, the descaling roller is subjected to the dynamic impact caused by high-pressure water erosion and a high-temperature billet descaling process for a long time. Under the harsh conditions of high temperature, strong wear, multi-cycle heat, force, flow, and multi-field strong coupling, the roller surface is prone to wear and corrosion failure, which affects the production cost and efficiency. Through plasma surfacing technology, a high-performance coating can be applied on the conventional metal surface to effectively improve its surface properties. It is important to carry out experimental research on the surface plasma surfacing of the descaling roller to prolong product life, improve product quality, and save cost. At present, the research on the 42CrMo scaler matrix plasma surfacing of nickel-based alloys with different WC contents is still lacking. In this paper, 70%NiCrBSi+30%WC powder and 40%NiCrBSi+60%WC powder were used as surfacing materials; plasma surfacing experiments were carried out on the 42CrMo matrix; and SEM, XRD, microhardness, friction and wear, and corrosion tests were carried out on the surfacing layer to evaluate the feasibility of preparing an ultra-high-hardness WC-particle-reinforced nickel-based alloy plasma surfacing layer on the descaling roller surface and to explore the WC hard phase dissolution behavior and complex secondary phase formation mechanism. The results show that γ(Fe/Ni), Fe-Ni, FeSi, Fe3C, and M7C3 are the main phases in the Ni/WC plasma surfacing layer. The diffusion and precipitation of elements occur in the molten pool, and complex secondary phases are formed in the surfacing layer. Compared with the 70%NiCrBSi+30%WC surfacing layer, the WC deposition phenomenon of the 40%NiCrBSi+60%WC surfacing layer has been significantly improved and has better hardness, wear resistance, and corrosion resistance. Based on the welding test, the correlation law between powder formulation, welding structure, and surfacing layer properties was revealed in this study, which lays a theoretical foundation for the preparation of high-performance coating on the descaling roller surface and has significant engineering application value and practical significance. Full article
Show Figures

Figure 1

15 pages, 6840 KiB  
Article
Dynamic Binary-Medium Model for Jointed Rock Subjected to Cyclic Loading
by Mingxing Liu, Enlong Liu, Xingyan Liu and Qingsong Zheng
Mathematics 2024, 12(11), 1765; https://doi.org/10.3390/math12111765 - 6 Jun 2024
Viewed by 268
Abstract
Revealing the damage mechanism of jointed rocks under a cyclic loading and formulating the corresponding dynamic constitutive model to meet the requirements for the evaluation of anti-vibration safety for critical engineering construction and operation is an essential, urgent and basic subject. Based on [...] Read more.
Revealing the damage mechanism of jointed rocks under a cyclic loading and formulating the corresponding dynamic constitutive model to meet the requirements for the evaluation of anti-vibration safety for critical engineering construction and operation is an essential, urgent and basic subject. Based on the breakage mechanics for geological material, jointed rock is considered as a binary-medium material composed of the bonded elements and frictional elements. The bonded elements are regarded as elastic-brittle elements, and the frictional elements are regarded as elastic-plastic elements. Firstly, the static binary-medium model for jointed rock is established based on the homogenization method and by introducing the breakage ratio and the strain concentration coefficient. Then, the dynamic binary-medium model for jointed rock under cyclic loads is established considering the nonlinear damage effect resulting from cyclic loads. The breakage ratio formula is improved, and the Drucker–Prager criterion is introduced. During the unloading stage, it is supposed that the breakage ratios and strain concentration coefficients remain unchanged and the stress–strain ratios of both bonded elements and frictional elements are constant. The model is verified by static and dynamic triaxial tests of jointed rock samples with an interpenetrated joint. It is found that the model can describe the nonlinear stress–strain characteristics of a jointed rock subjected to cyclic loads relatively well and can reflect the effects of cyclic loading on the deformation and damage, including the lateral deformation characteristics. Meanwhile, the typical three-stage (varying from sparse to dense to sparse) evolution laws of the stress–strain curves are also reflected relatively well. Full article
(This article belongs to the Special Issue Numerical Modeling and Simulation in Geomechanics)
Show Figures

