Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,362)

Search Parameters:
Keywords = generative adversarial network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1065 KiB  
Article
An Effective Res-Progressive Growing Generative Adversarial Network-Based Cross-Platform Super-Resolution Reconstruction Method for Drone and Satellite Images
by Hao Han, Wen Du, Ziyi Feng, Zhonghui Guo and Tongyu Xu
Drones 2024, 8(9), 452; https://doi.org/10.3390/drones8090452 (registering DOI) - 1 Sep 2024
Abstract
In recent years, accurate field monitoring has been a research hotspot in the domains of aerial remote sensing and satellite remote sensing. In view of this, this study proposes an innovative cross-platform super-resolution reconstruction method for remote sensing images for the first time, [...] Read more.
In recent years, accurate field monitoring has been a research hotspot in the domains of aerial remote sensing and satellite remote sensing. In view of this, this study proposes an innovative cross-platform super-resolution reconstruction method for remote sensing images for the first time, aiming to make medium-resolution satellites capable of field-level detection through a super-resolution reconstruction technique. The progressive growing generative adversarial network (PGGAN) model, which has excellent high-resolution generation and style transfer capabilities, is combined with a deep residual network, forming the Res-PGGAN model for cross-platform super-resolution reconstruction. The Res-PGGAN architecture is similar to that of the PGGAN, but includes a deep residual module. The proposed Res-PGGAN model has two main benefits. First, the residual module facilitates the training of deep networks, as well as the extraction of deep features. Second, the PGGAN structure performs well in cross-platform sensor style transfer, allowing for cross-platform high-magnification super-resolution tasks to be performed well. A large pre-training dataset and real data are used to train the Res-PGGAN to improve the resolution of Sentinel-2’s 10 m resolution satellite images to 0.625 m. Three evaluation metrics, including the structural similarity index metric (SSIM), the peak signal-to-noise ratio (PSNR), and the universal quality index (UQI), are used to evaluate the high-magnification images obtained by the proposed method. The images generated by the proposed method are also compared with those obtained by the traditional bicubic method and two deep learning super-resolution reconstruction methods: the enhanced super-resolution generative adversarial network (ESRGAN) and the PGGAN. The results indicate that the proposed method outperforms all the comparison methods and demonstrates an acceptable performance regarding all three metrics (SSIM/PSNR/UQI: 0.9726/44.7971/0.0417), proving the feasibility of cross-platform super-resolution image recovery. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
12 pages, 2558 KiB  
Article
Wi-Fi Fingerprint Indoor Localization by Semi-Supervised Generative Adversarial Network
by Jaehyun Yoo
Sensors 2024, 24(17), 5698; https://doi.org/10.3390/s24175698 (registering DOI) - 1 Sep 2024
Abstract
Wi-Fi fingerprint indoor localization uses Wi-Fi signal strength measurements obtained from a number of access points. This method needs manual data collection across a positioning area and an annotation process to label locations to the measurement sets. To reduce the cost and effort, [...] Read more.
Wi-Fi fingerprint indoor localization uses Wi-Fi signal strength measurements obtained from a number of access points. This method needs manual data collection across a positioning area and an annotation process to label locations to the measurement sets. To reduce the cost and effort, this paper proposes a Wi-Fi Semi-Supervised Generative Adversarial Network (SSGAN), which produces artificial but realistic trainable fingerprint data. The Wi-Fi SSGAN is based on a deep learning, which is extended from GAN in a semi-supervised learning manner. It is designed to create location-labeled Wi-Fi fingerprint data, which is different to unlabeled data generation by a normal GAN. Also, the proposed Wi-Fi SSGAN network includes a positioning model, so it does not need a external positioning method. When the Wi-Fi SSGAN is applied to a multi-story landmark localization, the experimental results demonstrate a 35% more accurate performance in comparison to a standard supervised deep neural network. Full article
(This article belongs to the Special Issue Sensors and Techniques for Indoor Positioning and Localization)
Show Figures

