Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,783)

Search Parameters:
Keywords = fungal infection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5239 KiB  
Article
Effects of Grazing and Leaf Spot Disease on the Structure and Diversity of Phyllosphere Microbiome Communities in Leymus chinensis
by Yani Qian, Yuanyuan Jin, Xinyao Han, Kamran Malik, Chunjie Li and Binhua Yu
Plants 2024, 13(15), 2128; https://doi.org/10.3390/plants13152128 - 1 Aug 2024
Abstract
Leymus chinensis is a high-quality forage with wide distribution. Disease is an important factor affecting the yield and quality of L. chinensis. To investigate the effect of grazing on the phyllosphere microbiome community and leaf spot disease in L. chinensis, high-throughput [...] Read more.
Leymus chinensis is a high-quality forage with wide distribution. Disease is an important factor affecting the yield and quality of L. chinensis. To investigate the effect of grazing on the phyllosphere microbiome community and leaf spot disease in L. chinensis, high-throughput sequencing technology was used to study the differences in the composition and structure of the phyllosphere fungal and bacterial communities of healthy and diseased leaves under different grazing intensities. The results showed that grazing significantly reduced leaf spot disease incidence and severity. There were significant differences in the phyllosphere microbiome composition between healthy and diseased leaves, and interestingly, diseased leaves showed more complex microbial activity. Grazing altered the relative abundance of micro-organisms and affected microbial dispersal and colonization either directly through behavior or indirectly by altering plant community structure. In this study, we found that the phyllosphere microbiome responded strongly to pathogen infection, and that plants recruited beneficial microbes to protect themselves after disease development. Grazing could regulate microbial community composition and structure, either directly or indirectly, and plays a crucial role in maintaining the health of L. chinensis. Full article
(This article belongs to the Special Issue Genetic and Biological Diversity of Plants)
Show Figures

Figure 1

10 pages, 959 KiB  
Review
Utilizing Next-Generation Sequencing: Advancements in the Diagnosis of Fungal Infections
by Sheetal Naik, Dharambir Kashyap, Jashan Deep, Saif Darwish, Joseph Cross, Edmond Mansoor, Vivek Kumar Garg and Prasanna Honnavar
Diagnostics 2024, 14(15), 1664; https://doi.org/10.3390/diagnostics14151664 - 1 Aug 2024
Abstract
Next-generation sequencing (NGS) has emerged as a promising tool for diagnosing fungal infections. It enables the identification of a wide range of fungal species and provides more accurate and rapid results than traditional diagnostic methods. NGS-based approaches involve the sequencing of DNA or [...] Read more.
Next-generation sequencing (NGS) has emerged as a promising tool for diagnosing fungal infections. It enables the identification of a wide range of fungal species and provides more accurate and rapid results than traditional diagnostic methods. NGS-based approaches involve the sequencing of DNA or RNA from clinical samples, which can be used to detect and identify fungal pathogens in complex clinical samples. The development of targeted gene panels and whole-genome sequencing has allowed for identifying genetic markers associated with antifungal drug resistance, enabling clinicians to tailor patient treatment options. NGS can also provide insights into the pathogenesis of fungal infections and aid in discovering novel drug targets. Although NGS has some limitations, such as cost and data analysis, it can potentially revolutionize the future diagnosis and treatment of fungal infections. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Infectious Diseases and Microorganisms)
Show Figures

