Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = fusidic acid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2151 KiB  
Article
Antimicrobial Peptide Identified via Machine Learning Presents Both Potent Antibacterial Properties and Low Toxicity toward Human Cells
by Qifei Wang, Junlin Yang, Malcolm Xing and Bingyun Li
Microorganisms 2024, 12(8), 1682; https://doi.org/10.3390/microorganisms12081682 - 15 Aug 2024
Viewed by 429
Abstract
Preventing infection is a critical clinical challenge; however, the extensive use of antibiotics has resulted in remarkably increased antibiotic resistance. A variety of antibiotic alternatives including antimicrobial peptides (AMPs) have been studied. Unfortunately, like most conventional antibiotics, most current AMPs have shown significantly [...] Read more.
Preventing infection is a critical clinical challenge; however, the extensive use of antibiotics has resulted in remarkably increased antibiotic resistance. A variety of antibiotic alternatives including antimicrobial peptides (AMPs) have been studied. Unfortunately, like most conventional antibiotics, most current AMPs have shown significantly high toxicity toward the host, and therefore induce compromised host responses that may lead to negative clinical outcomes such as delayed wound healing. In this study, one of the AMPs with a short length of nine amino acids was first identified via machine learning to present potentially low cytotoxicity, and then synthesized and validated in vitro against both bacteria and mammalian cells. It was found that this short AMP presented strong and fast-acting antimicrobial properties against bacteria like Staphylococcus aureus, one of the most common bacteria clinically, and it targeted and depolarized bacterial membranes. This AMP also demonstrated significantly lower (e.g., 30%) toxicity toward mammalian cells like osteoblasts, which are important cells for new bone formation, compared to conventional antibiotics like gentamicin, vancomycin, rifampin, cefazolin, and fusidic acid at short treatment times (e.g., 2 h). In addition, this short AMP demonstrated relatively low toxicity, similar to osteoblasts, toward an epithelial cell line like BEAS-2B cells. Full article
Show Figures

