Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,676)

Search Parameters:
Keywords = friction measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3890 KiB  
Article
Next-Generation Lubricity in Deep Drawing: The Synergistic Benefits of PIL and Talc on Water-Based Lubricants
by Victor Velho de Castro, Cristiano Ev, Leandro Câmara Noronha, Matheus Bullmann, Louise Etcheverry, Leonardo Moreira dos Santos, Rafael Marquetto Vargas, Silvana Mattedi, Roberto Moreira Schroeder and Célia de Fraga Malfatti
Metals 2024, 14(6), 705; https://doi.org/10.3390/met14060705 - 14 Jun 2024
Viewed by 183
Abstract
This study aims to assess the effectiveness of water-based formulations featuring m-2HEAOL and talc particles in deep drawing applications. The coefficient of friction (COF) was measured through bending under tension (BUT) tests, while the interaction mechanism between protic ionic liquid (PIL) and talc [...] Read more.
This study aims to assess the effectiveness of water-based formulations featuring m-2HEAOL and talc particles in deep drawing applications. The coefficient of friction (COF) was measured through bending under tension (BUT) tests, while the interaction mechanism between protic ionic liquid (PIL) and talc particles was analysed using FTIR, XPS, and TGA analyses. The results indicate that the formulation containing 8 wt% PIL and 0.5 wt% talc exhibited the best lubricating performance. This was due to the interaction of the PIL oleate molecules with the Mg found in the talc basal layer, which enhanced the cleavage capacity of this mineral, ultimately improving the lubricity of the formulation. Full article
Show Figures

Figure 1

24 pages, 959 KiB  
Article
Improving Solid-Phase Fluidization Prediction in Circulating Fluidized Bed Risers: Drag Model Sensitivity and Turbulence Modeling
by Aldo Germán Benavides-Morán and Santiago Lain
Mathematics 2024, 12(12), 1852; https://doi.org/10.3390/math12121852 - 14 Jun 2024
Viewed by 173
Abstract
This contribution underscores the importance of selecting an appropriate interphase momentum transfer model for accurately predicting the distribution of the solid phase in a full-scale circulating fluidized bed (CFB) riser equipped with a smooth C-type exit. It also explores other critical factors such [...] Read more.
This contribution underscores the importance of selecting an appropriate interphase momentum transfer model for accurately predicting the distribution of the solid phase in a full-scale circulating fluidized bed (CFB) riser equipped with a smooth C-type exit. It also explores other critical factors such as domain configuration, grid size, the scope of time averaging, and turbulence modulation. The flow in a cold-CFB riser is simulated using the Eulerian–Eulerian two-fluid model within a commercial CFD package. Particle interactions in the rapid-flow regime are determined utilizing the kinetic theory of granular flow while enduring particle contacts are accounted for by incorporating frictional stresses. The turbulent dynamics of the continuous phase are described using two-equation turbulence models with additional modulation terms. The three-dimensional computational domain replicates an actual CFB riser geometry where experimental measurements are available for particulate phase axial and radial solid concentration. The simulation results reveal that the choice of drag model correlation significantly impacts both axial and radial solid distribution. Notably, the energy-minimization multi-scale drag model accurately depicts the dense solid region at the bottom and core–annular flow structure in the upper part. The solid-phase fluidization is overestimated in the lower riser section when a 2D domain is utilized. Neglecting turbulence modulation terms in the k-ω SST model results in nearly flat solid volume fraction radial profiles in the analyzed upper sections of the riser, resembling those obtained with the k-ϵ model. Full article
Show Figures

