Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = front–rear collision avoidance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3044 KiB  
Article
Improved Frequency Sweep Keying CDMA Using Faster R-CNN for Extended Ultrasonic Crosstalk Reduction
by Ga-Rin Park, Sang-Ho Park and Kwang-Ryul Baek
Sensors 2023, 23(23), 9550; https://doi.org/10.3390/s23239550 - 1 Dec 2023
Cited by 1 | Viewed by 733
Abstract
Ultrasonic sensors are inexpensive and provide highly accurate measurements, even with simple hardware configurations, facilitating their use in various fields. When multiple ultrasonic sensors exist in the measurement space, crosstalk occurs due to other nodes, which leads to incorrect measurements. Crosstalk includes not [...] Read more.
Ultrasonic sensors are inexpensive and provide highly accurate measurements, even with simple hardware configurations, facilitating their use in various fields. When multiple ultrasonic sensors exist in the measurement space, crosstalk occurs due to other nodes, which leads to incorrect measurements. Crosstalk includes not only receiving homogeneous signals from other nodes, but also overlapping by other signals and interference by heterogeneous signals. This paper proposes using frequency sweep keying modulation to provide robustness against overlap and a faster region-based convolutional neural network (R-CNN) demodulator to reduce the interference caused by heterogeneous signals. The demodulator works by training Faster R-CNN with the spectrograms of various received signals and classifying the received signals using Faster R-CNN. Experiments implementing an ultrasonic crosstalk environment showed that, compared to on–off keying (OOK), phase-shift keying (PSK), and frequency-shift keying (FSK), the proposed method can implement CDMA even with shorter codes and is robust against overlap. Compared to correlation-based frequency sweep keying, the time-of-flight error was reduced by approximately 75%. While the existing demodulators did not consider heterogeneous signals, the proposed method ignored approximately 99% of the OOK and PSK signals and approximately 79% of the FSK signals. The proposed method performed better than the existing methods and is expected to be used in various applications. Full article
Show Figures

Figure 1

18 pages, 6550 KiB  
Article
Driver Injury from Vehicle Side Impacts When Automatic Emergency Braking and Active Seat Belts Are Used
by Min Li, Daowen Zhang, Qi Liu and Tianshu Zhang
Sensors 2023, 23(13), 5821; https://doi.org/10.3390/s23135821 - 22 Jun 2023
Cited by 1 | Viewed by 1898
Abstract
As an advanced driver assistance system, automatic emergency braking (AEB) can effectively reduce accidents by using high-precision and high-coverage sensors. In particular, it has a significant advantage in reducing front-end collisions and rear-end accidents. Unfortunately, avoiding side collisions is a challenging problem for [...] Read more.
As an advanced driver assistance system, automatic emergency braking (AEB) can effectively reduce accidents by using high-precision and high-coverage sensors. In particular, it has a significant advantage in reducing front-end collisions and rear-end accidents. Unfortunately, avoiding side collisions is a challenging problem for AEB. To tackle these challenges, we propose active seat belt pretensioning on driver injury in vehicles equipped with AEB in unavoidable side crashes. Firstly, records of impact cases from China’s National Automobile Accident In-Depth Investigation System were used to investigate a scenario in which a vehicle is impacted by an oncoming car after the vehicle’s AEB system is triggered. The scenario was created using PreScan software. Then, the simulated vehicles in the side impact were devised using a finite element model of the Toyota Yaris and a moving barrier. These were constructed in HyperMesh software along with models of the driver’s side seatbelt, side airbag, and side curtain airbag. Moreover, the models were verified, and driver out-of-position instances and injuries were evaluated in simulations with different AEB intensities up to 0.7 g for three typical side impact angles. Last but not least, the optimal combination of seatbelt pretensioning and the timing thereof for minimizing driver injury at each side impact angle was identified using orthogonal tests; immediate (at 0 ms) pretensioning at 80 N was applied. Our experiments show that our active seatbelt with the above parameters reduced the weighted injury criterion by 5.94%, 22.05%, and 20.37% at impact angles of 90°, 105°, and 120°, respectively, compared to that of a conventional seatbelt. The results of the experiment can be used as a reference to appropriately set the collision parameters of active seat belts for vehicles with AEB. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