Figure 1

24 pages, 1883 KiB  
Review
Applications of GANs to Aid Target Detection in SAR Operations: A Systematic Literature Review
by Vinícius Correa, Peter Funk, Nils Sundelius, Rickard Sohlberg and Alexandre Ramos
Drones 2024, 8(9), 448; https://doi.org/10.3390/drones8090448 (registering DOI) - 31 Aug 2024
Viewed by 374
Abstract
Research on unmanned autonomous vehicles (UAVs) for search and rescue (SAR) missions is widespread due to its cost-effectiveness and enhancement of security and flexibility in operations. However, a significant challenge arises from the quality of sensors, terrain variability, noise, and the sizes of [...] Read more.
Research on unmanned autonomous vehicles (UAVs) for search and rescue (SAR) missions is widespread due to its cost-effectiveness and enhancement of security and flexibility in operations. However, a significant challenge arises from the quality of sensors, terrain variability, noise, and the sizes of targets in the images and videos taken by them. Generative adversarial networks (GANs), introduced by Ian Goodfellow, among their variations, can offer excellent solutions for improving the quality of sensors, regarding super-resolution, noise removal, and other image processing issues. To identify new insights and guidance on how to apply GANs to detect living beings in SAR operations, a PRISMA-oriented systematic literature review was conducted to analyze primary studies that explore the usage of GANs for edge or object detection in images captured by drones. The results demonstrate the utilization of GAN algorithms in the realm of image enhancement for object detection, along with the metrics employed for tool validation. These findings provide insights on how to apply or modify them to aid in target identification during search stages. Full article
(This article belongs to the Special Issue UAV Detection, Classification, and Tracking)
Show Figures

Figure 1

23 pages, 2299 KiB  
Article
CA-ViT: Contour-Guided and Augmented Vision Transformers to Enhance Glaucoma Classification Using Fundus Images
by Tewodros Gizaw Tohye, Zhiguang Qin, Mugahed A. Al-antari, Chiagoziem C. Ukwuoma, Zenbe Markos Lonseko and Yeong Hyeon Gu
Bioengineering 2024, 11(9), 887; https://doi.org/10.3390/bioengineering11090887 (registering DOI) - 31 Aug 2024
Viewed by 256
Abstract
Glaucoma, a predominant cause of visual impairment on a global scale, poses notable challenges in diagnosis owing to its initially asymptomatic presentation. Early identification is vital to prevent irreversible vision impairment. Cutting-edge deep learning techniques, such as vision transformers (ViTs), have been employed [...] Read more.
Glaucoma, a predominant cause of visual impairment on a global scale, poses notable challenges in diagnosis owing to its initially asymptomatic presentation. Early identification is vital to prevent irreversible vision impairment. Cutting-edge deep learning techniques, such as vision transformers (ViTs), have been employed to tackle the challenge of early glaucoma detection. Nevertheless, limited approaches have been suggested to improve glaucoma classification due to issues like inadequate training data, variations in feature distribution, and the overall quality of samples. Furthermore, fundus images display significant similarities and slight discrepancies in lesion sizes, complicating glaucoma classification when utilizing ViTs. To address these obstacles, we introduce the contour-guided and augmented vision transformer (CA-ViT) for enhanced glaucoma classification using fundus images. We employ a Conditional Variational Generative Adversarial Network (CVGAN) to enhance and diversify the training dataset by incorporating conditional sample generation and reconstruction. Subsequently, a contour-guided approach is integrated to offer crucial insights into the disease, particularly concerning the optic disc and optic cup regions. Both the original images and extracted contours are given to the ViT backbone; then, feature alignment is performed with a weighted cross-entropy loss. Finally, in the inference phase, the ViT backbone, trained on the original fundus images and augmented data, is used for multi-class glaucoma categorization. By utilizing the Standardized Multi-Channel Dataset for Glaucoma (SMDG), which encompasses various datasets (e.g., EYEPACS, DRISHTI-GS, RIM-ONE, REFUGE), we conducted thorough testing. The results indicate that the proposed CA-ViT model significantly outperforms current methods, achieving a precision of 93.0%, a recall of 93.08%, an F1 score of 92.9%, and an accuracy of 93.0%. Therefore, the integration of augmentation with the CVGAN and contour guidance can effectively enhance glaucoma classification tasks. Full article
21 pages, 5000 KiB  
Article
Surrogate-Based Multidisciplinary Optimization for the Takeoff Trajectory Design of Electric Drones
by Samuel Sisk and Xiaosong Du
Processes 2024, 12(9), 1864; https://doi.org/10.3390/pr12091864 (registering DOI) - 31 Aug 2024
Viewed by 231
Abstract
Electric vertical takeoff and landing (eVTOL) aircraft attract attention due to their unique characteristics of reduced noise, moderate pollutant emission, and lowered operating cost. However, the benefits of electric vehicles, including eVTOL aircraft, are critically challenged by the energy density of batteries, which [...] Read more.
Electric vertical takeoff and landing (eVTOL) aircraft attract attention due to their unique characteristics of reduced noise, moderate pollutant emission, and lowered operating cost. However, the benefits of electric vehicles, including eVTOL aircraft, are critically challenged by the energy density of batteries, which prohibit long-distance tasks and broader applications. Since the takeoff process of eVTOL aircraft demands excessive energy and couples multiple subsystems (such as aerodynamics and propulsion), multidisciplinary analysis and optimization (MDAO) become essential. Conventional MDAO, however, iteratively evaluates high-fidelity simulation models, making the whole process computationally intensive. Surrogates, in lieu of simulation models, empower efficient MDAO with the premise of sufficient accuracy, but naive surrogate modeling could result in an enormous training cost. Thus, this work develops a twin-generator generative adversarial network (twinGAN) model to intelligently parameterize takeoff power and wing angle profiles of an eVTOL aircraft. The twinGAN-enabled surrogate-based takeoff trajectory design framework was demonstrated on the Airbus A3 Vahana aircraft. The twinGAN provisioned two-fold dimensionality reductions. First, twinGAN generated only realistic trajectory profiles of power and wing angle, which implicitly reduced the design space. Second, twinGAN with three variables represented the takeoff trajectory profiles originally parameterized using 40 B-spline control points, which explicitly reduced the design space while maintaining sufficient variability, as verified by fitting optimization. Moreover, surrogate modeling with respect to the three twinGAN variables, total takeoff time, mass, and power efficiency, reached around 99% accuracy for all the quantities of interest (such as vertical displacement). Surrogate-based, derivative-free optimizations obtained over 95% accuracy and reduced the required computational time by around 26 times compared with simulation-based, gradient-based optimization. Thus, the novelty of this work lies in the fact that the twinGAN model intelligently parameterized trajectory designs, which achieved implicit and explicit dimensionality reductions. Additionally, twinGAN-enabled surrogate modeling enabled the efficient takeoff trajectory design with high accuracy and computational cost reduction. Full article
Show Figures