Figure 1

13 pages, 4237 KiB  
Article
Design of Marine Cyclodepsipeptide Analogues Targeting Candida albicans Efflux Pump CaCdr1p
by Ricardo Ribeiro, Sara Fortes, Lia Costa, Andreia Palmeira, Eugénia Pinto, Emília Sousa and Carla Fernandes
Drugs Drug Candidates 2024, 3(3), 537-549; https://doi.org/10.3390/ddc3030031 (registering DOI) - 1 Aug 2024
Viewed by 119
Abstract
Fungal infections are a significant threat to human health and the environment. The emergence of multidrug-resistant strains of fungi and the growing prevalence of azole resistance in invasive fungal infections exacerbate the problem, with efflux pumps being a major cause of antifungal resistance [...] Read more.
Fungal infections are a significant threat to human health and the environment. The emergence of multidrug-resistant strains of fungi and the growing prevalence of azole resistance in invasive fungal infections exacerbate the problem, with efflux pumps being a major cause of antifungal resistance and a prime target for several counteractive strategies. In Candida albicans, the ATP-binding cassette superfamily transporter CaCdr1p is the predominant efflux pump involved in azole resistance. Marine organisms have unique phenotypic characteristics to survive in challenging environments, resulting in biologically active compounds. The cyclodepsipeptides unnarmicin A and C have shown promising results as inhibitors of rhodamine 6G efflux in cells expressing CaCdr1p. Herein, a series of unnarmicin analogues were designed and docked against a CaCdr1p efflux pump based on the cryogenic electron microscopy structure available to select the most promising compounds. Analogue 33 was predicted to be the best considering its high affinity for the efflux pump and pharmacokinetic profile. These results pave the way for further synthesis and in vitro biological studies of novel unnarmicins seeking a synergistic effect with fluconazole. Full article
(This article belongs to the Section Medicinal Chemistry and Preliminary Screening)
Show Figures

Figure 1

20 pages, 4411 KiB  
Review
How Do Polyphenol-Rich Foods Prevent Oxidative Stress and Maintain Gut Health?
by Samir Jawhara
Microorganisms 2024, 12(8), 1570; https://doi.org/10.3390/microorganisms12081570 - 31 Jul 2024
Viewed by 190
Abstract
Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, involves chronic inflammatory disorders of the digestive tract. Oxidative stress, associated with increased reactive oxygen species generation, is a major risk factor for IBD pathogenesis. Industrialized lifestyles expose us to a variety [...] Read more.
Inflammatory bowel disease (IBD), which includes Crohn’s disease and ulcerative colitis, involves chronic inflammatory disorders of the digestive tract. Oxidative stress, associated with increased reactive oxygen species generation, is a major risk factor for IBD pathogenesis. Industrialized lifestyles expose us to a variety of factors that contribute to deteriorating gut health, especially for IBD patients. Many alternative therapeutic strategies have been developed against oxidative stress along with conventional therapy to alleviate IBD pathogenesis. Polyphenol-rich foods have attracted growing interest from scientists due to their antioxidant properties. Polyphenols are natural compounds found in plants, fruits, vegetables, and nuts that exhibit antioxidant properties and protect the body from oxidative damage. This review presents an overview of polyphenol benefits and describes the different types of polyphenols. It also discusses polyphenols’ role in inhibiting oxidative stress and fungal growth prevention. Overall, this review highlights how a healthy and balanced diet and avoiding the industrialized lifestyles of our modern society can minimize oxidative stress damage and protect against pathogen infections. It also highlights how polyphenol-rich foods play an important role in protecting against oxidative stress and fungal growth. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