Figure 1

18 pages, 4186 KiB  
Article
Study on the Impact of Deep Foundation Excavation of Reclaimed Land on the Deformation of Adjacent Subway Tunnels
by Fenghai Ma, Senlin Li and Qiongyi Wang
Buildings 2024, 14(6), 1771; https://doi.org/10.3390/buildings14061771 - 12 Jun 2024
Viewed by 206
Abstract
The objective of this research is to investigate the characteristics of the deformation response in adjacent subway tunnels caused by deep foundation excavation of reclaimed land. Focusing on a deep foundation excavation project situated in proximity to Line 11 of the subway in [...] Read more.
The objective of this research is to investigate the characteristics of the deformation response in adjacent subway tunnels caused by deep foundation excavation of reclaimed land. Focusing on a deep foundation excavation project situated in proximity to Line 11 of the subway in Shenzhen, this study employs theoretical analysis, numerical simulation, and on-site measurements to thoroughly investigate the deformation issues induced by the unloading of the excavation. The research results are as follows: using the energy method to calculate the uneven deformation of adjacent subway tunnels caused by the excavation can overcome the limitations of traditional algorithms, which treat the subway tunnel as a uniformly elastic foundation beam, resulting in more reasonable calculation results. Increasing the self-stiffness (EI)eq of the tunnel can effectively reduce the maximum displacement (wmax) of the tunnel, and as (EI)eq increases, its “weakening effect” on wmax gradually diminishes. Underground continuous walls can effectively control tunnel deformation, with tunnel displacement decreasing as the thickness and concrete strength of the continuous walls increase. “Long excavation” deep foundation excavations can impact the displacement and uplift range of the tunnel, with the maximum tunnel displacement showing a nonlinear decrease with increasing excavation depth. Tunnel displacement decreases as geotechnical parameters (elastic modulus E, internal friction angle φ, and cohesion C) increase, with the elastic modulus being the most sensitive parameter. The research findings can be applied to tunnel construction, maintenance, and safety evaluations, providing valuable references for similar engineering projects in the future. Full article
Show Figures

Figure 1

11 pages, 2569 KiB  
Article
Drag Reduction by Dried Malted Rice Solutions in Pipe Flow
by Keizo Watanabe and Satoshi Ogata
Liquids 2024, 4(2), 432-442; https://doi.org/10.3390/liquids4020023 - 12 Jun 2024
Viewed by 240
Abstract
In this study, the friction factor of a turbulent pipe flow for dried rice malt extract solutions was experimentally reduced to that of a Newtonian fluid. The friction factor was measured for four types of solutions at different culture times and concentrations. The [...] Read more.
In this study, the friction factor of a turbulent pipe flow for dried rice malt extract solutions was experimentally reduced to that of a Newtonian fluid. The friction factor was measured for four types of solutions at different culture times and concentrations. The results indicate that the experimental data points of the test solutions diverged from the maximum drag reduction asymptote at and above Ref ≅ 200~250 and aligned parallel to those of Newtonian fluids. This drag reduction phenomenon differed from that observed in artificial high-molecular-weight polymer solutions, called Type A drag reduction, in which the drag reduction level is dependent on the Reynolds number in the intermediate region. This is classified as a Type B drag reduction phenomenon in biopolymer solutions and fine solid particle suspensions. The order of drag reduction corresponded to approximately 5–50 ppm xanthan gum solutions, as reported previously. Furthermore, the velocity profile in a turbulent pipe flow was predicted using a semi-theoretical equation in which the friction factors were determined using the difference between the experimental results of the tested solutions and Newtonian fluids. The results indicate considerable thickening of the viscous sublayer in the turbulent pipe flow of the test solutions compared with that of Newtonian fluids. Full article
Show Figures

Figure 1

23 pages, 5168 KiB  
Article
Calibration Optimization of Kinematics and Dynamics for Delta Robot Driven by Integrated Joints in Machining Task
by Zhenhua Jiang, Yu Wang, Dongdong Liu and Tao Sun
Actuators 2024, 13(6), 219; https://doi.org/10.3390/act13060219 - 12 Jun 2024
Viewed by 215
Abstract
For the application of Delta robots with a 3-R(RPaR) configuration in machining tasks, this paper constructed a 54-parameter kinematic error model and a simplified dynamic model incorporating an integrated joint’s position error and friction, respectively. Utilizing Singular Value Decomposition (SVD) of the Linear [...] Read more.
For the application of Delta robots with a 3-R(RPaR) configuration in machining tasks, this paper constructed a 54-parameter kinematic error model and a simplified dynamic model incorporating an integrated joint’s position error and friction, respectively. Utilizing Singular Value Decomposition (SVD) of the Linear Model Coefficient Matrix (LMCM) and the coefficient chart, a criterion for identifiability of error components is established. For good identification results, the optimal measurement surface with Fourier series form is obtained using a combination of the Hook–Jeeves Direct Search Algorithm (DSA) and Inner Point Method (IPM). The friction coefficients and other dynamic parameters are obtained through fitting the integrated joint torque-angle pairs measured along specific trajectories using nonlinear least squares regression. The validation of the calibration process is conducted through simulations and experiments. The calibration results provide a foundation for the precise control of integrated joints and the high-precision motion of robots. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