Figure 1

19 pages, 6922 KiB  
Article
A Study of Classroom Behavior Recognition Incorporating Super-Resolution and Target Detection
by Xiaoli Zhang, Jialei Nie, Shoulin Wei, Guifu Zhu, Wei Dai and Can Yang
Sensors 2024, 24(17), 5640; https://doi.org/10.3390/s24175640 - 30 Aug 2024
Viewed by 156
Abstract
With the development of educational technology, machine learning and deep learning provide technical support for traditional classroom observation assessment. However, in real classroom scenarios, the technique faces challenges such as lack of clarity of raw images, complexity of datasets, multi-target detection errors, and [...] Read more.
With the development of educational technology, machine learning and deep learning provide technical support for traditional classroom observation assessment. However, in real classroom scenarios, the technique faces challenges such as lack of clarity of raw images, complexity of datasets, multi-target detection errors, and complexity of character interactions. Based on the above problems, a student classroom behavior recognition network incorporating super-resolution and target detection is proposed. To cope with the problem of unclear original images in the classroom scenario, SRGAN (Super Resolution Generative Adversarial Network for Images) is used to improve the image resolution and thus the recognition accuracy. To address the dataset complexity and multi-targeting problems, feature extraction is optimized, and multi-scale feature recognition is enhanced by introducing AKConv and LASK attention mechanisms into the Backbone module of the YOLOv8s algorithm. To improve the character interaction complexity problem, the CBAM attention mechanism is integrated to enhance the recognition of important feature channels and spatial regions. Experiments show that it can detect six behaviors of students—raising their hands, reading, writing, playing on their cell phones, looking down, and leaning on the table—in high-definition images. And the accuracy and robustness of this network is verified. Compared with small-object detection algorithms such as Faster R-CNN, YOLOv5, and YOLOv8s, this network demonstrates good detection performance on low-resolution small objects, complex datasets with numerous targets, occlusion, and overlapping students. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