Figure 1

18 pages, 6011 KiB  
Article
Bioinspired Coastal Barriers: A Preliminary Laboratory Study on the Hydraulic Performances of Shapes Inspired by Marine Organisms
by Valentina Perricone, Pasquale Contestabile, Antonio Mele, Nasrin Hassanpour, Diego Vicinanza and Mario Buono
Sustainability 2024, 16(11), 4839; https://doi.org/10.3390/su16114839 - 6 Jun 2024
Viewed by 321
Abstract
Coastal erosion, extreme climate events, and the loss of biodiversity are important consequences of climate change that directly impact our society. The needs to develop effective engineering practices using nature as model and mentor are now emerging aimed to develop high-performance coastal infrastructures [...] Read more.
Coastal erosion, extreme climate events, and the loss of biodiversity are important consequences of climate change that directly impact our society. The needs to develop effective engineering practices using nature as model and mentor are now emerging aimed to develop high-performance coastal infrastructures integrating and sustaining local marine ecosystems. In this scenario, the present article describes the concept development and preliminary experimentation of simplified bioinspired models to evaluate their hydraulic performances. This study is part of a future vision to develop submerged barriers, printed with eco-friendly materials, characterized by high hydraulic performances and cable of supporting local biodiversity. Following a top-down approach, the functional features of key organisms were abstracted and transferred to create three bioinspired models. The hydraulic performance of these models is analyzed in terms of wave transmission, reflection, and dissipation under various wave conditions. Under certain circumstances, the bioinspired barriers demonstrate wave attenuation comparable to traditional submerged breakwaters. A method based on skin friction and drag-related processes provides a simple heuristic explanation of how the shape of the models affect the transmission coefficient. The results achieved offer valuable insights for the design of future coastal defense systems that are inspired by, and integrated with, natural ecosystems. Full article
Show Figures

Figure 1

14 pages, 1086 KiB  
Article
Tribological and Mechanical Behavior of Automotive Crankshaft Steel Superficially Modified Using the Boriding Hardening Process
by Enrique Hernández-Sánchez, Diego Hernández-Domínguez, Raúl Tadeo-Rosas, Yesenia Sánchez-Fuentes, Luz Alejandra Linares-Duarte, Carlos Orozco-Álvarez, José Guadalupe Miranda-Hernández and Rafael Carrera-Espinoza
Coatings 2024, 14(6), 716; https://doi.org/10.3390/coatings14060716 - 5 Jun 2024
Viewed by 309
Abstract
One of the primary challenges in the automotive industry is the wear of engine components, such as the crankshaft and camshaft, which is the most pronounced during the engine’s startup phase, when the amount of lubricant fluid is at its lowest. This study [...] Read more.
One of the primary challenges in the automotive industry is the wear of engine components, such as the crankshaft and camshaft, which is the most pronounced during the engine’s startup phase, when the amount of lubricant fluid is at its lowest. This study aims to enhance the surface wear resistance of automotive crankshaft steel by applying a boriding thermochemical process. This process forms a hard surface layer on the steel, improving its mechanical properties and bolstering its wear resistance, especially under dry conditions. Boride layers were achieved using the powder-pack boriding process in a conventional furnace, with meticulous treatment times of 2, 4, and 6 h at a constant temperature of 950 °C. The nature of the layers was analyzed using X-ray diffraction, and their tribological behavior was evaluated using the pin-on-disk test. The growth of the layers was directly proportional to the treatment time and was estimated at 145 µm and 48 µm for the 6 and 2 h of treatment, respectively. The surface hardness increased from 320 HV for the non-treated steel to 2034 HV for the sample exposed to 950 °C for 6 h. The results indicate a significant reduction in the coefficient of friction from 0.43 for the non-treated steel to 0.12 for the samples exposed to 950 °C for 6 h, suggesting potential wear protection during the engine starting period. Full article
(This article belongs to the Special Issue Surface Treatment on Metals and Their Alloys)
25 pages, 11409 KiB  
Article
Influence of Polymer Flow on Polypropylene Morphology, Micro-Mechanical, and Tribological Properties of Injected Part
by Martin Ovsik, Klara Fucikova, Lukas Manas and Michal Stanek
Lubricants 2024, 12(6), 202; https://doi.org/10.3390/lubricants12060202 - 4 Jun 2024
Viewed by 192
Abstract
This research investigates the micro-mechanical and tribological properties of injection-molded parts made from polypropylene. The tribological properties of polymers are a very interesting area of research. Understanding tribological processes is very crucial. Considering that the mechanical and tribological properties of injected parts are [...] Read more.
This research investigates the micro-mechanical and tribological properties of injection-molded parts made from polypropylene. The tribological properties of polymers are a very interesting area of research. Understanding tribological processes is very crucial. Considering that the mechanical and tribological properties of injected parts are not uniform at various points of the part, this research was conducted to explain the non-homogeneity of properties along the flow path. Non-homogeneity can be influenced by numerous factors, including distance from the gate, mold and melt temperature, injection pressure, crystalline structure, cooling rate, the surface of the mold, and others. The key factor from the micro-mechanical and tribological properties point of view is the polymer morphology (degree of crystallinity and size of the skin and core layers). The morphology is influenced by polymer flow and the injection molding process conditions. Gained results indicate that the indentation method was sufficiently sensitive to capture the changes in polypropylene morphology, which is a key parameter for the resulting micro-mechanical and tribological properties of the part. It was proven that the mechanical and tribological properties are not equal in varying regions of the part. Due to cooling and process parameters, the difference in the indentation modulus in individual measurement points was up to 55%, and the tribological properties, in particular the friction coefficient, showed a difference of up to 20%. The aforementioned results indicate the impact this finding signifies for injection molding technology in technical practice. Tribological properties are a key property of the part surface and, together with micro-mechanical properties, characterize the resistance of the surface to mechanical failure of the plastic part when used in engineering applications. A suitable choice of gate location, finishing method of the cavity surface, and process parameters can ensure the improvement of mechanical and tribological properties in stressed regions of the part. This will increase the stiffness and wear resistance of the surface. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology)
Show Figures