Figure 1

15 pages, 2762 KiB  
Article
Investigating the Antimicrobial Potential of 560 Compounds from the Pandemic Response Box and COVID Box against Resistant Gram-Negative Bacteria
by Rita de Cássia Cerqueira Melo, Aline Andrade Martins, Andressa Leite Ferraz Melo, Jean Carlos Pael Vicente, Mariana Carvalho Sturaro, Julia Pimentel Arantes, Luana Rossato, Gleyce Hellen de Almeida de Souza and Simone Simionatto
Antibiotics 2024, 13(8), 723; https://doi.org/10.3390/antibiotics13080723 - 1 Aug 2024
Viewed by 575
Abstract
Antimicrobial resistance (AMR) has emerged as a significant threat to public health, particularly in infections caused by critically important Gram-negative bacteria. The development of novel antibiotics has its limitations, and therefore it is crucial to explore alternative strategies to effectively combat infections with [...] Read more.
Antimicrobial resistance (AMR) has emerged as a significant threat to public health, particularly in infections caused by critically important Gram-negative bacteria. The development of novel antibiotics has its limitations, and therefore it is crucial to explore alternative strategies to effectively combat infections with resistant pathogens. In this context, the present study investigated the antibacterial potency of 560 compounds against the multidrug-resistant (MDR) strains of Klebsiella pneumoniae and Serratia marcescens. The evaluated compounds were selected from the Pandemic Response Box (PRB) and COVID Box (CB) and subjected to assays to determine the inhibitory concentration (IC), minimum bactericidal concentration (MBC), and biofilm formation. Further, the effects of these compounds on membrane integrity were assessed through protein quantification. Several of the evaluated compounds, including fusidic acid, MMV1580853, and MMV1634399, exhibited a significant reduction in biofilm formation and growth in K. pneumoniae. Trimethoprim exhibited potential against S. marcescens. The IC values of the compounds indicated significant microbial growth inhibition at various concentrations. These findings underscore the potency of the existing antibiotics and novel compounds in combating the MDR strains of bacteria. The importance of reconsidering the known antibiotics and utilizing drug repositioning strategies to address the increasing risk of AMR is highlighted. Full article
(This article belongs to the Special Issue Antibiotics Resistance in Gram-Negative Bacteria, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 257 KiB  
Article
Antimicrobial Resistance Trends in Hidradenitis Suppurativa Lesions
by Dimitra Koumaki, Georgios Evangelou, Sofia Maraki, Evangelia Rovithi, Danae Petrou, Erato Solia Apokidou, Stamatios Gregoriou, Vasiliki Koumaki, Petros Ioannou, Kyriaki Zografaki, Aikaterini Doxastaki, Alexander Katoulis, Kalliopi Papadopoulou, Dimitra Stafylaki, Viktoria Eirini Mavromanolaki and Konstantinos Krasagakis
J. Clin. Med. 2024, 13(14), 4246; https://doi.org/10.3390/jcm13144246 - 20 Jul 2024
Viewed by 668
Abstract
Background/Objectives: Antibiotic (AB) therapy is the first step in managing hidradenitis suppurativa (HS). Knowledge of the local patterns of antimicrobial resistance is paramount for the appropriate selection of antimicrobials. This study aimed to assess the occurrence of antibiotic resistance in patients with [...] Read more.
Background/Objectives: Antibiotic (AB) therapy is the first step in managing hidradenitis suppurativa (HS). Knowledge of the local patterns of antimicrobial resistance is paramount for the appropriate selection of antimicrobials. This study aimed to assess the occurrence of antibiotic resistance in patients with HS. Methods: A cross-sectional study was conducted on 103 patients with HS seen at the Dermatology Department at the University Hospital of Heraklion, Heraklion, Crete, Greece, from January 2019 to December 2023, who were not on any antibiotics in the last three months. Results: A total of 103 patients with HS participated in this study. Purulent material from 139 skin lesions of these patients was swabbed, and 79.86% (111/139) tested positive for bacteria. Gram-positive isolates accounted for 73%, whereas Gram-negative isolates comprised 27%. Among the isolates, 85.1% were aerobes, and 14.9% were anaerobic. The most common bacterial families isolated were Staphylococcaceae (48.27%), Enterobacteriaceae (14.94%), and Streptococcaceae (6.89%). The antibiogram profiles of bacterial cultures revealed a 57.1% resistance to levofloxacin and a 53.3% resistance to penicillin in Staphylococcus lugdunensis, whereas Staphylococcus aureus showed a 76.9% resistance to penicillin and a 58.3% resistance to fusidic acid. High resistance rates of 63.5% for tigecycline, 63.3% for ampicillin, and 40.5% for colistin were observed for Gram-negative isolates. Resistances of 62.5%, 61.5%, and 53.8% to erythromycin, clindamycin, and penicillin, respectively, were observed in the anaerobes. Conclusions: Patients with HS displayed considerable resistance to bacterial proliferation. The revised therapeutic guidelines for HS should incorporate the latest insights into bacterial antibiotic resistance. Full article
(This article belongs to the Section Dermatology)
18 pages, 5122 KiB  
Article
Enhancing the Topical Antibacterial Activity of Fusidic Acid via Embedding into Cinnamon Oil Nano-Lipid Carrier
by Heba S. Elsewedy, Tamer M. Shehata, Shaymaa M. Genedy, Khuzama M. Siddiq, Bushra Y. Asiri, Rehab A. Alshammari, Sarah I. Bukhari, Adeola T. Kola-Mustapha, Heba A. Ramadan and Wafaa E. Soliman
Gels 2024, 10(4), 268; https://doi.org/10.3390/gels10040268 - 16 Apr 2024
Cited by 3 | Viewed by 1209
Abstract
Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as [...] Read more.
Presently, antimicrobial resistance is of great risk to remarkable improvements in health conditions and infection management. Resistance to various antibiotics has been considered a great obstacle in their usage, necessitating alternative strategies for enhancing the antibacterial effect. Combination therapy has been recognized as a considerable strategy that could improve the therapeutic influence of antibacterial agents. Therefore, the aim of this study was to combine the antibacterial action of compounds of natural origin like fusidic acid (FA) and cinnamon essential oil (CEO) for synergistic effects. A distinctive nanoemulsion (NE) was developed using cinnamon oil loaded with FA. Applying the Box–Behnken design (BBD) approach, one optimized formula was selected and integrated into a gel base to provide an FA-NE-hydrogel for optimal topical application. The FA-NE-hydrogel was examined physically, studied for in vitro release, and investigated for stability upon storage at different conditions, at room (25 °C) and refrigerator (4 °C) temperatures, for up to 3 months. Ultimately, the NE-hydrogel preparation was inspected for its antibacterial behavior using multidrug-resistant bacteria and checked by scanning electron microscopy. The FA-NE-hydrogel formulation demonstrated a pH (6.32), viscosity (12,680 cP), and spreadability (56.7 mm) that are acceptable for topical application. The in vitro release could be extended for 6 h, providing 52.0%. The formulation was stable under both test conditions for up to 3 months of storage. Finally, the FA-NE-hydrogel was found to inhibit the bacterial growth of not only Gram-positive but also Gram-negative bacteria. The inhibition was further elucidated by a scanning electron micrograph, indicating the efficiency of CEO in enhancing the antibacterial influence of FA when combined in an NE system. Full article
(This article belongs to the Special Issue Designing Gels for Antibacterial and Antiviral Agents)
Show Figures