14 pages, 6153 KiB  
Systematic Review
Artificial Intelligence in the Diagnosis of Onychomycosis—Literature Review
by Barbara Bulińska, Magdalena Mazur-Milecka, Martyna Sławińska, Jacek Rumiński and Roman J. Nowicki
J. Fungi 2024, 10(8), 534; https://doi.org/10.3390/jof10080534 - 30 Jul 2024
Viewed by 317
Abstract
Onychomycosis is a common fungal nail infection that is difficult to diagnose due to its similarity to other nail conditions. Accurate identification is essential for effective treatment. The current gold standard methods include microscopic examination with potassium hydroxide, fungal cultures, and Periodic acid-Schiff [...] Read more.
Onychomycosis is a common fungal nail infection that is difficult to diagnose due to its similarity to other nail conditions. Accurate identification is essential for effective treatment. The current gold standard methods include microscopic examination with potassium hydroxide, fungal cultures, and Periodic acid-Schiff biopsy staining. These conventional techniques, however, suffer from high turnover times, variable sensitivity, reliance on human interpretation, and costs. This study examines the potential of integrating AI (artificial intelligence) with visualization tools like dermoscopy and microscopy to improve the accuracy and efficiency of onychomycosis diagnosis. AI algorithms can further improve the interpretation of these images. The review includes 14 studies from PubMed and IEEE databases published between 2010 and 2024, involving clinical and dermoscopic pictures, histopathology slides, and KOH microscopic images. Data extracted include study type, sample size, image assessment model, AI algorithms, test performance, and comparison with clinical diagnostics. Most studies show that AI models achieve an accuracy comparable to or better than clinicians, suggesting a promising role for AI in diagnosing onychomycosis. Nevertheless, the niche nature of the topic indicates a need for further research. Full article
(This article belongs to the Special Issue Fungal Diseases in Europe, 2nd Edition)
Show Figures

Figure 1

25 pages, 7169 KiB  
Article
Transcriptional and Post-Translational Roles of Calcineurin in Cationic Stress and Glycerol Biosynthesis in Cryptococcus neoformans
by Ronaldo Silva Santos, Gabriel Martins-Silva, Adrián Adolfo Álvarez Padilla, Mateus Possari, Sérgio Donnantuoni Degello, Otávio J. Bernardes Brustolini, Ana Tereza Ribeiro Vasconcelos, Marcelo Afonso Vallim and Renata C. Pascon
J. Fungi 2024, 10(8), 531; https://doi.org/10.3390/jof10080531 - 30 Jul 2024
Viewed by 226
Abstract
Stress management is an adaptive advantage for survival in adverse environments. Pathogens face this challenge during host colonization, requiring an appropriate stress response to establish infection. The fungal pathogen Cryptococcus neoformans undergoes thermal, oxidative, and osmotic stresses in the environment and animal host. [...] Read more.
Stress management is an adaptive advantage for survival in adverse environments. Pathogens face this challenge during host colonization, requiring an appropriate stress response to establish infection. The fungal pathogen Cryptococcus neoformans undergoes thermal, oxidative, and osmotic stresses in the environment and animal host. Signaling systems controlled by Ras1, Hog1, and calcineurin respond to high temperatures and osmotic stress. Cationic stress caused by Na+, K+, and Li+ can be overcome with glycerol, the preferred osmolyte. Deleting the glycerol phosphate phosphatase gene (GPP2) prevents cells from accumulating glycerol due to a block in the last step of its biosynthetic pathway. Gpp2 accumulates in a phosphorylated form in a cna1Δ strain, and a physical interaction between Gpp2 and Cna1 was found; moreover, the gpp2Δ strain undergoes slow growth and has attenuated virulence in animal models of infection. We provide biochemical evidence that growth in 1 M NaCl increases glycerol content in the wild type, whereas gpp2Δ, cna1Δ, and cnb1Δ mutants fail to accumulate it. The deletion of cnb1Δ or cna1Δ renders yeast cells sensitive to cationic stress, and the Gfp-Gpp2 protein assumes an abnormal localization. We suggest a mechanism in which calcineurin controls Gpp2 at the post-translational level, affecting its localization and activity, leading to glycerol biosynthesis. Also, we showed the transcriptional profile of glycerol-deficient mutants and established the cationic stress response mediated by calcineurin; among the biological processes differentially expressed are carbon utilization, translation, transmembrane transport, glutathione metabolism, oxidative stress response, and transcription regulation. To our knowledge, this is the first time that this transcriptional profile has been described. These results have implications for pathogen stress adaptability. Full article
(This article belongs to the Special Issue Cryptococcus Infections and Pathogenesis)
Show Figures