Figure 1

27 pages, 6977 KiB  
Article
A Novel Continuously Variable Transmission with Circumferentially Arranged Disks (CAD CVT)
by Muhammad Bilal, Qidan Zhu, Shafiq R. Qureshi, Ahsan Elahi, Muhammad Kashif Nadeem and Sartaj Khan
Actuators 2024, 13(6), 208; https://doi.org/10.3390/act13060208 - 3 Jun 2024
Viewed by 137
Abstract
This paper presents a novel Continuous Variable Transmission (CVT) design. CVT is highly beneficial for actuators with rotary output as it can improve the energy efficiency of the actuators by providing an optimum transmission ratio. This property of CVT is highly beneficial for [...] Read more.
This paper presents a novel Continuous Variable Transmission (CVT) design. CVT is highly beneficial for actuators with rotary output as it can improve the energy efficiency of the actuators by providing an optimum transmission ratio. This property of CVT is highly beneficial for fossil-fuel-based vehicles, electric vehicles, wind turbines, industrial robots, etc. With the exception of Spherical CVT and DH CVT, all known CVTs like push belt CVTs, toroidal CVTs, Milner CVTs, etc., require additional gear sets and clutches for direction reversal and neutral gear ratio. However, Spherical CVT and DH CVT have low torque capacity due to a single traction point constraint. Foregoing in view, a new CVT named CAD CVT has been developed. The paper presents the design conception, the operating principle, the transmission ratio, the torque capacity, frictional losses, and experimental verification of the basic functionality by manufacturing a Proof of Concept (PoC). The proposed CVT is the only CVT capable of independent direction reversal and high torque capacity as it can transmit torque through multiple traction points. The new CVT will significantly impact high-torque applications in different engineering applications, especially land transport consisting of heavy vehicles like trucks, buses, and trailers. Full article
(This article belongs to the Section Actuators for Land Transport)
Show Figures