22 pages, 9975 KiB  
Article
Embroidery Triboelectric Nanogenerator for Energy Harvesting
by Hasan Riaz Tahir, Benny Malengier, Sanaul Sujan and Lieva Van Langenhove
Sensors 2024, 24(12), 3782; https://doi.org/10.3390/s24123782 - 11 Jun 2024
Viewed by 296
Abstract
Triboelectric nanogenerators (TENGs) are devices that efficiently transform mechanical energy into electrical energy by utilizing the triboelectric effect and electrostatic induction. Embroidery triboelectric nanogenerators (ETENGs) offer a distinct prospect to incorporate energy harvesting capabilities into textile-based products. This research work introduces an embroidered [...] Read more.
Triboelectric nanogenerators (TENGs) are devices that efficiently transform mechanical energy into electrical energy by utilizing the triboelectric effect and electrostatic induction. Embroidery triboelectric nanogenerators (ETENGs) offer a distinct prospect to incorporate energy harvesting capabilities into textile-based products. This research work introduces an embroidered triboelectric nanogenerator that is made using polyester and nylon 66 yarn. The ETENG is developed by using different embroidery parameters and its characteristics are obtained using a specialized tapping and friction device. Nine ETENGs were made, each with different stitch lengths and line spacings for the polyester yarn. Friction and tapping tests were performed to assess the electrical outputs, which included measurements of short circuit current, open circuit voltage, and capacitor charging. One sample wearable embroidered energy harvester collected 307.5 μJ (24.8 V) of energy under a 1.5 Hz sliding motion over 300 s and 72 μJ (12 V) of energy through human walking over 120 s. Another ETENG sample generated 4.5 μJ (3 V) into a 1 μF capacitor using a tapping device with a 2 Hz frequency and a 50 mm separation distance over a duration of 520 s. Measurement of the current was also performed at different pressures to check the effect of pressure and validate the different options of the triboelectric/electrostatic characterization device. In summary, this research explains the influence of embroidery parameters on the performance of ETENG (Embroidery Triboelectric Nanogenerator) and provides valuable information for energy harvesting applications. Full article
Show Figures

Figure 1

13 pages, 4017 KiB  
Article
Effects of Oil Concentration in Flood Cooling on Cutting Force, Tool Wear and Surface Roughness in GTD-111 Nickel-Based Superalloy Slot Milling
by Gábor Kónya and Zsolt F. Kovács
J. Manuf. Mater. Process. 2024, 8(3), 119; https://doi.org/10.3390/jmmp8030119 - 7 Jun 2024
Viewed by 362
Abstract
Cooling–lubricating processes have a big impact on cutting force, tool wear, and the quality of the machined surface, especially for hard-to-machine superalloys, so the choice of the right cooling–lubricating method is of great importance. Nickel-based superalloys are among the most difficult materials to [...] Read more.
Cooling–lubricating processes have a big impact on cutting force, tool wear, and the quality of the machined surface, especially for hard-to-machine superalloys, so the choice of the right cooling–lubricating method is of great importance. Nickel-based superalloys are among the most difficult materials to machine due to their high hot strength, work hardening, and extremely low thermal conductivity. Previous research has shown that flood cooling results in the least tool wear and cutting force among different cooling–lubricating methods. Thus, the effects of the flood oil concentration (3%; 6%; 9%; 12%; and 15%) on the above-mentioned factors were investigated during the slot milling of the GTD-111 nickel-based superalloy. The cutting force was measured during machining with a Kistler three-component dynamometer, and then after cutting the tool wear and the surface roughness on the bottom surface of the milled slots were measured with a confocal microscope and tactile roughness tester. The results show that at a 12% oil concentration, the tool load and tool wear are the lowest; even at an oil concentration of 15%, a slight increase is observed in both factors. Essentially, a higher oil concentration reduces friction between the tool and the workpiece contact surface, resulting in reduced tool wear and cutting force. Furthermore, due to less friction, the heat generation in the cutting zone is also reduced, resulting in a lower heat load on the tool, which increases tool life. It is interesting to note that the 6% oil concentration had the highest cutting force and tool wear, and strong vibration was heard during machining, which is also reflected in the force signal. The change in oil concentration did not effect the surface roughness. Full article
Show Figures