Figure 1

31 pages, 1819 KiB  
Review
A Review on Biocontrol Agents as Sustainable Approach for Crop Disease Management: Applications, Production, and Future Perspectives
by Anshika Tyagi, Tensangmu Lama Tamang, Hamdy Kashtoh, Rakeeb Ahmad Mir, Zahoor Ahmad Mir, Subaya Manzoor, Nazia Manzar, Gousia Gani, Shailesh Kumar Vishwakarma, Mohammed A. Almalki and Sajad Ali
Horticulturae 2024, 10(8), 805; https://doi.org/10.3390/horticulturae10080805 - 30 Jul 2024
Viewed by 196
Abstract
Horticultural crops are vulnerable to diverse microbial infections, which have a detrimental impact on their growth, fruit quality, and productivity. Currently, chemical pesticides are widely employed to manage diseases in horticultural crops, but they have negative effects on the environment, human health, soil [...] Read more.
Horticultural crops are vulnerable to diverse microbial infections, which have a detrimental impact on their growth, fruit quality, and productivity. Currently, chemical pesticides are widely employed to manage diseases in horticultural crops, but they have negative effects on the environment, human health, soil physiochemical properties, and biodiversity. Additionally, the use of pesticides has facilitated the development and spread of resistant pathovars, which have emerged as a serious concern in contemporary agriculture. Nonetheless, the adverse consequences of chemical pesticides on the environment and public health have worried scientists greatly in recent years, which has led to a switch to the use of biocontrol agents such as bacteria, fungi, and insects to control plant pathogens. Biocontrol agents (BCAs) form an integral part of organic farming, which is regarded as the future of sustainable agriculture. Hence, harnessing the potential of BCAs is an important viable strategy to control microbial disease in horticultural crops in a way that is also ecofriendly and can improve the soil health. Here, we discuss the role of the biological control of microbial diseases in crops. We also discuss different microbial-based BCAs such as fungal, bacterial, and viral and their role in disease management. Next, we discuss the factors that affect the performance of the BCAs under field conditions. This review also highlights the genetic engineering of BCAs to enhance their biocontrol efficiency and other growth traits. Finally, we highlight the challenges and opportunities of biocontrol-based disease management in horticulture crops and future research directions to boost their efficacy and applications. Full article
Show Figures

Figure 1

12 pages, 8155 KiB  
Article
Caffeine Protects Keratinocytes from Trichophyton mentagrophytes Infection and Behaves as an Antidermatophytic Agent
by Diogo M. da Fonseca, Lisa Rodrigues, José Sousa-Baptista, Félix Marcos-Tejedor, Marta Mota, Rodrigo A. Cunha, Chantal Fernandes and Teresa Gonçalves
Int. J. Mol. Sci. 2024, 25(15), 8303; https://doi.org/10.3390/ijms25158303 - 30 Jul 2024
Viewed by 245
Abstract
Caffeine affords several beneficial effects on human health, acting as an antioxidant, anti-inflammatory agent, and analgesic. Caffeine is widely used in cosmetics, but its antimicrobial activity has been scarcely explored, namely against skin infection agents. Dermatophytes are the most common fungal agents of [...] Read more.
Caffeine affords several beneficial effects on human health, acting as an antioxidant, anti-inflammatory agent, and analgesic. Caffeine is widely used in cosmetics, but its antimicrobial activity has been scarcely explored, namely against skin infection agents. Dermatophytes are the most common fungal agents of human infection, mainly of skin infections. This work describes the in vitro effect of caffeine during keratinocyte infection by Trichophyton mentagrophytes, one of the most common dermatophytes. The results show that caffeine was endowed with antidermatophytic activity with a MIC, determined following the EUCAST standards, of 8 mM. Caffeine triggered a modification of the levels of two major components of the fungal cell wall, β-(1,3)-glucan and chitin. Caffeine also disturbed the ultrastructure of the fungal cells, particularly the cell wall surface and mitochondria, and autophagic-like structures were observed. During dermatophyte–human keratinocyte interactions, caffeine prevented the loss of viability of keratinocytes and delayed spore germination. Overall, this indicates that caffeine can act as a therapeutic and prophylactic agent for dermatophytosis. Full article
Show Figures