Figure 1

15 pages, 5662 KiB  
Article
Reversing the Natural Drug Resistance of Gram-Negative Bacteria to Fusidic Acid via Forming Drug–Phospholipid Complex
by Jianhong Liu, Xuyang Lai, Yuanhong Li, Zhuohang Yu, Xuan Wang, Chaoliang Zhang and Qiang Peng
Bioengineering 2024, 11(2), 177; https://doi.org/10.3390/bioengineering11020177 - 11 Feb 2024
Cited by 3 | Viewed by 1381
Abstract
Drug resistance substantially compromises antibiotic therapy and poses a serious threat to public health. Fusidic acid (FA) is commonly used to treat staphylococcal infections, such as pneumonia, osteomyelitis and skin infections. However, Gram-negative bacteria have natural resistance to FA, which is almost restrained [...] Read more.
Drug resistance substantially compromises antibiotic therapy and poses a serious threat to public health. Fusidic acid (FA) is commonly used to treat staphylococcal infections, such as pneumonia, osteomyelitis and skin infections. However, Gram-negative bacteria have natural resistance to FA, which is almost restrained in cell membranes due to the strong interactions between FA and phospholipids. Herein, we aim to utilize the strong FA–phospholipid interaction to pre-form a complex of FA with the exogenous phospholipid. The FA, in the form of an FA–phospholipid complex (FA-PC), no longer interacts with the endogenous membrane phospholipids and thus can be delivered into bacteria cells successfully. We found that the water solubility of FA (5 µg/mL) was improved to 133 µg/mL by forming the FA-PC (molar ratio 1:1). Furthermore, upon incubation for 6 h, the FA-PC (20 µg/mL) caused a 99.9% viability loss of E. coli and 99.1% loss of P. aeruginosa, while free FA did not work. The morphology of the elongated bacteria cells after treatment with the FA-PC was demonstrated by SEM. The successful intracellular delivery was shown by confocal laser scanning microscopy in the form of coumarin 6-PC (C6-PC), where C6 served as a fluorescent probe. Interestingly, the antibacterial effect of the FA-PC was significantly compromised by adding extra phospholipid in the medium, indicating that there may be a phospholipid-based transmembrane transport mechanism underlying the intracellular delivery of the FA-PC. This is the first report regarding FA-PC formation and its successful reversing of Gram-negative bacteria resistance to FA, and it provides a platform to reverse transmembrane delivery-related drug resistance. The ready availability of phospholipid and the simple preparation allow it to have great potential for clinical use. Full article
(This article belongs to the Section Nanotechnology Applications in Bioengineering)
Show Figures

Figure 1

14 pages, 890 KiB  
Article
High Prevalence of Multidrug-Resistant Bacteria in the Trachea of Intensive Care Units Admitted Patients: Evidence from a Bangladeshi Hospital
by Sabrina Haque, Akash Ahmed, Nazrul Islam and Fahim Kabir Monjurul Haque
Antibiotics 2024, 13(1), 62; https://doi.org/10.3390/antibiotics13010062 - 8 Jan 2024
Viewed by 2652
Abstract
Recent research has shown that antibiotic-resistant microorganisms are becoming more prevalent in intensive care units (ICUs) at an exponential rate. Patients in the ICU can get infected by pathogens due to invasive operation procedures and critical health conditions. This study primarily emphasized tracheal [...] Read more.
Recent research has shown that antibiotic-resistant microorganisms are becoming more prevalent in intensive care units (ICUs) at an exponential rate. Patients in the ICU can get infected by pathogens due to invasive operation procedures and critical health conditions. This study primarily emphasized tracheal samples from ICU patients due to their reliance on ventilators, increasing their susceptibility to Ventilator-Associated Pneumonia (VAP). Moreover, the rise of multidrug-resistant (MDR) pathogens makes treatment strategies more challenging for these patients. In this study, we tested 200 tracheal specimens to determine the prevalence of microorganisms and analyzed the antibiotic susceptibility of these isolates against regular antibiotics, including 4th generation drugs. Among the 273 isolates, 81% were gram-negative bacteria, 10% were gram-positive bacteria, and 9% were fungi. The most prevalent gram-negative bacteria were Acinetobacter spp. (34%), Klebsiella spp. (22%), Pseudomonas spp. (14%), and Escherichia coli (9.2%). The most prevalent gram-positive bacteria were Staphylococcus aureus (5.9%), and the fungi were Candida spp. (7.3%). Among the most prevalent bacteria, except Staphylococcus aureus isolates, around 90% were resistant to multiple drugs, whereas 60% of Acinetobacter spp. and Pseudomonas spp. were extensively drug resistant. Sensitivity analysis against the gram-negative and gram-positive drug panel using a one-way ANOVA test followed by Tukey’s post hoc test showed that in the in vitro assay, colistin was the most effective antibiotic against all gram-negative bacteria. In contrast, linezolid, vancomycin, and fusidic acid were most effective against all gram-positive bacteria. Regular monitoring of nosocomial infections and safe management of highly resistant bacteria can help prevent future pandemics. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