Figure 1

14 pages, 3210 KiB  
Article
A Novel Methodology for Simulating Skin Injury Risk on Synthetic Playing Surfaces
by Maxwell MacFarlane, Eric O’Donnell, Eric Harrison, Marc Douglas, Neale Lees and Peter Theobald
Lubricants 2024, 12(6), 207; https://doi.org/10.3390/lubricants12060207 - 6 Jun 2024
Viewed by 399
Abstract
Artificial turf provides a consistent and durable surface; however, it has historically been associated with a high skin injury risk, or a ‘friction burn’, when a player falls or slides. Second-generation surfaces feature a short carpet pile, whilst third generation (3G) carpet piles [...] Read more.
Artificial turf provides a consistent and durable surface; however, it has historically been associated with a high skin injury risk, or a ‘friction burn’, when a player falls or slides. Second-generation surfaces feature a short carpet pile, whilst third generation (3G) carpet piles are longer, enabling the integration of a performance infill. 3G surfaces provide sufficient energy absorption characteristics to be approved as Rugby Turf; however, such pitches can still cause skin injuries, despite being assessed using a friction-based test. Reducing skin injury risk motivates this study to develop a more sensitive testing methodology. A new test apparatus and impactor are proposed, achieving kinematics representative of an elite male rugby tackle. A commercially available skin simulant is employed to ensure the collection of repeatable and valid data. Photography and thresholding were used to assess surface abrasion and material transfer, whilst a thermal camera captured surface temperature change. Accelerometers quantified the surface resistance during the impact and sliding phases. These metrics were compiled into the Maxwell Tribo Index (MTI), providing a single measure of skin injury risk. The results demonstrated good repeatability and validity when four teams tested four different 3G surfaces. These results compared favourably to an expert panel’s ranked order. Full article
(This article belongs to the Special Issue Biomechanics and Tribology)
Show Figures