17 pages, 4262 KiB  
Article
Study on Top Hierarchy Control Strategy of AEBS over Regenerative Brake and Hydraulic Brake for Hub Motor Drive BEVs
by Yu Yang, Chao Wang, Shujun Yang and Xianzhi Tang
Energies 2022, 15(22), 8382; https://doi.org/10.3390/en15228382 - 9 Nov 2022
Cited by 3 | Viewed by 1532
Abstract
A hub motor is an effective drive system for Battery Electric Vehicles (BEVs). However, due to limitations on packaging and cost, there are few applications in which hub motors are taken as the only actuators for a brake vehicle. Most applications involve a [...] Read more.
A hub motor is an effective drive system for Battery Electric Vehicles (BEVs). However, due to limitations on packaging and cost, there are few applications in which hub motors are taken as the only actuators for a brake vehicle. Most applications involve a Regenerative Braking System (RBS) combined with a Hydraulic Braking System (HBS). In this paper, a top hierarchy Advanced Emergency Braking System (AEBS) controller is designed in Matlab/Simulink and State-flow, including functionalities of basic emergency braking, brake force distribution between front and rear wheels, anti-lock braking and coordination between RBS and HBS based on Model Predictive Control (MPC); a Seven Degrees of Freedom (DOF) BEV chassis model is constructed and rear-end crash test scenarios are created in Carsim with a high and low road adhesion coefficient. A series of comparison tests show that not only are the stopping distances between the ego vehicle and target vehicle shorter, but also the braking torques, longitudinal slip ratio and rotation speed of each wheel are well controlled without wheel locking. To sum up, in addition to meeting the AEBS requirements of avoiding a rear-end collision, the control strategy developed in this paper also levels up braking performance and enhances vehicle stability on both high-mu and low-mu roads for BEVs driven by a hub motor independently. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

14 pages, 5125 KiB  
Article
Frequency Sweep Keying CDMA for Reducing Ultrasonic Crosstalk
by Ga-Rin Park, Sang-Ho Park and Kwang-Ryul Baek
Sensors 2022, 22(12), 4462; https://doi.org/10.3390/s22124462 - 13 Jun 2022
Cited by 2 | Viewed by 1747
Abstract
Various sensors are embedded in automobiles to implement intelligent safety technologies such as autonomous driving and front–rear collision avoidance technology. In particular, ultrasonic sensors have been used in the past because they have an accuracy of centimeters to sub-centimeters in air despite their [...] Read more.
Various sensors are embedded in automobiles to implement intelligent safety technologies such as autonomous driving and front–rear collision avoidance technology. In particular, ultrasonic sensors have been used in the past because they have an accuracy of centimeters to sub-centimeters in air despite their low cost and low hardware complexity. Recently, the crosstalk problem between ultrasonic sensors has been raised because the number of ultrasonic sensors in the unit space has increased as the number of vehicles increases. Various studies have been conducted to solve the crosstalk, but a demodulation error occurs when signals overlap. Therefore, in this paper, we propose a method that is robust to ultrasonic signal overlap, is robust even at shorter code length, and has reduced time of flight (TOF) error compared to the existing method by applying frequency sweep keying modulation based on code division multiple access (CDMA). As a result of the experiment, the code was detected accurately regardless of the overlap ratio of the two signals, and it was robust even in situations where the power of the two signals was different. In addition, it shows an accurate TOF estimation even if the ID code length is shorter than the existing on–off-keying, frequency shift keying, and phase shift keying methods. Full article
Show Figures

Figure 1

19 pages, 10086 KiB  
Article
A Vision-Based Driver Assistance System with Forward Collision and Overtaking Detection
by Huei-Yung Lin, Jyun-Min Dai, Lu-Ting Wu and Li-Qi Chen
Sensors 2020, 20(18), 5139; https://doi.org/10.3390/s20185139 - 9 Sep 2020
Cited by 38 | Viewed by 5131
Abstract
One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a [...] Read more.
One major concern in the development of intelligent vehicles is to improve the driving safety. It is also an essential issue for future autonomous driving and intelligent transportation. In this paper, we present a vision-based system for driving assistance. A front and a rear on-board camera are adopted for visual sensing and environment perception. The purpose is to avoid potential traffic accidents due to forward collision and vehicle overtaking, and assist the drivers or self-driving cars to perform safe lane change operations. The proposed techniques consist of lane change detection, forward collision warning, and overtaking vehicle identification. A new cumulative density function (CDF)-based symmetry verification method is proposed for the detection of front vehicles. The motion cue obtained from optical flow is used for overtaking detection. It is further combined with a convolutional neural network to remove repetitive patterns for more accurate overtaking vehicle identification. Our approach is able to adapt to a variety of highway and urban scenarios under different illumination conditions. The experiments and performance evaluation carried out on real scene images have demonstrated the effectiveness of the proposed techniques. Full article
(This article belongs to the Special Issue Intelligent Sensing Systems for Vehicle)
Show Figures

Figure 1

Back to TopTop