Figure 1

14 pages, 5898 KiB  
Article
Theoretical and Experimental Verification of the Physical–Mechanical Properties of Organic Bone Meal Granular Fertilizers
by Eglė Jotautienė, Vaidas Bivainis, Davut Karayel and Ramūnas Mieldažys
Agronomy 2024, 14(6), 1171; https://doi.org/10.3390/agronomy14061171 - 30 May 2024
Viewed by 374
Abstract
Continuous efforts are being made to improve fertilizer efficiency by improving fertilizer technology, quality, and application rates. Granular organic fertilizers are more difficult to achieve uniform application because their physical–mechanical properties differ significantly from mineral fertilizers. The properties of granular organic fertilizers can [...] Read more.
Continuous efforts are being made to improve fertilizer efficiency by improving fertilizer technology, quality, and application rates. Granular organic fertilizers are more difficult to achieve uniform application because their physical–mechanical properties differ significantly from mineral fertilizers. The properties of granular organic fertilizers can best be determined experimentally. However, these studies are often quite complex. Modern engineering modeling software makes it possible to model the properties of granular fertilizers and their dispersion. This study deals with the theoretical and experimental verification of the physical–mechanical properties of organic bone meal granular fertilizer. For the verification of selected properties of bone meal granules, the following studies were carried out on the granules: determination of poured bulk density, static and dynamic angles of repose, static and dynamic friction coefficients of granule surface, etc. The results showed that for modeling fertilizer properties, it is sufficient to carry out a static compression test to determine the modulus of elasticity and a friction test between granules and the contacting surface to determine the static and dynamic friction coefficients. The remaining properties of the granules can be modeled and calibrated with the DEM software Altair EDEM 2023. Full article
Show Figures

Figure 1

12 pages, 3520 KiB  
Article
Preparation and Tribological Behaviors of Sulfur- and Phosphorus-Free Organic Friction Modifier of Amide–Ester Type
by Xiaomei Xu, Fan Yang, Hongmei Yang, Yanan Zhao, Xiuli Sun and Yong Tang
Lubricants 2024, 12(6), 196; https://doi.org/10.3390/lubricants12060196 - 30 May 2024
Viewed by 287
Abstract
With the increasingly demanding engine conditions and the implementation of “double carbon” policies, the demand for high-quality lubricants that are cost-effective and environmentally friendly is increasing. Additives, especially high-performance friction modifiers, play an important role in boosting lubricant efficiency and fuel economy, so [...] Read more.
With the increasingly demanding engine conditions and the implementation of “double carbon” policies, the demand for high-quality lubricants that are cost-effective and environmentally friendly is increasing. Additives, especially high-performance friction modifiers, play an important role in boosting lubricant efficiency and fuel economy, so their developments are at the forefront of lubrication technologies. In this study, 1,3-dioleoamide-2-propyloleate (DOAPO), which incorporates polar amide, ester, and nonpolar alkyl chains, was synthesized from 1,3-diamino-2-propanol to give an eco-friendly organic friction modifier. Nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA) were used to characterize the structure and thermal stability of DOAPO. Meanwhile, the storage stability and tribological behaviors of DOAPO in synthetic base oil were studied and compared with a commercial oleamide. The results show that DOAPO has better thermal stability and better storage stability in synthetic base oil. Additionally, 0.5 wt.% of DOAPO could shorten the running-in period and reduce the average friction coefficient (ave. COF) and wear scar diameter (ave. WSD) by 8.2% and 16.2%, respectively. The worn surface analysis and theoretical calculation results show that the ester bond in DOAPO breaks preferentially during friction, which can reduce the interfacial shear force and easily react with metal surfaces to form iron oxide films, thus demonstrating a better friction-reducing and anti-wear performance. Full article
(This article belongs to the Special Issue Functional Lubricating Materials)
Show Figures

Graphical abstract

20 pages, 7447 KiB  
Article
Fretting Wear Behaviors of Silicone Rubber under Dry Friction and Different Lubrication Conditions
by Ruotong Liu, Jie Su, Tengfei Zhang and Liaoliang Ke
Materials 2024, 17(11), 2598; https://doi.org/10.3390/ma17112598 - 28 May 2024
Viewed by 301
Abstract
The fretting wear behaviors of silicone rubber under dry friction and different lubrication conditions are studied experimentally. Water, engine oil, dimethyl silicone oil (DSO), and dimethyl silicone oil doped with graphene oxide (DSO/GO) are selected as lubricants. Under the liquid lubrication conditions, the [...] Read more.
The fretting wear behaviors of silicone rubber under dry friction and different lubrication conditions are studied experimentally. Water, engine oil, dimethyl silicone oil (DSO), and dimethyl silicone oil doped with graphene oxide (DSO/GO) are selected as lubricants. Under the liquid lubrication conditions, the silicone rubber samples are always immersed in the same volume of lubricant. The contact model of a 440C steel ball and silicone rubber sample is the sphere-on-flat contact. The reciprocating fretting wear experiments are carried out using the reciprocating friction wear tester. A scanning electron microscope and three-dimensional white-light interference profilometer are used to detect the surface wear morphology and obtain the wear volume, respectively. The influences of normal force, lubrication condition, and displacement amplitude on fretting wear behavior are discussed. The fretting wear performances of silicone rubber under different fretting states and lubrication conditions are compared. The results show that for a small normal force, silicone rubber has the best wear resistance under DSO/GO lubrication. While for a large normal force, silicone rubber has the best wear resistance under engine oil lubrication. Full article
(This article belongs to the Section Soft Matter)
Show Figures