Figure 1

14 pages, 1954 KiB  
Article
Identification of Biomarkers Associated with Phyllosticta citricarpa Tolerance
by Puseletso O. J. Tswaai, Wilma A. Augustyn, Thierry Regnier and Wilma du Plooy
Molecules 2024, 29(15), 3582; https://doi.org/10.3390/molecules29153582 - 29 Jul 2024
Viewed by 331
Abstract
Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa Kiely, (McAlpine Van der Aa), with most cultivars being susceptible to infection. Currently, disease control is based on the application of protective fungicides, which is restricted due to resistance, health and [...] Read more.
Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa Kiely, (McAlpine Van der Aa), with most cultivars being susceptible to infection. Currently, disease control is based on the application of protective fungicides, which is restricted due to resistance, health and environmental concerns. Although using natural products for disease management is gaining momentum, more advances are required. This study obtained the metabolic profiles of the essential oil and cuticular waxes of two citrus cultivars with a varying susceptibility to CBS infection using gas chromatography–mass spectrometry. A multivariate data analysis identified possible biomarker compounds that contributed to the difference in susceptibility between the two cultivars. Several identified biomarkers were tested in vitro for their antifungal properties against P. citricarpa. Two biomarkers, propanoic acid and linalool, were able to completely inhibit pathogen growth at 750 mg/L and 2000 mg/L, respectively. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