Figure 1

33 pages, 2040 KiB  
Article
Surface Growth of Boronize Coatings Studied with Mathematical Models of Diffusion
by Martín Ortiz-Domínguez, Ángel Jesús Morales-Robles, Oscar Armando Gómez-Vargas and Georgina Moreno-González
Metals 2024, 14(6), 670; https://doi.org/10.3390/met14060670 - 5 Jun 2024
Viewed by 285
Abstract
The following investigation focused on examining the kinetics of Fe2B coating formation on the surface of ASTM A681 steel during the powder-pack boronizing process. The study measured Fe2B coating thicknesses at various temperatures and exposure times to confirm the [...] Read more.
The following investigation focused on examining the kinetics of Fe2B coating formation on the surface of ASTM A681 steel during the powder-pack boronizing process. The study measured Fe2B coating thicknesses at various temperatures and exposure times to confirm the diffusion-controlled growth mechanism during boronizing. Five distinct mathematical models were devised to determine the boron diffusion coefficients in Fe2B coatings. Understanding the growth kinetics of boronize coatings is imperative as it facilitates the optimization and automation of industrial processes. This ensures the efficient and consistent production of boronize coatings on cutting tools, such as drills and milling cutters, due to their high hardness and wear resistance. The value of the activation energy estimated with five mathematical diffusion models for the Fe2B coating was 209.8 kJ∙mol−1. The X-ray diffraction technique was used to identify the presence of the iron boronize phase. Tribological studies were also performed to evaluate the coefficient of friction (COF) of the boronized (0.256) and untreated (0.781) samples, having a 300% positive effect of the boronize coating on wear resistance. Finally, the models were empirically validated for two supplementary treatment conditions for 1223 K for 3 h and 1273 K for 1.5 h, where the percentage error for both conditions was estimated to be approximately 2.5%. Full article
32 pages, 26330 KiB  
Article
Brake Wear and Airborne Particle Mass Emissions from Passenger Car Brakes in Dynamometer Experiments Based on the Worldwide Harmonized Light-Duty Vehicle Test Procedure Brake Cycle
by Hiroyuki Hagino
Lubricants 2024, 12(6), 206; https://doi.org/10.3390/lubricants12060206 - 5 Jun 2024
Viewed by 289
Abstract
Brake wear particles, as the major component of non-exhaust particulate matter, are known to have different emissions, depending on the type of brake assembly and the specifications of the vehicle. In this study, brake wear and wear particle mass emissions were measured under [...] Read more.
Brake wear particles, as the major component of non-exhaust particulate matter, are known to have different emissions, depending on the type of brake assembly and the specifications of the vehicle. In this study, brake wear and wear particle mass emissions were measured under realistic vehicle driving and full friction braking conditions using current commercial genuine brake assemblies. Although there were no significant differences in either PM10 or PM2.5 emissions between the different cooling air flow rates, brake wear decreased and ultrafine particle (PM0.12) emissions increased with the increase in the cooling air flow rate. Particle mass measurements were collected on filter media, allowing chemical composition analysis to identify the source of brake wear particle mass emissions. The iron concentration in the brake wear particles indicated that the main contribution was derived from disc wear. Using a systematic approach that measured brake wear and wear particle emissions, this study was able to characterize correlations with elemental compositions in brake friction materials, adding to our understanding of the mechanical phenomena of brake wear and wear particle emissions. Full article
(This article belongs to the Special Issue Emission and Transport of Wear Particles)
Show Figures

Figure 1

17 pages, 10024 KiB  
Article
Exploring the Impact of Spray Process Parameters on Graphite Coatings: Morphology, Thickness, and Tribological Properties
by Adedoyin Abe, Josue A. Goss and Min Zou
Coatings 2024, 14(6), 714; https://doi.org/10.3390/coatings14060714 - 5 Jun 2024
Viewed by 372
Abstract
This study explores, through a full factorial experimental design, the effects of graphite concentration and spray flow rate on the morphology, thickness, and tribological performance of graphite coatings for potential tribological applications. Coatings were applied to rough substrates using varying concentrations and flow [...] Read more.
This study explores, through a full factorial experimental design, the effects of graphite concentration and spray flow rate on the morphology, thickness, and tribological performance of graphite coatings for potential tribological applications. Coatings were applied to rough substrates using varying concentrations and flow rates, followed by analysis of their morphological characteristics, roughness, thickness, coefficient of friction (COF), and wear behavior. The results revealed distinct differences in the coating morphology based on flow rate, with low-flow-rate coatings exhibiting a porous structure and higher roughness, while high-flow-rate coatings displayed denser structures with lower roughness. A COF as low as 0.09 was achieved, which represented an 86% reduction compared to uncoated steel. COF and wear track measurements showed that thickness was influential in determining friction and the extent of wear. Flow rate dictated the coating structure, quantity of transfer film on the ball, and the extent of graphite compaction in the wear track to provide a protective layer. SEM and elemental analysis further revealed that graphite coatings provided effective protection against wear, with graphite remaining embedded in the innermost crevices of the wear track. Low flow rates may be preferable for applications requiring higher roughness and porosity, while high flow rates offer advantages in achieving denser coatings and better wear resistance. Overall, this study highlights the importance of optimizing graphite concentration and spray flow rate to tailor coating morphology, thickness, and tribological performance for practical applications. Full article
(This article belongs to the Special Issue Friction, Wear, Lubrication and Mechanics of Surfaces and Interfaces)
Show Figures

