Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = gafchromic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3771 KiB  
Article
Characterization of a Modified Clinical Linear Accelerator for Ultra-High Dose Rate Beam Delivery
by Umberto Deut, Aurora Camperi, Cristiano Cavicchi, Roberto Cirio, Emanuele Maria Data, Elisabetta Alessandra Durisi, Veronica Ferrero, Arianna Ferro, Simona Giordanengo, Oscar Martì Villarreal, Felix Mas Milian, Elisabetta Medina, Diango M. Montalvan Olivares, Franco Mostardi, Valeria Monti, Roberto Sacchi, Edoardo Salmeri and Anna Vignati
Appl. Sci. 2024, 14(17), 7582; https://doi.org/10.3390/app14177582 - 27 Aug 2024
Viewed by 536
Abstract
Irradiations at Ultra-High Dose Rate (UHDR) regimes, exceeding 40 Gy/s in single fractions lasting less than 200 ms, have shown an equivalent antitumor effect compared to conventional radiotherapy with reduced harm to normal tissues. This work details the hardware and software modifications implemented [...] Read more.
Irradiations at Ultra-High Dose Rate (UHDR) regimes, exceeding 40 Gy/s in single fractions lasting less than 200 ms, have shown an equivalent antitumor effect compared to conventional radiotherapy with reduced harm to normal tissues. This work details the hardware and software modifications implemented to deliver 10 MeV UHDR electron beams with a linear accelerator Elekta SL 18 MV and the beam characteristics obtained. GafChromic EBT XD films and an Advanced Markus chamber were used for dosimetry characterization, while a silicon sensor assessed the machine’s beam pulses stability and repeatability. The dose per pulse, average dose rate and instantaneous dose rate in the pulse were evaluated for four experimental settings, varying the source-to-surface distance and the beam collimation, i.e., with and without the use of a cylindrical applicator. The results showed a dose per pulse from 0.6 Gy to a few tens of Gy and an average dose rate up to 300 Gy/s. The obtained results demonstrate the possibility to perform in vitro radiobiology experiments and test new technologies for beam monitoring and dosimetry at the upgraded LINAC, thus contributing to the electron UHDR research field. Full article
Show Figures

Figure 1

16 pages, 6299 KiB  
Article
A Novel Polymer-Encapsulated Multi-Imaging Modality Fiducial Marker with Positive Signal Contrast for Image-Guided Radiation Therapy
by Li Wang, Jeremiah Sanders, John F. Ward, Stephen R. Lee, Falk Poenisch, David Michael Swanson, Narayan Sahoo, Xiaorong Ronald Zhu, Jingfei Ma, Rajat J. Kudchadker, Seungtaek L. Choi, Quynh-Nhu Nguyen, Lauren L. Mayo, Shalin J. Shah and Steven J. Frank
Cancers 2024, 16(3), 625; https://doi.org/10.3390/cancers16030625 - 31 Jan 2024
Viewed by 1204
Abstract
Background: Current fiducial markers (FMs) in external-beam radiotherapy (EBRT) for prostate cancer (PCa) cannot be positively visualized on magnetic resonance imaging (MRI) and create dose perturbation and significant imaging artifacts on computed tomography (CT) and MRI. We report our initial experience with clinical [...] Read more.
Background: Current fiducial markers (FMs) in external-beam radiotherapy (EBRT) for prostate cancer (PCa) cannot be positively visualized on magnetic resonance imaging (MRI) and create dose perturbation and significant imaging artifacts on computed tomography (CT) and MRI. We report our initial experience with clinical imaging of a novel multimodality FM, NOVA. Methods: We tested Gold Anchor [G-FM], BiomarC [carbon, C-FM], and NOVA FMs in phantoms imaged with kilovoltage (kV) X-rays, transrectal ultrasound (TRUS), CT, and MRI. Artifacts of the FMs on CT were quantified by the relative streak artifacts level (rSAL) metric. Proton dose perturbations (PDPs) were measured with Gafchromic EBT3 film, with FMs oriented either perpendicular to or parallel with the beam axis. We also tested the performance of NOVA-FMs in a patient. Results: NOVA-FMs were positively visualized on all 4 imaging modalities tested. The rSAL on CT was 0.750 ± 0.335 for 2-mm reconstructed slices. In F-tests, PDP was associated with marker type and depth of measurement (p < 10−6); at 5-mm depth, PDP was significantly greater for the G-FM (12.9%, p = 10−6) and C-FM (6.0%, p = 0.011) than NOVA (4.5%). EBRT planning with MRI/CT image co-registration and daily alignments using NOVA-FMs in a patient was feasible and reproducible. Conclusions: NOVA-FMs were positively visible and produced less PDP than G-FMs or C-FMs. NOVA-FMs facilitated MRI/CT fusion and identification of regions of interest. Full article
(This article belongs to the Section Cancer Causes, Screening and Diagnosis)
Show Figures