11 pages, 236 KiB  
Article
PCR-Based Microarray Enhances Diagnosis of Culture-Negative Biopsied Tissue in Patients with Invasive Mold Infections: Real-World Experience in a Tertiary Medical Center
by Hao-En Jan, Chin-Shiang Tsai, Cong-Tat Cia, Ching-Chi Lee, Ying-Wen Chen, Nan-Yao Lee, Chia-Wen Li, Ming-Chi Li, Ling-Shan Syue, Ching-Lung Lo, Tsung-Chain Chang, Chi-Jung Wu, Wen-Chien Ko and Po-Lin Chen
J. Fungi 2024, 10(8), 530; https://doi.org/10.3390/jof10080530 - 29 Jul 2024
Viewed by 283
Abstract
A fungal polymerase chain reaction (PCR) amplifies conserved genes across diverse species, combined with the subsequent hybridization of amplicons using a specific oligonucleotide microarray, allowing for the rapid detection of pathogens at the species level. However, the performance of microarrays in diagnosing invasive [...] Read more.
A fungal polymerase chain reaction (PCR) amplifies conserved genes across diverse species, combined with the subsequent hybridization of amplicons using a specific oligonucleotide microarray, allowing for the rapid detection of pathogens at the species level. However, the performance of microarrays in diagnosing invasive mold infections (IMI) from infected tissue samples is rarely reported. During the 4-year study period, all biopsied tissue samples from patients with a suspected IMI sent for microarray assays were analyzed. A partial segment of the internal transcribed spacer (ITS) region was amplified by nested PCR after DNA extraction. Amplicons were hybridized with specific probes for a variety of mold species using an in-house oligonucleotide microarray. A total of 80 clinical samples from 74 patients were tested. A diagnosis of an IMI was made in 10 patients (4 proven, 1 probable, 3 possible, 2 clinical suspicion). The PCR/microarray test was positive for three out of four proven IMIs, one probable IMI, and one out of three possible IMIs. Two patients with positive PCR/microarray findings were considered to have clinical suspicion of an IMI, and their responsible physicians initiated antifungal therapy despite the absence of supporting microbiological and histological evidence. Clinical diagnoses were categorized into non-IMI and IMI groups (including proven, probable, possible, and clinical suspicion). The sensitivity and specificity of the microarray in diagnosing the IMIs were 70% and 95.7%, respectively, while the sensitivity and specificity of the culture and histological findings were 10%/96.3% and 40.0%/100%, respectively. PCR-based methods provide supportive microbiological evidence when culture results are inconclusive. The combination of a microarray with fungal culture and histology promotes the precise diagnosis of IMIs in difficult-to-diagnose patients. Full article
(This article belongs to the Special Issue Diagnosis and Management of Human Mold Infections)
13 pages, 2243 KiB  
Article
The Association of Chronic Pulmonary Aspergillosis and Chronic Pulmonary Histoplasmosis with MDR-TB Patients in Indonesia
by Noni N. Soeroso, Lambok Siahaan, Selfi Khairunnisa, Raden Ajeng Henny Anggriani, Aida Aida, Putri C. Eyanoer, Elvita R. Daulay, Erlina Burhan, Anna Rozaliyani, Ronny Ronny, Robiatul Adawiyah, David W. Denning and Retno Wahyuningsih
J. Fungi 2024, 10(8), 529; https://doi.org/10.3390/jof10080529 - 29 Jul 2024
Viewed by 459
Abstract
In Indonesia, 2.4% of all new tuberculosis patients had multi-drug resistant disease (MDR-TB); an estimated 24,000 incidences. Historical case series of MDR-TB described a high frequency of cavitation and poor prognosis. The diagnosis of chronic pulmonary aspergillosis (CPA) relies on raised levels of [...] Read more.
In Indonesia, 2.4% of all new tuberculosis patients had multi-drug resistant disease (MDR-TB); an estimated 24,000 incidences. Historical case series of MDR-TB described a high frequency of cavitation and poor prognosis. The diagnosis of chronic pulmonary aspergillosis (CPA) relies on raised levels of Aspergillus IgG antibodies, and detectable Histoplasma IgG antibodies are suspicious for chronic pulmonary histoplasmosis (CPH). We investigated whether MDR-TB patients might have concurrent CPH or CPA. This was a cross-sectional study with 50 MDR-TB patients. ELISA was used to detect Histoplasma IgG antibodies and lateral flow assay was used to detect Aspergillus IgG/IgM antibodies. Several other possible disease determinants were assessed by multivariate analysis. Of the 50 MDR-TB patients, 14 (28%) and 16 (32%) had positive Histoplasma or Aspergillus serology; six patients (12%) had dual antibody reactivity. Radiological abnormalities in positive patients included diffuse or local infiltrates, nodules, consolidation, and apical cavities, consistent with CPH and CPA. Patients with detectable fungal antibodies tended to have worse disease, and 4 of 26 (15.3%) died in the first 5 months of dual infection (p = 0.11 compared with no deaths in those with only MDR-TB). The criteria for the diagnosis of CPH and CPA were fulfilled in those with moderately and far advanced disease (13 of 14 or 93%) and 12 of 16 (75%), respectively. Damp housing was the only determinant associated with Histoplasma antibodies (PR 2.01; 95%CI 0.56–7.19), while pets were associated with the Aspergillus antibody (PR 18.024; 95%CI 1.594–203.744). CPA or CPH are probably frequent in MDR-TB patients in Indonesia and may carry a worse prognosis. Full article
(This article belongs to the Special Issue Epidemiology of Invasive Mycosis in the Hospital)
Show Figures