54 pages, 15641 KiB  
Review
Novel Therapeutic Hybrid Systems Using Hydrogels and Nanotechnology: A Focus on Nanoemulgels for the Treatment of Skin Diseases
by Kamil Sghier, Maja Mur, Francisco Veiga, Ana Cláudia Paiva-Santos and Patrícia C. Pires
Gels 2024, 10(1), 45; https://doi.org/10.3390/gels10010045 - 6 Jan 2024
Cited by 4 | Viewed by 2900
Abstract
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms [...] Read more.
Topical and transdermal drug delivery are advantageous administration routes, especially when treating diseases and conditions with a skin etiology. Nevertheless, conventional dosage forms often lead to low therapeutic efficacy, safety issues, and patient noncompliance. To tackle these issues, novel topical and transdermal platforms involving nanotechnology have been developed. This review focuses on the latest advances regarding the development of nanoemulgels for skin application, encapsulating a wide variety of molecules, including already marketed drugs (miconazole, ketoconazole, fusidic acid, imiquimod, meloxicam), repurposed marketed drugs (atorvastatin, omeprazole, leflunomide), natural-derived compounds (eucalyptol, naringenin, thymoquinone, curcumin, chrysin, brucine, capsaicin), and other synthetic molecules (ebselen, tocotrienols, retinyl palmitate), for wound healing, skin and skin appendage infections, skin inflammatory diseases, skin cancer, neuropathy, or anti-aging purposes. Developed formulations revealed adequate droplet size, PDI, viscosity, spreadability, pH, stability, drug release, and drug permeation and/or retention capacity, having more advantageous characteristics than current marketed formulations. In vitro and/or in vivo studies established the safety and efficacy of the developed formulations, confirming their therapeutic potential, and making them promising platforms for the replacement of current therapies, or as possible adjuvant treatments, which might someday effectively reach the market to help fight highly incident skin or systemic diseases and conditions. Full article
(This article belongs to the Special Issue Design of Polymeric Hydrogels Biomaterials)
Show Figures

Graphical abstract

13 pages, 747 KiB  
Article
Methicillin-Resistant Staphylococcus aureus (MRSA) in a Tertiary Care Hospital in Kuwait: A Molecular and Genetic Analysis
by Wadha A. Alfouzan, Samar S. Boswihi and Edet E. Udo
Microorganisms 2024, 12(1), 17; https://doi.org/10.3390/microorganisms12010017 - 21 Dec 2023
Viewed by 1134
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen that causes serious infections in healthcare facilities and in communities. The purpose of this study was to investigate MRSA isolates obtained in a tertiary hospital in Kuwait to assess their antibiotic susceptibility profile and clonal [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is a major pathogen that causes serious infections in healthcare facilities and in communities. The purpose of this study was to investigate MRSA isolates obtained in a tertiary hospital in Kuwait to assess their antibiotic susceptibility profile and clonal composition. Sixty MRSA isolates collected in 2020 were tested through antibiotic susceptibility testing, spa typing, and DNA microarray analysis. All isolates were found to be susceptible to vancomycin (MIC: ≤3 µg/mL), teicoplanin (MIC: ≤3 µg/mL), rifampicin, and mupirocin, but were resistant to fusidic acid (n = 43, 72%), trimethoprim (n = 27, 45%), ciprofloxacin (n = 31, 51.7%), gentamicin (n = 14; 23.3%), kanamycin (n = 20; 33.3%), chloramphenicol (n = 7; 11.7%), tetracycline (n = 17; 28.3%), erythromycin (n = 19; 31.6%), inducible clindamycin (n = 13; 21.7%), and constitutive clindamycin (n = 2; 3.3%). The isolates belonged to 30 spa types and 13 clonal complexes (CCs). The dominant spa types were t304, t442, t311, t688, and t1234, collectively constituting 28.3% of the isolates. The dominant CCs were CC5 and CC6, which together constituted 46.7% of the isolates. This study provides updated research on antibiotic resistance and changes in the clonal composition of MRSA in a Kuwait hospital, including the disappearance of the ST239-MRSA-III clone that was previously the dominant clone in this hospital. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