Figure 1

12 pages, 2684 KiB  
Article
Feasibility of Synchrotron-Based Ultra-High Dose Rate (UHDR) Proton Irradiation with Pencil Beam Scanning for FLASH Research
by Lingshu Yin, Umezawa Masumi, Kan Ota, Daniel M. Sforza, Devin Miles, Mohammad Rezaee, John W. Wong, Xun Jia and Heng Li
Cancers 2024, 16(1), 221; https://doi.org/10.3390/cancers16010221 - 3 Jan 2024
Cited by 1 | Viewed by 1343
Abstract
Background: This study aims to present the feasibility of developing a synchrotron-based proton ultra-high dose rate (UHDR) pencil beam scanning (PBS) system. Methods: The RF extraction power in the synchrotron system was increased to generate 142.4 MeV pulsed proton beams for UHDR irradiation [...] Read more.
Background: This study aims to present the feasibility of developing a synchrotron-based proton ultra-high dose rate (UHDR) pencil beam scanning (PBS) system. Methods: The RF extraction power in the synchrotron system was increased to generate 142.4 MeV pulsed proton beams for UHDR irradiation at ~100 nA beam current. The charge per spill was measured using a Faraday cup. The spill length and microscopic time structure of each spill was measured with a 2D strip transmission ion chamber. The measured UHDR beam fluence was used to derive the spot dwell time for pencil beam scanning. Absolute dose distributions at various depths and spot spacings were measured using Gafchromic films in a solid-water phantom. Results: For proton UHDR beams at 142.4 MeV, the maximum charge per spill is 4.96 ± 0.10 nC with a maximum spill length of 50 ms. This translates to an average beam current of approximately 100 nA during each spill. Using a 2 × 2 spot delivery pattern, the delivered dose per spill at 5 cm and 13.5 cm depth is 36.3 Gy (726.3 Gy/s) and 56.2 Gy (1124.0 Gy/s), respectively. Conclusions: The synchrotron-based proton therapy system has the capability to deliver pulsed proton UHDR PBS beams. The maximum deliverable dose and field size per pulse are limited by the spill length and extraction charge. Full article
(This article belongs to the Special Issue The Advance of Pencil Beam Scanning Proton Beam Therapy in Cancers)
Show Figures