24 pages, 9460 KiB  
Article
Internal Thread Defect Generation Algorithm and Detection System Based on Generative Adversarial Networks and You Only Look Once
by Zhihao Jiang, Xiaohan Dou, Xiaolong Liu, Chengqi Xue, Anqi Wang and Gengpei Zhang
Sensors 2024, 24(17), 5636; https://doi.org/10.3390/s24175636 - 30 Aug 2024
Viewed by 191
Abstract
In the field of industrial inspection, accurate detection of thread quality is crucial for ensuring mechanical performance. Existing machine-vision-based methods for internal thread defect detection often face challenges in efficient detection and sufficient model training samples due to the influence of mechanical geometric [...] Read more.
In the field of industrial inspection, accurate detection of thread quality is crucial for ensuring mechanical performance. Existing machine-vision-based methods for internal thread defect detection often face challenges in efficient detection and sufficient model training samples due to the influence of mechanical geometric features. This paper introduces a novel image acquisition structure, proposes a data augmentation algorithm based on Generative Adversarial Networks (GANs) to effectively construct high-quality training sets, and employs a YOLO algorithm to achieve internal thread defect detection. Through multi-metric evaluation and comparison with external threads, high-similarity internal thread image generation is achieved. The detection accuracy for internal and external threads reached 94.27% and 93.92%, respectively, effectively detecting internal thread defects. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

32 pages, 10548 KiB  
Article
GAN-SkipNet: A Solution for Data Imbalance in Cardiac Arrhythmia Detection Using Electrocardiogram Signals from a Benchmark Dataset
by Hari Mohan Rai, Joon Yoo and Serhii Dashkevych
Mathematics 2024, 12(17), 2693; https://doi.org/10.3390/math12172693 - 29 Aug 2024
Viewed by 211
Abstract
Electrocardiography (ECG) plays a pivotal role in monitoring cardiac health, yet the manual analysis of ECG signals is challenging due to the complex task of identifying and categorizing various waveforms and morphologies within the data. Additionally, ECG datasets often suffer from a significant [...] Read more.
Electrocardiography (ECG) plays a pivotal role in monitoring cardiac health, yet the manual analysis of ECG signals is challenging due to the complex task of identifying and categorizing various waveforms and morphologies within the data. Additionally, ECG datasets often suffer from a significant class imbalance issue, which can lead to inaccuracies in detecting minority class samples. To address these challenges and enhance the effectiveness and efficiency of cardiac arrhythmia detection from imbalanced ECG datasets, this study proposes a novel approach. This research leverages the MIT-BIH arrhythmia dataset, encompassing a total of 109,446 ECG beats distributed across five classes following the Association for the Advancement of Medical Instrumentation (AAMI) standard. Given the dataset’s inherent class imbalance, a 1D generative adversarial network (GAN) model is introduced, incorporating the Bi-LSTM model to synthetically generate the two minority signal classes, which represent a mere 0.73% fusion (F) and 2.54% supraventricular (S) of the data. The generated signals are rigorously evaluated for similarity to real ECG data using three key metrics: mean squared error (MSE), structural similarity index (SSIM), and Pearson correlation coefficient (r). In addition to addressing data imbalance, the work presents three deep learning models tailored for ECG classification: SkipCNN (a convolutional neural network with skip connections), SkipCNN+LSTM, and SkipCNN+LSTM+Attention mechanisms. To further enhance efficiency and accuracy, the test dataset is rigorously assessed using an ensemble model, which consistently outperforms the individual models. The performance evaluation employs standard metrics such as precision, recall, and F1-score, along with their average, macro average, and weighted average counterparts. Notably, the SkipCNN+LSTM model emerges as the most promising, achieving remarkable precision, recall, and F1-scores of 99.3%, which were further elevated to an impressive 99.60% through ensemble techniques. Consequently, with this innovative combination of data balancing techniques, the GAN-SkipNet model not only resolves the challenges posed by imbalanced data but also provides a robust and reliable solution for cardiac arrhythmia detection. This model stands poised for clinical applications, offering the potential to be deployed in hospitals for real-time cardiac arrhythmia detection, thereby benefiting patients and healthcare practitioners alike. Full article
Show Figures