18 pages, 2683 KiB  
Article
Antibiotic Resistance Genes, Virulence Factors, and Biofilm Formation in Coagulase-Negative Staphylococcus spp. Isolates from European Hakes (Merluccius merluccius, L.) Caught in the Northeast Atlantic Ocean
by Lara Díaz-Formoso, Vanessa Silva, Diogo Contente, Javier Feito, Pablo E. Hernández, Juan Borrero, Gilberto Igrejas, Rosa del Campo, Estefanía Muñoz-Atienza, Patrícia Poeta and Luis M. Cintas
Pathogens 2023, 12(12), 1447; https://doi.org/10.3390/pathogens12121447 - 13 Dec 2023
Cited by 1 | Viewed by 1639
Abstract
The indiscriminate use of antibiotics has contributed to the dissemination of multiresistant bacteria, which represents a public health concern. The aim of this work was to characterize 27 coagulase-negative staphylococci (CoNS) isolated from eight wild Northeast Atlantic hakes (Merluccius merluccius, L.) [...] Read more.
The indiscriminate use of antibiotics has contributed to the dissemination of multiresistant bacteria, which represents a public health concern. The aim of this work was to characterize 27 coagulase-negative staphylococci (CoNS) isolated from eight wild Northeast Atlantic hakes (Merluccius merluccius, L.) and taxonomically identified as Staphylococcus epidermidis (n = 16), Staphylococcus saprophyticus (n = 4), Staphylococcus hominis (n = 3), Staphylococcus pasteuri (n = 2), Staphylococcus edaphicus (n = 1), and Staphylococcus capitis (n = 1). Biofilm formation was evaluated with a microtiter assay, antibiotic susceptibility testing was performed using the disk diffusion method, and antibiotic resistance and virulence determinants were detected by PCR. Our results showed that all staphylococci produced biofilms and that 92.6% of the isolates were resistant to at least one antibiotic, mainly penicillin (88.8%), fusidic acid (40.7%), and erythromycin (37%). The penicillin resistance gene (blaZ) was detected in 66.6% (18) of the isolates, of which 10 also carried resistance genes to macrolides and lincosamides (mphC, msr(A/B), lnuA, or vgaA), 4 to fusidic acid (fusB), and 3 to trimethoprim-sulfamethoxazole (dfrA). At least one virulence gene (scn, hla, SCCmecIII, and/or SCCmecV) was detected in 48% of the isolates. This study suggests that wild European hake destined for human consumption could act as a vector of CoNS carrying antibiotic resistance genes and/or virulence factors. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