Figure 1

14 pages, 3976 KiB  
Article
Evaluation of a Scintillating Plastic Optical Fiber Device for Measuring kV-Cone Beam Computed Tomography Dose
by Christian Popotte, Romain Letellier, Didier Paul, Alexandre Waltener, Nicolas Guillochon, Mélodie Munier and Paul Retif
Sensors 2023, 23(18), 7778; https://doi.org/10.3390/s23187778 - 9 Sep 2023
Viewed by 1125
Abstract
Background: Justification of imaging procedures such as cone beam computed tomography (CBCT) in radiotherapy makes no doubt. However, the CBCT composite dose is rarely reported or optimized, even though the repeated CBCT cumulative dose can be up to 3% of the prescription dose. [...] Read more.
Background: Justification of imaging procedures such as cone beam computed tomography (CBCT) in radiotherapy makes no doubt. However, the CBCT composite dose is rarely reported or optimized, even though the repeated CBCT cumulative dose can be up to 3% of the prescription dose. This study aimed to evaluate the performance and utility of a new plastic scintillating optical fiber dosimeter for CBCT dosimetric quality assurance (QA) applications before a potential application in patient composite CBCT dosimetry. Methods: The dosimeter, made of 1 mm diameter plastic fiber, was installed under a linear accelerator treatment table and linked to photodetectors. The fiber impact on the fluence and dose delivered was respectively assessed with an electronic portal imaging device (EPID) and EBT3 Gafchromic® film. The presence of artifacts was visually evaluated on kV images. The dosimeter performances were determined for various acquisition parameters by comparison with ionization chamber values. Results: The maximum impact of the fiber on the fluence measured by the EPID was −1.2% for the 6 MV flattening filter-free beam. However, the fiber did not alter the film dose profile when measured for all the beams tested. The fiber was not visible at energies ≥ 80 kV and was merely visible on the CBCT images. When the rate of images per second or mA was changed, the maximum relative difference between the device and the ionization chamber CTDIs was <5%. Changing collimation led to a −7.2% maximum relative difference with an absolute dose difference that was insignificant (−0.3 mGy). Changing kV was associated with a −8.7% maximum relative difference, as published in the literature. Conclusions: The dosimeter may be a promising device for CBCT recurrent dosimetry quality control or dose optimization. According to these results, further developments are in progress in order to adapt the solution to the measurement of patient composite CBCT doses. Full article
(This article belongs to the Special Issue Developments and Applications of Optical Fiber Sensors)
Show Figures

Figure 1

16 pages, 1760 KiB  
Review
FLASH Radiotherapy and the Use of Radiation Dosimeters
by Sarkar Siddique, Harry E. Ruda and James C. L. Chow
Cancers 2023, 15(15), 3883; https://doi.org/10.3390/cancers15153883 - 30 Jul 2023
Cited by 11 | Viewed by 3044
Abstract
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. [...] Read more.
Radiotherapy (RT) using ultra-high dose rate (UHDR) radiation, known as FLASH RT, has shown promising results in reducing normal tissue toxicity while maintaining tumor control. However, implementing FLASH RT in clinical settings presents technical challenges, including limited depth penetration and complex treatment planning. Monte Carlo (MC) simulation is a valuable tool for dose calculation in RT and has been investigated for optimizing FLASH RT. Various MC codes, such as EGSnrc, DOSXYZnrc, and Geant4, have been used to simulate dose distributions and optimize treatment plans. Accurate dosimetry is essential for FLASH RT, and radiation detectors play a crucial role in measuring dose delivery. Solid-state detectors, including diamond detectors such as microDiamond, have demonstrated linear responses and good agreement with reference detectors in UHDR and ultra-high dose per pulse (UHDPP) ranges. Ionization chambers are commonly used for dose measurement, and advancements have been made to address their response nonlinearities at UHDPP. Studies have proposed new calculation methods and empirical models for ion recombination in ionization chambers to improve their accuracy in FLASH RT. Additionally, strip-segmented ionization chamber arrays have shown potential for the experimental measurement of dose rate distribution in proton pencil beam scanning. Radiochromic films, such as GafchromicTM EBT3, have been used for absolute dose measurement and to validate MC simulation results in high-energy X-rays, triggering the FLASH effect. These films have been utilized to characterize ionization chambers and measure off-axis and depth dose distributions in FLASH RT. In conclusion, MC simulation provides accurate dose calculation and optimization for FLASH RT, while radiation detectors, including diamond detectors, ionization chambers, and radiochromic films, offer valuable tools for dosimetry in UHDR environments. Further research is needed to refine treatment planning techniques and improve detector performance to facilitate the widespread implementation of FLASH RT, potentially revolutionizing cancer treatment. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies)
Show Figures