Figure 1

23 pages, 5761 KiB  
Article
FFA: Foreground Feature Approximation Digitally against Remote Sensing Object Detection
by Rui Zhu, Shiping Ma, Linyuan He and Wei Ge
Remote Sens. 2024, 16(17), 3194; https://doi.org/10.3390/rs16173194 - 29 Aug 2024
Viewed by 261
Abstract
In recent years, research on adversarial attack techniques for remote sensing object detection (RSOD) has made great progress. Still, most of the research nowadays is on end-to-end attacks, which mainly design adversarial perturbations based on the prediction information of the object detectors (ODs) [...] Read more.
In recent years, research on adversarial attack techniques for remote sensing object detection (RSOD) has made great progress. Still, most of the research nowadays is on end-to-end attacks, which mainly design adversarial perturbations based on the prediction information of the object detectors (ODs) to achieve the attack. These methods do not discover the common vulnerabilities of the ODs and, thus, the transferability is weak. Based on this, this paper proposes a foreground feature approximation (FFA) method to generate adversarial examples (AEs) that discover the common vulnerabilities of the ODs by changing the feature information carried by the image itself to implement the attack. Specifically, firstly, the high-quality predictions are filtered as attacked objects using the detector, after which a hybrid image without any target is made, and the hybrid foreground is created based on the attacked targets. The images’ shallow features are extracted using the backbone network, and the features of the input foreground are approximated towards the hybrid foreground to implement the attack. In contrast, the model predictions are used to assist in realizing the attack. In addition, we have found the effectiveness of FFA for targeted attacks, and replacing the hybrid foreground with the targeted foreground can realize targeted attacks. Extensive experiments are conducted on the remote sensing target detection datasets DOTA and UCAS-AOD with seven rotating target detectors. The results show that the mAP of FFA under the IoU threshold of 0.5 untargeted attack is 3.4% lower than that of the advanced method, and the mAP of FFA under targeted attack is 1.9% lower than that of the advanced process. Full article
Show Figures

Figure 1

22 pages, 13050 KiB  
Article
A Deep Learning Model for Detecting Fake Medical Images to Mitigate Financial Insurance Fraud
by Muhammad Asad Arshed, Shahzad Mumtaz, Ștefan Cristian Gherghina, Neelam Urooj, Saeed Ahmed and Christine Dewi
Computation 2024, 12(9), 173; https://doi.org/10.3390/computation12090173 - 29 Aug 2024
Viewed by 281
Abstract
Artificial Intelligence and Deepfake Technologies have brought a new dimension to the generation of fake data, making it easier and faster than ever before—this fake data could include text, images, sounds, videos, etc. This has brought new challenges that require the faster development [...] Read more.
Artificial Intelligence and Deepfake Technologies have brought a new dimension to the generation of fake data, making it easier and faster than ever before—this fake data could include text, images, sounds, videos, etc. This has brought new challenges that require the faster development of tools and techniques to avoid fraudulent activities at pace and scale. Our focus in this research study is to empirically evaluate the use and effectiveness of deep learning models such as Convolutional Neural Networks (CNNs) and Patch-based Neural Networks in the context of successful identification of real and fake images. We chose the healthcare domain as a potential case study where the fake medical data generation approach could be used to make false insurance claims. For this purpose, we obtained publicly available skin cancer data and used recently introduced stable diffusion approaches—a more effective technique than prior approaches such as Generative Adversarial Network (GAN)—to generate fake skin cancer images. To the best of our knowledge, and based on the literature review, this is one of the few research studies that uses images generated using stable diffusion along with real image data. As part of the exploratory analysis, we analyzed histograms of fake and real images using individual color channels and averaged across training and testing datasets. The histogram analysis demonstrated a clear change by shifting the mean and overall distribution of both real and fake images (more prominent in blue and green) in the training data whereas, in the test data, both means were different from the training data, so it appears to be non-trivial to set a threshold which could give better predictive capability. We also conducted a user study to observe where the naked eye could identify any patterns for classifying real and fake images, and the accuracy of the test data was observed to be 68%. The adoption of deep learning predictive approaches (i.e., patch-based and CNN-based) has demonstrated similar accuracy (~100%) in training and validation subsets of the data, and the same was observed for the test subset with and without StratifiedKFold (k = 3). Our analysis has demonstrated that state-of-the-art exploratory and deep-learning approaches are effective enough to detect images generated from stable diffusion vs. real images. Full article
(This article belongs to the Special Issue Computational Medical Image Analysis—2nd Edition)
Show Figures