Figure 1

11 pages, 2766 KiB  
Article
Optical Nanomotion Detection to Rapidly Discriminate between Fungicidal and Fungistatic Effects of Antifungals on Single-Cell Candida albicans
by Vjera Radonicic, Aleksandar Kalauzi, Maria Ines Villalba, Ksenija Radotić, Bart Devreese, Sandor Kasas and Ronnie G. Willaert
Antibiotics 2024, 13(8), 712; https://doi.org/10.3390/antibiotics13080712 - 29 Jul 2024
Viewed by 271
Abstract
Candida albicans is an emerging pathogen that poses a significant challenge due to its multidrug-resistant nature. There are two types of antifungal agents, fungicidal and fungistatic, with distinct mechanisms of action against fungal pathogens. Fungicidal agents kill fungal pathogens, whereas fungistatic agents inhibit [...] Read more.
Candida albicans is an emerging pathogen that poses a significant challenge due to its multidrug-resistant nature. There are two types of antifungal agents, fungicidal and fungistatic, with distinct mechanisms of action against fungal pathogens. Fungicidal agents kill fungal pathogens, whereas fungistatic agents inhibit their growth. The growth can be restored once the agent is removed and favorable conditions are established. Recognizing this difference is crucial as it influences treatment selection and infection prognosis. We present a technique based on optical nanomotion detection (ONMD) (i.e., observing the movement of the cells using an optical microscope) to discriminate rapidly between fungicidal (caspofungin) and fungistatic (fluconazole) drugs. The technique is based on the change in a yeast cell’s nanomotion as a function of time during a two-hour treatment with the antifungal of interest followed by a one-hour growth period. The cells are entrapped in microwells in a microfluidic chip, which allows a quick exchange of growth medium and antifungal agent, enabling ONMD measurements on the same individual cells before and after treatment. This procedure permits to discriminate between fungicidal and fungistatic antifungals in less than 3 h, with single-cell resolution by observing if the nanomotion recovers after removing the treatment and reintroducing growth medium (YPD), or continues to drop. The simplicity of the approach holds promise for further development into a user-friendly device for rapid antifungal susceptibility testing (AFST), potentially being implemented in hospitals and medical centers worldwide in developed and developing countries. Full article
Show Figures

Figure 1

10 pages, 915 KiB  
Article
Isavuconazole Pharmacokinetics in Critically Ill Patients: Relationship with Clinical Effectiveness and Patient Safety
by María Martín-Cerezuela, Cristina Maya Gallegos, María Remedios Marqués-Miñana, María Jesús Broch Porcar, Andrés Cruz-Sánchez, Juan Carlos Mateo-Pardo, José Esteban Peris Ribera, Ricardo Gimeno, Álvaro Castellanos-Ortega, José Luis Poveda Andrés and Paula Ramírez Galleymore
Antibiotics 2024, 13(8), 706; https://doi.org/10.3390/antibiotics13080706 - 29 Jul 2024
Viewed by 240
Abstract
Isavuconazole is used to treat fungal infections. This study aims to describe isavuconazole pharmacokinetics in critically ill patients and evaluate their relationship with clinical efficacy and patient safety. We conducted a prospective, observational study in patients treated with intravenous isavuconazole. Samples were collected [...] Read more.
Isavuconazole is used to treat fungal infections. This study aims to describe isavuconazole pharmacokinetics in critically ill patients and evaluate their relationship with clinical efficacy and patient safety. We conducted a prospective, observational study in patients treated with intravenous isavuconazole. Samples were collected at predose (Cmin), 1 h (Cmax) and 12 h (C50) after the last dose. The plasma concentration was determined by high-performance liquid chromatography. The relationship between plasma concentration and clinical and microbiological outcomes and safety was evaluated. The influence of covariates (age, sex, weight, SAPS3, creatinine, liver enzymes and extracorporeal devices: continuous renal replacement therapy (CRRT) and extracorporeal membrane oxygenation (ECMO)) was analysed. Population pharmacokinetic modelling was performed using NONMEN®. A total of 71 isavuconazole samples from 24 patients were analysed. The mean Cmin was 1.76 (1.02) mg/L; 87.5% reached the optimal therapeutic target and 12.5% were below 1 mg/L. Population pharmacokinetics were best described by a one-compartment model with first-order elimination. No factor had a significant impact on the plasma concentration or pharmacokinetic parameters. Thus, isavuconazole could be safely used in a critically ill population, even in those treated with CRRT and ECMO, from a pharmacokinetic standpoint. Therefore, routine therapeutic drug monitoring may not be strictly necessary in daily clinical practice. Full article
Show Figures