Figure 1

10 pages, 2500 KiB  
Article
Application of a Portable Colorimeter for Reading a Radiochromic Film for On-Site Dosimetry
by Hiroshi Yasuda and Hikaru Yoshida
Appl. Sci. 2023, 13(8), 4761; https://doi.org/10.3390/app13084761 - 10 Apr 2023
Cited by 7 | Viewed by 2006
Abstract
Radiochromic films have widely been used for quality assurance (QA) in radiation therapy and have many advantageous features such as self-developing visible coloration, wide dose range and easiness to handle. These features have a good potential for application to other fields associated with [...] Read more.
Radiochromic films have widely been used for quality assurance (QA) in radiation therapy and have many advantageous features such as self-developing visible coloration, wide dose range and easiness to handle. These features have a good potential for application to other fields associated with high-dose radiation exposure, e.g., verification of various radiation sources used in industry and research, occupational radiation monitoring as a preparedness for radiological emergencies. One of the issues in such applications is the elaborate process of acquisition and analyses of the color image using a flatbed scanner and image processing software, which is desirably to be improved for achieving a practical on-site dosimetry. In the present study, a simple method for reading a radiochromic film by using a portable colorimeter (nix pro 2; abbreviated here “Nix”) was proposed and its feasibility for diagnostic X-rays was tested with a commercial radiochromic film (Gafchromic EBT-XD). It was found that the color intensities of red and green components of EBT-XD were successfully measured by Nix over a wide dose range up to 40 Gy. Though some angle dependence was observed, this error could be well averted by careful attention to the film direction in a reading process. According to these findings, it is expected that the proposed on-site dosimetry method of combining a radiochromic film and a portable colorimeter will be practically utilized in various occasions. Full article
Show Figures

Figure 1

9 pages, 1503 KiB  
Article
Investigation of Radiochromic Film Use for Source Position Verification through a LINAC On-Board Imager (OBI)
by Songül Çavdar Karaçam, Duygu Tunçman, Ghada ALMisned, Antoaneta Ene and Huseyin Ozan Tekin
Medicina 2023, 59(3), 628; https://doi.org/10.3390/medicina59030628 - 21 Mar 2023
Cited by 1 | Viewed by 2040
Abstract
Background and Objectives: Quality assurance is an integral part of brachytherapy. Traditionally, radiographic films have been used for source position verification, however, in many clinics, computerized tomography simulators have replaced conventional simulators, and computerized radiography systems have replaced radiographic film processing units. With [...] Read more.
Background and Objectives: Quality assurance is an integral part of brachytherapy. Traditionally, radiographic films have been used for source position verification, however, in many clinics, computerized tomography simulators have replaced conventional simulators, and computerized radiography systems have replaced radiographic film processing units. With these advances, the problem of controlling source position verification without traditional radiographic films and conventional simulators has appeared. Materials and Methods: In this study, we investigated an alternative method for source position verification for brachytherapy applications. Source positions were evaluated using Gafchromic™ RTQA2 and EBT3 film and visually compared to exposed RTQA radiochromic film when using a Nucletron Oldelft Simulix HP conventional simulator and a Gammamed 12-i brachytherapy device for performance evaluation. Gafchromic film autoradiography was performed with a linear accelerator (LINAC) on-board imager (OBI). Radiochromic films are very suitable for evaluation by visual inspection with a LINAC OBI. Results: The results showed that this type of low-cost, easy-to-find material can be used for verification purposes under clinical conditions. Conclusions: It can be concluded that source-position quality assurance may be performed through a LINAC OBI device. Full article
Show Figures

Figure 1

19 pages, 2596 KiB  
Article
Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms
by Ileana Silvestre Patallo, Anna Subiel, Rebecca Carter, Samuel Flynn, Giuseppe Schettino and Andrew Nisbet
Cancers 2023, 15(3), 987; https://doi.org/10.3390/cancers15030987 - 3 Feb 2023
Viewed by 2092
Abstract
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The [...] Read more.
The purpose of the study was to characterize a detection system based on inorganic scintillators and determine its suitability for dosimetry in preclinical radiation research. Dose rate, linearity, and repeatability of the response (among others) were assessed for medium-energy X-ray beam qualities. The response’s variation with temperature and beam angle incidence was also evaluated. Absorbed dose quality-dependent calibration coefficients, based on a cross-calibration against air kerma secondary standard ionization chambers, were determined. Relative output factors (ROF) for small, collimated fields (≤10 mm × 10 mm) were measured and compared with Gafchromic film and to a CMOS imaging sensor. Independently of the beam quality, the scintillator signal repeatability was adequate and linear with dose. Compared with EBT3 films and CMOS, ROF was within 5% (except for smaller circular fields). We demonstrated that when the detector is cross-calibrated in the user’s beam, it is a useful tool for dosimetry in medium-energy X-rays with small fields delivered by Image-Guided Small Animal Radiotherapy Platforms. It supports the development of procedures for independent “live” dose verification of complex preclinical radiotherapy plans with the possibility to insert the detectors in phantoms. Full article
(This article belongs to the Special Issue Radiation Dose in Cancer Radiotherapy)
Show Figures