Figure 1

19 pages, 702 KiB  
Article
OFPP-GAN: One-Shot Federated Personalized Protection–Generative Adversarial Network
by Zhenyu Jiang, Changli Zhou, Hui Tian and Zikang Chen
Electronics 2024, 13(17), 3423; https://doi.org/10.3390/electronics13173423 - 29 Aug 2024
Viewed by 286
Abstract
Differential privacy techniques have shown excellent performance in protecting sensitive information during GAN model training. However, with the increasing attention to data privacy issues, ensuring high-quality output of generative models and the efficiency of federated learning while protecting privacy has become a pressing [...] Read more.
Differential privacy techniques have shown excellent performance in protecting sensitive information during GAN model training. However, with the increasing attention to data privacy issues, ensuring high-quality output of generative models and the efficiency of federated learning while protecting privacy has become a pressing challenge. To address these issues, this paper proposes a One-shot Federated Personalized Protection–Generative Adversarial Network (OFPP-GAN). Firstly, this scheme employs dual personalized differential privacy to achieve privacy protection. It adjusts the noise scale and clipping threshold based on the gradient changes during model training in a personalized manner, thereby enhancing the performance of the generative model while protecting privacy. Additionally, the scheme adopts the one-shot federated learning paradigm, where each client uploads their local model containing private information only once throughout the training process. This approach not only reduces the risk of privacy leakage but also decreases the communication overhead of the entire system. Finally, we validate the effectiveness of the proposed method through theoretical analysis and experiments. Compared with existing methods, the generative model trained with OFPP-GAN demonstrates superior security, efficiency, and robustness. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

18 pages, 4262 KiB  
Article
Cyclic Consistent Image Style Transformation: From Model to System
by Jun Peng, Kaiyi Chen, Yuqing Gong, Tianxiang Zhang and Baohua Su
Appl. Sci. 2024, 14(17), 7637; https://doi.org/10.3390/app14177637 - 29 Aug 2024
Viewed by 305
Abstract
Generative Adversarial Networks (GANs) have achieved remarkable success in various tasks, including image generation, editing, and reconstruction, as well as in unsupervised and representation learning. Despite their impressive capabilities, GANs are often plagued by challenges such as unstable training dynamics and limitations in [...] Read more.
Generative Adversarial Networks (GANs) have achieved remarkable success in various tasks, including image generation, editing, and reconstruction, as well as in unsupervised and representation learning. Despite their impressive capabilities, GANs are often plagued by challenges such as unstable training dynamics and limitations in generating complex patterns. To address these challenges, we propose a novel image style transfer method, named C3GAN, which leverages CycleGAN architecture to achieve consistent and stable transformation of image style. In this context, “image style” refers to the distinct visual characteristics or artistic elements, such as the color schemes, textures, and brushstrokes that define the overall appearance of an image. Our method incorporates cyclic consistency, ensuring that the style transformation remains coherent and visually appealing, thus enhancing the training stability and overcoming the generative limitations of traditional GAN models. Additionally, we have developed a robust and efficient image style transfer system by integrating Flask for web development and MySQL for database management. Our system demonstrates superior performance in transferring complex styles compared to existing model-based approaches. This paper presents the development of a comprehensive image style transfer system based on our advanced C3GAN model, effectively addressing the challenges of GANs and expanding application potential in domains such as artistic creation and cinematic special effects. Full article
Show Figures