Figure 1

12 pages, 4160 KiB  
Article
Investigation of Frequency-Dependent Characteristics of Wire Rope under Tension Based on Transfer Function Method
by Kwanghun Jeong, Narae Kim, Nahyun Jeon, Haksung Kim and Junhong Park
Appl. Sci. 2024, 14(11), 4621; https://doi.org/10.3390/app14114621 - 28 May 2024
Viewed by 282
Abstract
Wire rope is a complex structure made by twisting wires of various sizes in the longitudinal direction. It is used to support or move engineering structures and is subject to various tensions. Dynamic properties are important parameters to evaluate the resistance to bending [...] Read more.
Wire rope is a complex structure made by twisting wires of various sizes in the longitudinal direction. It is used to support or move engineering structures and is subject to various tensions. Dynamic properties are important parameters to evaluate the resistance to bending deformation and vibration reduction of various structures. They are affected by the magnitude of tension. In this study, an experimental method for measuring the frequency-dependent characteristics of wire rope under tension is proposed. The study analyzed flexural wave propagation employing a vibration transfer function. Experimental results showed that the transfer function of wire rope under tension is affected by tension and bending stiffness. The Newton–Raphson method was employed to numerically measure wavenumbers of the wire rope. The bending stiffness and loss factor were determined from the wavenumbers. Changes in the bending stiffness and loss factor as the tension increased were explained by the dynamic behavior of the structure under tension. As the tension increased, the bending stiffness increased, and the loss factor decreased. Hysteresis analysis indicated that the energy dissipation of wire rope is greater than that of a steel beam due to the friction between the wires. Statistical analysis confirmed a significant correlation between dynamic characteristics and tension in wire rope. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

17 pages, 7717 KiB  
Article
A Quantitative and Qualitative Analysis of the Lubricity of Used Lubricating Oil Diluted with Diesel Oil
by Leszek Chybowski, Marcin Szczepanek, Robert Sztangierski and Piotr Brożek
Appl. Sci. 2024, 14(11), 4567; https://doi.org/10.3390/app14114567 - 26 May 2024
Viewed by 410
Abstract
Experience shows that dilution of lubricating oil with diesel oil is unfavorable to the engine, causing issues including deterioration of engine performance, shortening of oil life, and reduction in engine reliability and safety. This paper presents the verification of the hypothesis that the [...] Read more.
Experience shows that dilution of lubricating oil with diesel oil is unfavorable to the engine, causing issues including deterioration of engine performance, shortening of oil life, and reduction in engine reliability and safety. This paper presents the verification of the hypothesis that the changes in lubricity, friction coefficient, and decreasing oil film thickness (using a relative approach, given as a percentage) are similar for lubricating oil and diesel mixtures prepared from fresh lubricating oil and used lubricating oil. To validate this hypothesis, an experiment is conducted using a high-frequency reciprocating rig (HFFR), in which the lubricity is determined by the corrected average wear scar WS1.4, the coefficient of friction μ, and the percentage relative decrease in oil film thickness r. A qualitative visual assessment of the wear scars on the test specimens is also performed after the HFFR tests. The testing covers mixtures of SAE 30 grade Marinol CB-30 RG1230 lubricating oil with Orlen Efecta Diesel Biodiesel. The used lubricating oil is extracted from the circulating lubrication system of a supercharged, trunk-piston, four-stroke ZUT Zgoda Sulzer 5 BAH 22 engine installed in the laboratory of ship power plants of the Maritime University of Szczecin. Mixtures for the experiment are prepared for fresh lubricating oil with diesel oil and used lubricating oil with diesel oil. Mixtures of these lubricating oils with diesel oil are examined for diesel oil concentrations in the mixture equal to 1, 2, 5, 10, 15, and 20% m/m. The results of the experiment confirm the hypothesis, proving that, for up to 20% m/m diesel oil concentration in lubricating oil, the changes in the lubricity of used lubricating oil diluted with diesel oil can be evaluated based on reference data prepared for mixtures of diesel oil with fresh lubricating oil. The linear approximation of μ and r trends is made with a certain margin of error we estimated. The experiment also confirms the results of previous studies which state that oil aging products in small quantities contribute to improved lubricity. Full article
(This article belongs to the Special Issue Digital and Computational Tribology)
Show Figures