Figure 1

18 pages, 2678 KiB  
Article
Dosimetric Characterization of DSF/NaOH/IA-PAE/R. spp. Phantom Material for Radiation Therapy
by Damilola Oluwafemi Samson, Ahmad Shukri, Nurul Ab. Aziz Hashikin, Siti Hajar Zuber, Mohd Zahri Abdul Aziz, Rokiah Hashim, Mohd Fahmi Mohd Yusof, Nor Ain Rabaiee and Sylvester Jande Gemanam
Polymers 2023, 15(1), 244; https://doi.org/10.3390/polym15010244 - 3 Jan 2023
Cited by 1 | Viewed by 1980
Abstract
Background: Different compositions of DSF/NaOH/IA-PAE/R. spp. composite particleboard phantoms were constructed. Methods: Photon attenuation characteristics were ascertained using gamma rays from 137Cs and 60Co. Absorbed doses at the location of an ionization chamber and Gafchromic EBT3 radiochromic films were calculated [...] Read more.
Background: Different compositions of DSF/NaOH/IA-PAE/R. spp. composite particleboard phantoms were constructed. Methods: Photon attenuation characteristics were ascertained using gamma rays from 137Cs and 60Co. Absorbed doses at the location of an ionization chamber and Gafchromic EBT3 radiochromic films were calculated for high-energy photons (6 and 10 MV) and electrons (6, 9, 12, and 15 MeV). Results: The calculated TPR20,10 values indicate that the percentage discrepancy for 6 and 10 MV was in the range of 0.29–0.72% and 0.26–0.65%. It was also found that the relative difference in the dmax to water and solid water phantoms was between 1.08–1.28% and 5.42–6.70%. The discrepancies in the determination of PDD curves with 6, 9, 12, and 15 MeV, and those of water and solid water phantoms, ranged from 2.40–4.84%. Comparable results were found using the EBT3 films with variations of 2.0–7.0% for 6 and 10 MV photons. Likewise, the discrepancies for 6, 9, 12, and 15 MeV electrons were within an acceptable range of 2.0–4.5%. Conclusions: On the basis of these findings, the DSF/NaOH/IA-PAE/R. spp. particleboard phantoms with 15 wt% IA-PAE addition level can be effectively used as alternative tissue-equivalent phantom material for radiation therapy applications. Full article
(This article belongs to the Special Issue Polymers Synthesis and Characterization)
Show Figures