Figure 1

12 pages, 2079 KiB  
Article
Research on Default Classification of Unbalanced Credit Data Based on PixelCNN-WGAN
by Yutong Sun, Yanting Ji and Xiangxing Tao
Electronics 2024, 13(17), 3419; https://doi.org/10.3390/electronics13173419 - 28 Aug 2024
Viewed by 336
Abstract
Personal credit assessment plays a crucial role in the financial system, which not only relates to the financial activities of individuals but also affects the overall credit system and economic health of society. However, the current problem of data imbalance affecting classification results [...] Read more.
Personal credit assessment plays a crucial role in the financial system, which not only relates to the financial activities of individuals but also affects the overall credit system and economic health of society. However, the current problem of data imbalance affecting classification results in the field of personal credit assessment has not been fully solved. In order to solve this problem better, we propose a data-enhanced classification algorithm based on a Pixel Convolutional Neural Network (PixelCNN) and a Generative Adversarial Network (Wasserstein GAN, WGAN). Firstly, the historical data containing borrowers’ borrowing information are transformed into grayscale maps; then, data enhancement of default images is performed using the improved PixelCNN-WGAN model; and finally, the expanded image dataset is inputted into the CNN, AlexNet, SqueezeNet, and MobileNetV2 for classification. The results on the real dataset LendingClub show that the data enhancement algorithm designed in this paper improves the accuracy of the four algorithms by 1.548–3.568% compared with the original dataset, which can effectively improve the classification effect of the credit data, and to a certain extent, it provides a new idea for the classification task in the field of personal credit assessment. Full article
Show Figures

Figure 1

14 pages, 5515 KiB  
Article
Research on Defect Diagnosis of Transmission Lines Based on Multi-Strategy Image Processing and Improved Deep Network
by Ming Gou, Hao Tang, Lei Song, Zhong Chen, Xiaoming Yan, Xiangwen Zeng and Wenlong Fu
Processes 2024, 12(9), 1832; https://doi.org/10.3390/pr12091832 - 28 Aug 2024
Viewed by 401
Abstract
The current manual inspection of transmission line images captured by unmanned aerial vehicles (UAVs) is not only time-consuming and labor-intensive but also prone to high rates of false detections and missed inspections. With the development of artificial intelligence, deep learning-based image recognition methods [...] Read more.
The current manual inspection of transmission line images captured by unmanned aerial vehicles (UAVs) is not only time-consuming and labor-intensive but also prone to high rates of false detections and missed inspections. With the development of artificial intelligence, deep learning-based image recognition methods can automatically detect various defect categories of transmission lines based on images captured by UAVs. However, existing methods are often constrained by incomplete feature extraction and imbalanced sample categories, which limit the precision of detection. To address these issues, a novel method based on multi-strategy image processing and an improved deep network is proposed to conduct defect diagnosis of transmission lines. Firstly, multi-strategy image processing is proposed to extract the effective area of transmission lines. Then, a generative adversarial network is employed to generate images of transmission lines to enhance the trained samples’ diversity. Finally, the deep network GoogLeNet is improved by superseding the original cross-entropy loss function with a focal loss function to achieve the deep feature extraction of images and defect diagnosis of transmission lines. An actual imbalance transmission line dataset including normal, broken strands, and loose strands is applied to validate the effectiveness of the proposed method. The experimental results, as well as contrastive analysis, reveal that the proposed method is suitable for recognizing defects of transmission lines. Full article
Show Figures

Figure 1

20 pages, 5243 KiB  
Article
Methodology for the Prediction of the Thermal Conductivity of Concrete by Using Neural Networks
by Ana Carolina Rosa, Youssef Elomari, Alejandro Calderón, Carles Mateu, Assed Haddad and Dieter Boer
Appl. Sci. 2024, 14(17), 7598; https://doi.org/10.3390/app14177598 - 28 Aug 2024
Viewed by 316
Abstract
The energy consumption of buildings presents a significant concern, which has led to a demand for materials with better thermal performance. Thermal conductivity (TC), among the most relevant thermal properties, is essential to address this demand. This study introduces a methodology integrating a [...] Read more.
The energy consumption of buildings presents a significant concern, which has led to a demand for materials with better thermal performance. Thermal conductivity (TC), among the most relevant thermal properties, is essential to address this demand. This study introduces a methodology integrating a Multilayer Perceptron (MLP) and a Generative Adversarial Network (GAN) to predict the TC of concrete based on its mass composition and density. Three scenarios using experimental data from published papers and synthetic data are compared and reveal the model’s outstanding performance across training, validation, and test datasets. Notably, the MLP trained on the GAN-augmented dataset outperforms the one with the real dataset, demonstrating remarkable consistency between the model’s predictions and the actual values. Achieving an RMSE of 0.0244 and an R2 of 0.9975, these outcomes can offer precise quantitative information and advance energy-efficient materials. Full article
Show Figures

Figure 1

Back to TopTop