16 pages, 3872 KiB  
Article
Recent Trends in S. aureus and E. coli-Based Endometritis, and the Therapeutic Evaluation of Sodium Alginate-Based Antibiotics and Nanoparticles
by Muzammil Talib, Muhammad Ashir Nabeel, Shahbaz Ul Haq, Muhammad Salman Waqas, Huma Jamil, Amjad Islam Aqib, Afshan Muneer, Dalia Fouad and Farid Shokry Ataya
Gels 2023, 9(12), 955; https://doi.org/10.3390/gels9120955 - 5 Dec 2023
Cited by 1 | Viewed by 1494
Abstract
Postpartum infection of the uterus by pathogenic bacteria is exacerbated due to a lack of sufficient epidemiological studies and evidence-based therapeutics. Therefore, this study was planned to find the prevalence, risk factors, and drug-resistance profile of S. aureus and E. coli isolated from [...] Read more.
Postpartum infection of the uterus by pathogenic bacteria is exacerbated due to a lack of sufficient epidemiological studies and evidence-based therapeutics. Therefore, this study was planned to find the prevalence, risk factors, and drug-resistance profile of S. aureus and E. coli isolated from bovine endometritis and to evaluate the antibacterial potential of sodium alginate-based antibiotics and nanoparticles. The study revealed 34.21% S. aureus and 31.57% E. coli, whereas most of the assumed risk factors presented significant association in this study. S. aureus showed the highest resistance against fusidic acid (60%) and cefoxitin (50%), while the highest resistance in E. coli was found against fusidic acid (60%), gentamicin (60%), chloramphenicol (50%), and cefoxitin (50%). Tylosin coupled with MgO nanoparticles stabilized in sodium alginate gel (Tylo + MgO + gel) presented significantly lower minimum inhibitory concentration (MIC) against E. coli, showing 13.88 ± 4.51 µg/mL after 24 h incubation. On the other hand, gel-based preparations showed MIC as 31.25 ± 0 µg/mL (Tylo + gel + MgO) and 26.04 ± 9.02 µg/mL (Tylo + Gel) against S. aureus. Generally, the MICs of non-gel-based preparations were significantly higher against bacteria except ampicillin against S. aureus in this study. The toxicity analysis of MgO nanoparticles presented 20–80% mortality of snails against a wider range of 0.01 mg/mL–10 mg/mL. The histopathological parameters concluded MgO nanoparticles safe to use on off targets. The current study thus concludes the rise in antimicrobial resistance while the gel-based products appearing as effective antimicrobials with sufficient safety margins for off-targets. The study thus invites further investigation for the development of suitable and affordable modified therapeutics for better health and production of animals. Full article
(This article belongs to the Special Issue Antibacterial Gels)
Show Figures

Graphical abstract

13 pages, 2824 KiB  
Article
Effect of Fusidic Acid and Some Nitrogen-Containing Derivatives on Liposomal and Mitochondrial Membranes
by Mikhail V. Dubinin, Anna I. Ilzorkina, Elena V. Salimova, Manish S. Landage, Ekaterina I. Khoroshavina, Sergey V. Gudkov, Konstantin N. Belosludtsev and Lyudmila V. Parfenova
Membranes 2023, 13(10), 835; https://doi.org/10.3390/membranes13100835 - 20 Oct 2023
Cited by 1 | Viewed by 1527
Abstract
The paper assesses the membranotropic action of the natural antibiotic fusidic acid (FA) and its derivatives. It was found that a FA analogue with ethylenediamine moiety (derivative 2), in contrast to native FA and 3,11-dioxime analogue (derivative 1), is able to increase the [...] Read more.
The paper assesses the membranotropic action of the natural antibiotic fusidic acid (FA) and its derivatives. It was found that a FA analogue with ethylenediamine moiety (derivative 2), in contrast to native FA and 3,11-dioxime analogue (derivative 1), is able to increase the mobility of the lipid bilayer in the zone of lipid headgroups, as well as to induce permeabilization of lecithin liposome membranes. A similar effect of derivative 2 is also observed in the case of rat liver mitochondrial membranes. We noted a decrease in the microviscosity of the mitochondrial membrane and nonspecific permeabilization of organelle membranes in the presence of this agent, which was accompanied by a decrease in mitochondrial Δψ and OXPHOS efficiency. This led to a reduction in mitochondrial calcium retention capacity. The derivatives also reduced the production of H2O2 by mitochondria. The paper considers the relationship between the structure of the tested compounds and the observed effects. Full article
(This article belongs to the Special Issue Function and Malfunction of Ion Channels in Biological Cell Membrane)
Show Figures