Graphical abstract

11 pages, 1684 KiB  
Article
Characterization of Ultra-High-Dose Rate Electron Beams with ElectronFlash Linac
by Lucia Giuliano, Gaia Franciosini, Luigi Palumbo, Lilia Aggar, Marie Dutreix, Luigi Faillace, Vincent Favaudon, Giuseppe Felici, Federica Galante, Andrea Mostacci, Mauro Migliorati, Matteo Pacitti, Annalisa Patriarca and Sophie Heinrich
Appl. Sci. 2023, 13(1), 631; https://doi.org/10.3390/app13010631 - 3 Jan 2023
Cited by 14 | Viewed by 2815
Abstract
Purpose: The electron linac ElectronFlash installed at Institut Curie (Orsay, France) is entirely dedicated to FLASH irradiation for radiobiological and pre-clinical studies. The system was designed to deliver an ultra-high-dose rate per pulse (UHDR) (above 106 Gy/s) and a very high average [...] Read more.
Purpose: The electron linac ElectronFlash installed at Institut Curie (Orsay, France) is entirely dedicated to FLASH irradiation for radiobiological and pre-clinical studies. The system was designed to deliver an ultra-high-dose rate per pulse (UHDR) (above 106 Gy/s) and a very high average dose rate at different energies and pulse durations. A campaign of tests and measurements was performed to obtain a full reliable characterizations of the electron beam and of the delivered dose, which are necessary to the radiobiological experiments. Methods: A Faraday cup was used to measure the electron charges in a single RF pulse. The percentage depth dose (PDD) and the transverse dose profiles, at the energies of 5 MeV and 7 MeV, were evaluated employing Gafchromic films EBT-XD for two Poly-methylmethacrylate (PMMA) applicators with irradiation sizes of 30 mm and 120 mm, normally used for in vivo and in vitro experiments, respectively. The results were compared with Monte Carlo (MC) simulations. Results: The measurements were performed during a period of a few months in which the experimental set up was adapted and tuned in order to characterize the electron beam parameters and the values of delivered doses before the radiobiological experiments. The measurements showed that the dose parameters, obtained at the energy of 5 MeV and 7 MeV with different applicators, fulfill the FLASH regime, with a maximum value of an average dose rate of 4750 Gy/s, a maximum dose per pulse of 19 Gy and an instantaneous dose rate up to 4.75 ×106 Gy/s. By means of the PMMA applicators, a very good flatness of the dose profiles was obtained at the cost of a reduced total current. The flatness of the large field is reliable and reproducible in radiobiological experiments. The measured PDD and dose profiles are in good agreement with Monte Carlo simulations with more than 95% of the gamma-index under the thresholds of 3 mm/3%. Conclusions: The results show that the system can provide UHDR pulses totally satisfying the FLASH requirements with very good performances in terms of beam profile flatness for any size of the fields. The monitoring of electron beams and the measurement of the dose parameters played an important role in the in vivo and in vitro irradiation experiments performed at the Institut Curie laboratory. Full article
(This article belongs to the Special Issue Medical Physics: Latest Advances and Prospects)
Show Figures

Figure 1

19 pages, 5040 KiB  
Article
Gafchromic™ EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192Ir Brachytherapy, Proton, Photon and Electron Radiotherapy
by Noor Nabilah Talik Sisin, Raizulnasuha Ab Rashid, Reduan Abdullah, Khairunisak Abdul Razak, Moshi Geso, Hiroaki Akasaka, Ryohei Sasaki, Takahiro Tominaga, Hayato Miura, Masashi Nishi and Wan Nordiana Rahman
Radiation 2022, 2(1), 130-148; https://doi.org/10.3390/radiation2010010 - 2 Mar 2022
Cited by 5 | Viewed by 3617
Abstract
Interest in combining metallic nanoparticles, such as iron (SPIONs), gold (AuNPs) and bismuth oxide (BiONPs), with radiotherapy has increased due to the promising therapeutic advantages. While the underlying physical mechanisms of NP-enhanced radiotherapy have been extensively explored, only a few research works were [...] Read more.
Interest in combining metallic nanoparticles, such as iron (SPIONs), gold (AuNPs) and bismuth oxide (BiONPs), with radiotherapy has increased due to the promising therapeutic advantages. While the underlying physical mechanisms of NP-enhanced radiotherapy have been extensively explored, only a few research works were motivated to quantify its contribution in an experimental dosimetry setting. This work aims to explore the feasibility of radiochromic films to measure the physical dose enhancement (DE) caused by the release of secondary electrons and photons during NP–radiotherapy interactions. A 10 mM each of SPIONs, AuNPs or BiONPs was loaded into zipper bags packed with GAFCHROMIC™ EBT3 films. The samples were exposed to a single radiation dose of 4.0 Gy with clinically relevant beams. Scanning was conducted using a flatbed scanner in red-component analysis for optimum sensitivity. Experimental dose enhancement factors (DEFExperimental) were then calculated using the ratio of absorbed doses (with/without NPs) converted from the films’ calibration curves. DEFExperimental for all NPs showed no significant physical DE beyond the uncertainty limits (p > 0.05). These results suggest that SPIONs, AuNPs and BiONPs might potentially enhance the dose in these clinical beams. However, changes in NPs concentration, as well as dosimeter sensitivity, are important to produce observable impact. Full article
Show Figures