Figure 1

34 pages, 2294 KiB  
Review
Terpenoids from Marine Sources: A Promising Avenue for New Antimicrobial Drugs
by Xiao Liu, Jianzeng Xin, Yupei Sun, Feng Zhao, Changshan Niu and Sheng Liu
Mar. Drugs 2024, 22(8), 347; https://doi.org/10.3390/md22080347 - 28 Jul 2024
Viewed by 641
Abstract
Currently, there is an urgent need for new antibacterial and antifungal agents to combat the growing challenge of antibiotic resistance. As the largest ecosystem on Earth, the marine ecosystem includes a vast array of microorganisms (primarily bacteria and fungi), plants, invertebrates, and vertebrates, [...] Read more.
Currently, there is an urgent need for new antibacterial and antifungal agents to combat the growing challenge of antibiotic resistance. As the largest ecosystem on Earth, the marine ecosystem includes a vast array of microorganisms (primarily bacteria and fungi), plants, invertebrates, and vertebrates, making it a rich source of various antimicrobial compounds. Notably, terpenoids, known for their complex structures and diverse bioactivities, are a significant and promising group of compounds in the battle against bacterial and fungal infections. In the past five years, numerous antimicrobial terpenoids have been identified from marine organisms such as bacteria, fungi, algae, corals, sea cucumbers, and sponges. This review article provides a detailed overview of 141 terpenoids with antibacterial and/or antifungal properties derived from marine organisms between 2019 and 2024. Terpenoids, a diverse group of natural organic compounds derived from isoprene units, are systematically categorized based on their carbon skeleton structures. Comprehensive information is provided about their names, structures, biological sources, and the extent of their antibacterial and/or antifungal effectiveness. This review aims to facilitate the rapid identification and development of prospective antimicrobials in the pharmaceutical sector. Full article
(This article belongs to the Special Issue Marine Natural Products as Potential Drug Leads)
Show Figures

Figure 1

11 pages, 472 KiB  
Article
Seed Tubers Are Not the Primary Inoculum Source in Water Yam (Dioscorea alata) Anthracnose Epidemics in the Caribbean
by Laurent Penet, Margot Gumbau, Pauline Dentika, Fritz Poliphème, Sébastien Guyader, François Bussière, Angela T. Alleyne and Jean-Marc Blazy
Int. J. Plant Biol. 2024, 15(3), 733-743; https://doi.org/10.3390/ijpb15030053 (registering DOI) - 28 Jul 2024
Viewed by 241
Abstract
Crop disease often leads to field epidemics with serious threats to yield. Early symptoms are sometimes difficult to identify, so the origin of primary inoculum is a critical focal point in the study of plant diseases, as it can help design management strategies [...] Read more.
Crop disease often leads to field epidemics with serious threats to yield. Early symptoms are sometimes difficult to identify, so the origin of primary inoculum is a critical focal point in the study of plant diseases, as it can help design management strategies to reduce crop losses. Here, we investigated whether anthracnose of water yams (Dioscorea alata L.) caused by the species complex Colletotrichum gloeosporioides can start from infected seed tubers from the previous harvest. Over two years, we collected tubers with varying pathogen prevalence in the field directly from producers and conducted fungal isolations in the lab to sample C. gloeosporioides. We also proceeded to artificially inoculate tubers before planting and monitored disease development. Finally, we genotyped isolates from leaves in the fields and assessed fixation indices between plots based on plot ownership (plots with a common seed tuber origin from a single farmer) vs. samples in plots from unrelated producers in Guadeloupe, Martinique, and Barbados. We were unable to isolate the fungus from harvested tubers in either sampling survey nor did any plants grown from inoculated tubers develop any disease symptoms during growth. Also, the genetic structure of samples within each plot was independent of plot ownership, though this occurred with varying levels in the different islands. These results suggest that contaminated planting material from seed tubers is not the primary source of the disease, which is in contrast to the common perception of yam anthracnose prevalence in the Antilles. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

Back to TopTop