Figure 1

16 pages, 921 KiB  
Article
Community-Acquired Methicillin-Resistant Staphylococcus aureus in Hospitals: Age-Specificity and Potential Zoonotic–Zooanthroponotic Transmission Dynamics
by Ahmed Alsolami, Naif Saad ALGhasab, Mohammed S. M. Alharbi, Abdelhafiz I. Bashir, Mohd Saleem, Azharuddin Sajid Syed Khaja, Dakheel F. Aldakheel, Ehab Rakha, Jabar Aziz Alshammari, Taha E. Taha, Ziyad Melibari, Yaseer H. Alharbi, Ali A. Almutlag and Kamaleldin B. Said
Diagnostics 2023, 13(12), 2089; https://doi.org/10.3390/diagnostics13122089 - 16 Jun 2023
Cited by 2 | Viewed by 2064
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) lineages are a devastating clinical and public health issue. Data on local lineage profiles are limited. We report on the frequency of community-acquired and hospital-acquired cases (CA-MRSA, HA-MRSA). We studied 147 isolates from King Khalid tertiary care hospitals (KKH), [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) lineages are a devastating clinical and public health issue. Data on local lineage profiles are limited. We report on the frequency of community-acquired and hospital-acquired cases (CA-MRSA, HA-MRSA). We studied 147 isolates from King Khalid tertiary care hospitals (KKH), each from a case in a patient and including 33 patients at the Maternity and Children’s Hospital (MCH). Of the 147 isolates, 87 males (59%) and 60 females (41%) were in KKH. The overwhelming majority (80%; n = 119/147) were CA-MRSA in KKH. Intriguingly, despite significant differences between males (70%) and females (53%), lineage-acquisition remained age-specific around 58–60 years in both genders. However, while CA-MRSA dominated early in life (0–20, 70% MCH), it increased with age in KKH adults; 21–50 (28%), >50 (59%) until the overall 80% (n = 144/180). Major specimens included skin-wounds, surgeries (70.3%), blood (13.5%), sputum (8.8%), very rarely urine (4.1%), and nasal (3.4%), albeit most patients showed severe enteritis and necrotizing pneumonia. Antibiograms showed high beta lactam resistances, including amoxicillin–clavulanate (83%), oxacillin (84%), cefoxitin FOX (100%), penicillin and ampicillin (~100%), as well as high resistance (82%) to carbapenem. Fortunately, high susceptibility was seen to non-beta lactams and, to a lesser extent, gentamicin, erythromycin, and fusidic acid; 33%, 34%, and 38%, respectively, in KKH. A similar pattern was seen in MCH except for a low resistance pattern to gentamicin CN, clindamycin CD, erythromycin E, and tobramycin TOB; 34%, 31%, 39%, and 41%, respectively, except for fusidic acid. These findings have significant clinical implications for MRSA patient management strategies. Clinical- and lineage-profiles imply host-selection and zoonotic–zooanthroponotic transmission dynamics. Future molecular typing, sequencing, and characterization of dominant clone(s) is imperative. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

7 pages, 392 KiB  
Communication
Ocular Antibiotic Utilisation across Aotearoa/New Zealand
by Isabella M. Y. Cheung, Simon Horsburgh, Mohammed Ziaei and Akilesh Gokul
Antibiotics 2023, 12(6), 1007; https://doi.org/10.3390/antibiotics12061007 - 4 Jun 2023
Cited by 2 | Viewed by 1428
Abstract
Ocular antibiotics are integral to the prevention and treatment of bacterial ocular infections. This study aimed to describe their utilisation across New Zealand according to patient and healthcare factors. Every subsidy-eligible community dispensing of ocular chloramphenicol, fusidic acid and ciprofloxacin in New Zealand, [...] Read more.
Ocular antibiotics are integral to the prevention and treatment of bacterial ocular infections. This study aimed to describe their utilisation across New Zealand according to patient and healthcare factors. Every subsidy-eligible community dispensing of ocular chloramphenicol, fusidic acid and ciprofloxacin in New Zealand, between 2010 and 2019, was included in this analysis. Number of dispensings/1000 population/year was quantified, stratified by patient age and urban/non-urban health districts. Dispensing rates by ethnicity were determined and were age adjusted. The proportion of dispensings by socioeconomic deprivation quintile was also determined. Chloramphenicol was the most commonly dispensed antibiotic; however, its utilisation decreased over time. Ciprofloxacin use was higher in children, while chloramphenicol use was higher in older patients. Ciprofloxacin usage was higher among Māori and Pasifika ethnicities, while fusidic acid use was lower. Chloramphenicol usage was higher among Pasifika. Antibiotic utilisation was higher in urban health districts, and in the most deprived quintile; both were most marked with ciprofloxacin. The utilisation of publicly funded ocular antibiotics across New Zealand varied between patient subgroups. These findings will help improve the prevention, management and outcomes of bacterial ocular infections, and support wider initiatives in antibiotic stewardship and medicine access equity. Full article
(This article belongs to the Special Issue Antibiotics in Ophthalmology Practice)
Show Figures