Figure 1

12 pages, 1948 KiB  
Article
Comparison of Radiation Exposure of AIRO Intraoperative CT with C-Arm Fluoroscopy during Posterior Lumbar Interbody Fusion
by Brecht Van Berkel, Gwendolien Smets, Gertjan Van Schelverghem, Elien Houben, Dieter Peuskens, Thomas Daenekindt, Eveleen Buelens, Frank Weyns, Joris Nens, Albrecht Houben and Sofie Van Cauter
Appl. Sci. 2021, 11(21), 10326; https://doi.org/10.3390/app112110326 - 3 Nov 2021
Cited by 1 | Viewed by 2656
Abstract
Navigation systems used during minimally invasive spine procedures have evolved from uniplanar, two-dimensional C-arm fluoroscopy to multiplanar, 3D intraoperative computed tomography (iCT). In this study, the radiation exposure to the patient and operating room staff in posterior intervertebral lumbar fusion procedures is compared [...] Read more.
Navigation systems used during minimally invasive spine procedures have evolved from uniplanar, two-dimensional C-arm fluoroscopy to multiplanar, 3D intraoperative computed tomography (iCT). In this study, the radiation exposure to the patient and operating room staff in posterior intervertebral lumbar fusion procedures is compared between iCT and C-arm fluoroscopy. The effective dose of the surgeon, operating nurse, and anesthesiologist was measured during surgery with personal dosimeters, and the effective dose of the patient was measured with GafchromicTM films. The time efficiency of the procedure was evaluated by recording the duration of pedicle screw fixation and the duration of the total surgery time. A total of 75 patients participated in the study; 30 patients had surgery guided by iCT and 45 by C-arm fluoroscopy. The radiation dose of the surgeon, the operating nurse, and the anesthesiologist was thirteen fold lower with surgeries assisted by iCT compared to C-arm fluoroscopy. In contrast, the effective dose of the patient significantly increased with iCT. Using iCT, radiation exposure of the operating room staff can be significantly reduced. iCT increases the effective dose of the patient and prolongs the operative time. Full article
(This article belongs to the Special Issue Novel Advances in Computer-Assisted Surgery)
Show Figures

Figure 1

11 pages, 5743 KiB  
Article
Feasibility of a Reusable Radiochromic Dosimeter
by Joseph R. Newton, Maxwell Recht, Joseph A. Hauger, Gabriel Segarra, Chase Inglett, Pedro A. Romo and John Adamovics
Appl. Sci. 2021, 11(21), 9906; https://doi.org/10.3390/app11219906 - 23 Oct 2021
Cited by 3 | Viewed by 1924
Abstract
The current practice for patient-specific quality assurance (QA) uses ion chambers or diode arrays primarily because of their ease of use and reliability. A standard routine compares the dose distribution measured in a phantom with the dose distribution calculated by the treatment planning [...] Read more.
The current practice for patient-specific quality assurance (QA) uses ion chambers or diode arrays primarily because of their ease of use and reliability. A standard routine compares the dose distribution measured in a phantom with the dose distribution calculated by the treatment planning system for the same experimental conditions. For the particular problems encountered in the treatment planning of complex radiotherapy techniques, such as small fields/segments and dynamic delivery systems, additional tests are required to verify the accuracy of dose calculations. The dose distribution verification should be throughout the total 3D dose distribution for a high dose gradient in a small, irradiated volume, instead of the standard practice of one to several planes with 2D radiochromic (GAFChromic) film. To address this issue, we have developed a 3D radiochromic dosimeter that improves the rigor of current QA techniques by providing high-resolution, complete 3D verification for a wide range of clinical applications. The dosimeter is composed of polyurethane, a radical initiator, and a leuco dye, which is radiolytically oxidized to a dye absorbing at 633 nm. Since this chemical dosimeter is single-use, it represents a significant expense. The purpose of this research is to develop a cost-effective reusable dosimeter formulation. Based on prior reusability studies, three promising dosimeter formulations were studied using small volume optical cuvettes and irradiated to known clinically relevant doses of 0.5–10 Gy. After irradiation, the change in optical density was measured in a spectrophotometer. All three formulations retained linearity of optical density response to radiation upon re-irradiations. However, only one formulation retained dose sensitivity upon at least five re-irradiations, making it ideal for further evaluation as a 3D dosimeter. Full article
(This article belongs to the Special Issue Detectors for Medical Physics)
Show Figures