Figure 1

15 pages, 5009 KiB  
Article
Strength of Composite Pressure Insulators for High Voltage Circuit Breakers: An Experimental and Numerical Investigation
by Jan Ferino, Gabriela Loi, Andrea Meleddu, Francesco Aymerich, Iuri Mazzarelli and Elisa Pichini
Materials 2024, 17(11), 2741; https://doi.org/10.3390/ma17112741 - 4 Jun 2024
Viewed by 228
Abstract
Glass fiber-reinforced composite cylinders, capable of withstanding internal pressure generated during service, are increasingly utilized as insulators in high voltage circuit breakers. Different testing procedures have been suggested by various standards to assess the pressure resistance of these components. Due to its simplicity [...] Read more.
Glass fiber-reinforced composite cylinders, capable of withstanding internal pressure generated during service, are increasingly utilized as insulators in high voltage circuit breakers. Different testing procedures have been suggested by various standards to assess the pressure resistance of these components. Due to its simplicity and cost-effectiveness, the split-disk testing method is the most widely used for evaluating the hoop strength of pressure cylinders during the development and verification phases. However, the method presents several aspects, such as those related to the influence of specimen geometry and friction, which require further examination since they may impact the outcome of the experimental tests. The investigation, carried out by a combination of experimental testing and finite element analyses, shows that the friction between the specimen and the semi-disks has a noteworthy effect on the hoop load applied to the specimen. Almost constant load distributions along the hoop direction, representative of the real operating conditions in a pressurized cylinder, can be achieved via proper lubrication of the contact surfaces. Furthermore, FE analyses demonstrate that the notch geometry suggested by specific standards (short notch) is not capable of inducing a uniform strain distribution in the notched region. A different notch geometry (long notch) is proposed in the study to attain a more uniform strain field over the reduced area region. The experimental results indicate that the strength measured on the short notch specimens is higher than that determined on the long notch specimens, thus confirming the significant influence of strain distribution on the strength properties measured with the split-disk method. Full article
(This article belongs to the Special Issue Mechanical Behaviour of Advanced Metal and Composite Materials)
Show Figures

Figure 1

25 pages, 11409 KiB  
Article
Influence of Polymer Flow on Polypropylene Morphology, Micro-Mechanical, and Tribological Properties of Injected Part
by Martin Ovsik, Klara Fucikova, Lukas Manas and Michal Stanek
Lubricants 2024, 12(6), 202; https://doi.org/10.3390/lubricants12060202 - 4 Jun 2024
Viewed by 192
Abstract
This research investigates the micro-mechanical and tribological properties of injection-molded parts made from polypropylene. The tribological properties of polymers are a very interesting area of research. Understanding tribological processes is very crucial. Considering that the mechanical and tribological properties of injected parts are [...] Read more.
This research investigates the micro-mechanical and tribological properties of injection-molded parts made from polypropylene. The tribological properties of polymers are a very interesting area of research. Understanding tribological processes is very crucial. Considering that the mechanical and tribological properties of injected parts are not uniform at various points of the part, this research was conducted to explain the non-homogeneity of properties along the flow path. Non-homogeneity can be influenced by numerous factors, including distance from the gate, mold and melt temperature, injection pressure, crystalline structure, cooling rate, the surface of the mold, and others. The key factor from the micro-mechanical and tribological properties point of view is the polymer morphology (degree of crystallinity and size of the skin and core layers). The morphology is influenced by polymer flow and the injection molding process conditions. Gained results indicate that the indentation method was sufficiently sensitive to capture the changes in polypropylene morphology, which is a key parameter for the resulting micro-mechanical and tribological properties of the part. It was proven that the mechanical and tribological properties are not equal in varying regions of the part. Due to cooling and process parameters, the difference in the indentation modulus in individual measurement points was up to 55%, and the tribological properties, in particular the friction coefficient, showed a difference of up to 20%. The aforementioned results indicate the impact this finding signifies for injection molding technology in technical practice. Tribological properties are a key property of the part surface and, together with micro-mechanical properties, characterize the resistance of the surface to mechanical failure of the plastic part when used in engineering applications. A suitable choice of gate location, finishing method of the cavity surface, and process parameters can ensure the improvement of mechanical and tribological properties in stressed regions of the part. This will increase the stiffness and wear resistance of the surface. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology)
Show Figures