Figure 1

15 pages, 3872 KiB  
Article
Assessing Tensile Strength and Electrical Conductivity of Friction Stir-Welded Joints of Copper and Aluminum Alloys
by Elizabeth Hoyos, María Camila Serna, Yesid Montoya and Jorge Hernán Córdoba
Metals 2024, 14(6), 631; https://doi.org/10.3390/met14060631 - 26 May 2024
Viewed by 354
Abstract
Dissimilar aluminum joints have widespread applications across various industries, including the electronics and automotive sectors, owing to their unique combination of advantages, including reduced density and enhanced mechanical properties. These characteristics make them an innovative solution for multi-material processing challenges presented in the [...] Read more.
Dissimilar aluminum joints have widespread applications across various industries, including the electronics and automotive sectors, owing to their unique combination of advantages, including reduced density and enhanced mechanical properties. These characteristics make them an innovative solution for multi-material processing challenges presented in the engineering industry. This article focuses on Friction Stir-Welded butt joints made using a weld–flip–weld approach between aluminum AA6061-T6 and pure copper C11000, exploring the effects of varying rotational speeds (1000, 1200, and 1400 RPM), offsets (0 and 1 mm) in the joint soundness, mechanical strength, and electrical conductivity. The welds were evaluated using non-destructive testing with phased-array ultrasound and tensile testing. Additionally, the electrical conductivity was measured to assess their response to electrical currents. The findings reveal a significant correlation between joint efficiency and electrical conductivity, with the highest values corresponding to a weld executed with a rotational speed of 1400 rpm, traverse speed of 40 mm/min, and 1 mm offset towards the aluminum, achieving the highest joint efficiency, reaching a joint efficiency of approximately 75% and 82.42% of the IACS for electrical conductivity. Full article
(This article belongs to the Special Issue Advances in Friction Stir Welding of Alloys and Metals)
17 pages, 5828 KiB  
Article
Does Engine Oil Type Affect Fuel Consumption in Passenger Vehicles? A Two-Year Investigation
by Artur Wolak, Michał Wołosz, Kamil Fijorek and Grzegorz Zając
Energies 2024, 17(11), 2458; https://doi.org/10.3390/en17112458 - 21 May 2024
Viewed by 337
Abstract
Reducing fuel consumption to decrease CO2 emissions has become a key development factor in the automotive industry. An effective way to decrease fuel consumption is to reduce the influence of various sources of energy loss. One way to increase engine efficiency is [...] Read more.
Reducing fuel consumption to decrease CO2 emissions has become a key development factor in the automotive industry. An effective way to decrease fuel consumption is to reduce the influence of various sources of energy loss. One way to increase engine efficiency is to use low-viscosity engine oils to reduce friction losses in the engine’s tribological systems. The aim of the article was to analyze the relationship between the type of engine oil and fuel consumption in a group of 12 passenger cars. This was a homogenous group of identical cars, equipped with the same engine, operated under very similar conditions. Three groups of engine oils (Revline, Total, Orlen) were tested in vehicles and stressed with comparable workloads. The experiment was conducted over two years (two stages of research). The collected results were presented using graphs and compared using statistical tests, split into two stages of research, with four seasonal temperature groups. The study provides a detailed description of fuel consumption differences taking into account variations in ambient temperature. The analyses were focused on finding answers to two research questions: does the type of engine oil affect the variation in combustion levels, and what is the variability of fuel consumption in different seasons due to the ambient temperature variability? Briefly, in both stages of the study, vehicles using Revline oil attained the highest average fuel consumption throughout the study period. Vehicles using Total oil showed similar results to those using Revline oil, with the difference in fuel consumption not as noticeable during warmer months. Conversely, vehicles using Orlen oil demonstrated the lowest fuel consumption values during colder months, but higher levels during warmer months. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

Back to TopTop