Figure 1

20 pages, 8068 KiB  
Article
Characterization with X-rays of a Large-Area GEMPix Detector with Optical Readout for QA in Hadron Therapy
by Andreia Maia Oliveira, Hylke B. Akkerman, Saverio Braccini, Albert J. J. M. van Breemen, Lucia Gallego Manzano, Natalie Heracleous, Ilias Katsouras, Johannes Leidner, Fabrizio Murtas, Bart Peeters and Marco Silari
Appl. Sci. 2021, 11(14), 6459; https://doi.org/10.3390/app11146459 - 13 Jul 2021
Cited by 3 | Viewed by 2470
Abstract
Quality Assurance (QA) in hadron therapy is crucial to ensure safe and accurate dose delivery to patients. This can be achieved with fast, reliable and high-resolution detectors. In this paper, we present a novel solution that combines a triple Gas Electron Multiplier (GEM) [...] Read more.
Quality Assurance (QA) in hadron therapy is crucial to ensure safe and accurate dose delivery to patients. This can be achieved with fast, reliable and high-resolution detectors. In this paper, we present a novel solution that combines a triple Gas Electron Multiplier (GEM) and a highly pixelated readout based on a matrix of organic photodiodes fabricated on top of an oxide-based thin-film transistor backplane. The first LaGEMPix prototype with an active area of 60 × 80 mm2 was developed and characterized using low energy X-rays. The detector comprises a drift gap of 3.5 mm, a triple-GEM stack for electron amplification, and a readout featuring 480 × 640 pixels at a 126 µm pitch. Here, we describe the measurements and results in terms of spatial resolution for various experimental configurations. A comparison with GAFCHROMIC® films and the GEMPix detector used in the charge readout mode was performed to better understand the contribution to the spatial resolution from both the electron diffusion and the isotropic emission of photons. The measurements were compared to Monte Carlo simulations, using the FLUKA code. The simulation predictions are in good agreement with the GEMPix results. Future plans with respect to applications in hadron therapy are discussed. Full article
(This article belongs to the Special Issue Detectors for Medical Physics)
Show Figures

Figure 1

20 pages, 7554 KiB  
Review
Medical Applications of the GEMPix
by Johannes Leidner, Fabrizio Murtas and Marco Silari
Appl. Sci. 2021, 11(1), 440; https://doi.org/10.3390/app11010440 - 5 Jan 2021
Cited by 6 | Viewed by 2881
Abstract
The GEMPix is a small gaseous detector with a highly pixelated readout, consisting of a drift region, three Gas Electron Multipliers (GEMs) for signal amplification, and four Timepix ASICs with 55 µm pixel pitch and a total of 262,144 pixels. A continuous flow [...] Read more.
The GEMPix is a small gaseous detector with a highly pixelated readout, consisting of a drift region, three Gas Electron Multipliers (GEMs) for signal amplification, and four Timepix ASICs with 55 µm pixel pitch and a total of 262,144 pixels. A continuous flow of a gas mixture such as Ar:CO2:CF4, Ar:CO2 or propane-based tissue equivalent gas is supplied externally at a rate of 5 L/h. This article reviews the medical applications of the GEMPix. These include relative dose measurements in conventional photon radiation therapy and in carbon ion beams, by which on-line 2D dose images provided a similar or better performance compared to gafchromic films. Depth scans in a water phantom with 12C ions allowed measuring the 3D energy deposition and reconstructing the Bragg curve of a pencil beam. Microdosimetric measurements performed in neutron and photon fields allowed comparing dose spectra with those from Tissue Equivalent Proportional Counters and, additionally, to obtain particle track images. Some preliminary measurements performed to check the capabilities as the detector in proton tomography are also illustrated. The most important on-going developments are: (1) a new, larger area readout to cover the typical maximum field size in radiation therapy of 20 × 20 cm2; (2) a sealed and low-pressure version to facilitate measurements and to increase the equivalent spatial resolution for microdosimetry; (3) 3D particle track reconstruction when operating the GEMPix as a Time Projection Chamber. Full article
(This article belongs to the Special Issue Applications of Medical Physics)
Show Figures

Figure 1

Back to TopTop