Figure 1

14 pages, 1999 KiB  
Article
Application of Quality by Design Approach in the Optimization and Development of the UPLC Analytical Method for Determination of Fusidic Acid in Pharmaceutical Products
by Mohamed Ibrahim, Nasser Ali Alhabib, Doaa Alshora, Mounir M. Salem Bekhit, Ehab Taha, Wael A. Mahdi and Abdulelah M. Harthi
Separations 2023, 10(5), 318; https://doi.org/10.3390/separations10050318 - 19 May 2023
Cited by 5 | Viewed by 1468
Abstract
Background: Analytical techniques are a crucial method used in quality control procedures. Fusidic acid (FU), an antibacterial drug, is available on the market in a semisolid dosage form. This work aimed to develop a simple, sensitive, and robust UPLC assay for FU. Method: [...] Read more.
Background: Analytical techniques are a crucial method used in quality control procedures. Fusidic acid (FU), an antibacterial drug, is available on the market in a semisolid dosage form. This work aimed to develop a simple, sensitive, and robust UPLC assay for FU. Method: The effect of the formic acid concentration (X1 (1%, 0.55%, and 0.1%)), and column temperature (X2 (40, 32.5, and 25 °C)) on the retention time, peak area, and peak height were determined. Results: The results show that a long retention time of 1.18 min can be achieved with a low column temperature and a low to medium concentration of formic acid. A good peak height resolution was obtained with a low concentration of formic acid at different temperature settings. The optimized condition was suggested by the software program to analyze the drug in a mobile phase, consisting of 72% acetonitrile and 28% water containing 0.1% formic acid with a column temperature adjusted to 40 °C. Conclusion: The method was validated in terms of linearity, accuracy, precision, and robustness. In addition, the stability degradation study determined that the method can separate the drug from other degradation production. The method was applicable to determine the drug content in the marketed product. Full article
(This article belongs to the Section Analysis of Natural Products and Pharmaceuticals)
Show Figures

Graphical abstract

15 pages, 862 KiB  
Article
In Vitro Characterization of Probiotic Potential of Limosilactobacillus fermentum against Salmonella Gallinarum Causing Fowl Typhoid
by Adnan Mehmood, Muhammad Nawaz, Masood Rabbani and Muhammad Hassan Mushtaq
Animals 2023, 13(8), 1284; https://doi.org/10.3390/ani13081284 - 8 Apr 2023
Cited by 3 | Viewed by 2151
Abstract
Fowl typhoid, a septicaemic disease of poultry, is caused by Salmonella Gallinarum and leads to severe economic losses. The aim of the present study was to isolate, select and characterize indigenous probiotic lactobacilli with anti-Salmonella Gallinarum activity. A total 55 lactobacilli were [...] Read more.
Fowl typhoid, a septicaemic disease of poultry, is caused by Salmonella Gallinarum and leads to severe economic losses. The aim of the present study was to isolate, select and characterize indigenous probiotic lactobacilli with anti-Salmonella Gallinarum activity. A total 55 lactobacilli were isolated from the caeca and ileum parts of healthy chickens and identified to species level by 16S rDNA sequencing. All the isolates were initially screened for antimicrobial activity and selected isolates were further subjected to in vitro evaluation of probiotic properties. Lactobacilli isolates (n = 21) showed varying levels of activity (08–18 mm) against Salmonella Gallinarum. These selected isolates also showed tolerance to acidic conditions (pH 3 and 4). Out of these 21 isolates, 13 showed growth (>0.5 OD at 600 nm) 0.3% bile salts. Moreover, these isolates also had the ability of auto-aggregation (20.05 ± 0.62%–50.70 ± 1.40%), and co-aggregation with Salmonella Gallinarum (5.22 ± 0.21%–42.07 ± 0.70%). Results revealed that lactobacilli had a higher level of resistance to vancomycin (100%), streptomycin (100%), ciprofloxacin (95%), gentamicin (90%), doxycycline (90%), oxytetracycline (85%), and bacitracin (80%), and a lower level of resistance to penicillin (33%), erythromycin (28%), chloramphenicol (23%), fusidic acid (23%) and amoxicillin (4%). The Limosilactobacillus fermentum PC-10 and PC-76 were sensitive to most of the antibiotics. The overall results revealed that two Limosilactobacillus fermentum strains (PC-10 and PC-76) fulfill the in vitro selection criteria of probiotics, i.e, tolerance to low pH, resistance to bile salts, auto-aggregation, co-aggregation with Salmonella Gallinarum, and absence of acquired antibiotic resistance. The Limosilactobacillus fermentum PC-10 and PC-76 also inhibited the (>5 log10) growth of Salmonella Gallinarum in co-culture assay. It is concluded that Limosilactobacillus fermentum PC-10 and PC-76 may be further investigated and developed as anti-Salmonella Gallinarum probiotics for poultry. Full article
(This article belongs to the Special Issue Infectious Diseases in Poultry)
Show Figures

Figure 1

Back to TopTop