Figure 1

16 pages, 5283 KiB  
Article
A Study on the Effects of Cementless Total Knee Arthroplasty Implants’ Surface Morphology via Finite Element Analysis
by Peter J. Hunt, Mohammad Noori, Scott J. Hazelwood, Naudereh B. Noori and Wael A. Altabey
BioMedInformatics 2024, 4(2), 1425-1440; https://doi.org/10.3390/biomedinformatics4020078 - 3 Jun 2024
Viewed by 139
Abstract
Total knee arthroplasty (TKA) is one of the most commonly performed orthopedic surgeries, with nearly one million performed in 2020 in the United States alone. Changing patient demographics, predominately indicated by increases in younger, more active, and more obese patients undergoing TKA, poses [...] Read more.
Total knee arthroplasty (TKA) is one of the most commonly performed orthopedic surgeries, with nearly one million performed in 2020 in the United States alone. Changing patient demographics, predominately indicated by increases in younger, more active, and more obese patients undergoing TKA, poses a challenge to orthopedic surgeons as these factors present a greater risk of long-term complications. Historically, cemented TKA has been the gold standard for fixation, but long-term aseptic loosening continues to be a risk for cemented implants. Cementless TKA, which relies on the surface morphology of a porous coating for biologic fixation of implant to bone, may provide improved long-term survivorship compared with cement. The quality of this bond is dependent on an interference fit and the roughness, or coefficient of friction, between the implant and the bonebone. Stress shielding is a measure of the difference in the stress experienced by implanted bone versus surrounding native bone. A finite element model (FEM) can be used to quantify and better understand stress shielding in order to better evaluate and optimize implant design. In this study, a FEM was constructed to investigate how the surface coating of cementless implants (coefficient of friction) and the location of the coating application affected the stress-shielding response in the tibia. It was determined that the stress distribution in the native tibia surrounding a cementless TKA implant was dependent on the coefficient of friction applied at the tip of the implant’s stem. Materials with lower friction coefficients applied to the stem tip resulted in higher compressive stress experienced by implanted bone, and more favorable overall stress-shielding responses. Full article
Show Figures

Figure 1

17 pages, 4702 KiB  
Article
Lubricating Greases from Fried Vegetable Oil—Preparation and Characterization
by Olga V. Săpunaru, Ancaelena E. Sterpu, Cyrille A. Vodounon, Jack Nasr, Cristina Duşescu-Vasile, Sibel Osman and Claudia I. Koncsag
Lubricants 2024, 12(6), 197; https://doi.org/10.3390/lubricants12060197 - 30 May 2024
Viewed by 194
Abstract
Biobased greases are derived from renewable resources, are considered more environmentally friendly, and offer comparable performance to petroleum-based greases. In this study, lubricating greases from frying cooking oils were prepared, thus valorizing waste in order to obtain sustainable and environmentally friendly products. Twelve [...] Read more.
Biobased greases are derived from renewable resources, are considered more environmentally friendly, and offer comparable performance to petroleum-based greases. In this study, lubricating greases from frying cooking oils were prepared, thus valorizing waste in order to obtain sustainable and environmentally friendly products. Twelve batches (500 g each) were produced from sunflower and palm frying oils, with 20% by weight calcium/lithium stearate soaps prepared in situ and filled with 15 wt.% cellulose or lignin sulfate. The greases were rheologically characterized. Their consistency was assessed by the penetration test performed before and after working the greases. Dropping point determinations offered information about the stability at higher temperatures, and oil bleeding tests were performed. The average values of the friction coefficient (COF), the contact resistance, and the wear scar diameter were measured through mechanical tests. The greases prove to be comparable to those obtained from mineral oils, with good rheological properties, soft consistency, and good antiwearing behavior, e.g., in open or total-loss lubricating systems, like in open gears and certain food processing machinery; they are thermally stable andprone touse in low-loading working mechanisms. Full article
(This article belongs to the Special Issue Advances in Tribochemistry)
Show Figures

Figure 1

Back to TopTop