Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,702)

Search Parameters:
Keywords = glioblastoma

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
51 pages, 1418 KiB  
Article
Low-Basicity 5-HT6 Receptor Ligands from the Group of Cyclic Arylguanidine Derivatives and Their Antiproliferative Activity Evaluation
by Przemysław Zaręba, Anna K. Drabczyk, Artur Wnorowski, Maciej Maj, Katarzyna Malarz, Patryk Rurka, Gniewomir Latacz, Beata Duszyńska, Krzesimir Ciura, Katarzyna Ewa Greber, Anna Boguszewska-Czubara, Paweł Śliwa and Julia Kuliś
Int. J. Mol. Sci. 2024, 25(19), 10287; https://doi.org/10.3390/ijms251910287 - 24 Sep 2024
Viewed by 159
Abstract
The serotonin 5-HT6 receptor (5-HT6R), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HT6R signaling with pathways involved in cancer progression, we decided to check [...] Read more.
The serotonin 5-HT6 receptor (5-HT6R), expressed almost exclusively in the brain, affects the Cdk5 signaling as well as the mTOR pathway. Due to the association of 5-HT6R signaling with pathways involved in cancer progression, we decided to check the usefulness of 5-HT6R ligands in the treatment of CNS tumors. For this purpose, a new group of low-base 5-HT6R ligands was developed, belonging to arylsulfonamide derivatives of cyclic arylguanidines. The selected group of molecules was also tested for their antiproliferative activity on astrocytoma (1321N1) and glioblastoma (U87MG, LN-229, U-251) cell lines. Some of the molecules were subjected to ADMET tests in vitro, including lipophilicity, drug binding to plasma proteins, affinity for phospholipids, drug–drug interaction (DDI), the penetration of the membrane (PAMPA), metabolic stability, and hepatotoxicity as well as in vivo cardiotoxicity in the Danio Rerio model. Two antagonists with an affinity constant Ki < 50 nM (PR 68 Ki = 37 nM) were selected. These compounds were characterized by very high selectivity. An analysis of pharmacokinetic parameters for the lead compound PR 68 confirmed favorable properties for administration, including passive diffusion and acceptable metabolic stability (metabolized in 49%, MLMs). The compound did not exhibit the potential for drug–drug interactions. Full article
(This article belongs to the Special Issue Medicinal Chemistry: From Drug Design to Drug Development)
13 pages, 4324 KiB  
Article
Glial-Cell-Line-Derived Neurotrophic Factor Promotes Glioblastoma Cell Migration and Invasion via the SMAD2/3-SERPINE1-Signaling Axis
by Xiaoxiao Guo, Han Zhou, Yifang Liu, Wei Xu, Kouminin Kanwore and Lin Zhang
Int. J. Mol. Sci. 2024, 25(18), 10229; https://doi.org/10.3390/ijms251810229 - 23 Sep 2024
Viewed by 383
Abstract
Glial-cell-line-derived neurotrophic factor (GDNF) is highly expressed and is involved in the malignant phenotype in glioblastomas (GBMs). However, uncovering its underlying mechanism for promoting GBM progression is still challenging work. In this study, we found that serine protease inhibitor family E member 1 [...] Read more.
Glial-cell-line-derived neurotrophic factor (GDNF) is highly expressed and is involved in the malignant phenotype in glioblastomas (GBMs). However, uncovering its underlying mechanism for promoting GBM progression is still challenging work. In this study, we found that serine protease inhibitor family E member 1 (SERPINE1) was a potential downstream gene of GDNF. Further experiments confirmed that SERPINE1 was highly expressed in GBM tissues and cells, and its levels of expression and secretion were enhanced by exogenous GDNF. The SERPINE1 knockdown inhibited the migration and invasion of GBM cells promoted by GDNF. Mechanistically, GDNF increased SERPINE1 by promoting the phosphorylation of SMAD2/3. In vivo experiments demonstrated that GDNF facilitated GBM growth and the expressions of proteins related to migration and invasion via SERPINE1. Collectively, our findings revealed that GDNF upregulated SERPINE1 via the SMAD2/3-signaling pathway, thereby accelerating GBM cell migration and invasion. The present work presents a new mechanism of GDNF, supporting GBM development. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 912 KiB  
Systematic Review
From Voxel to Gene: A Scoping Review on MRI Radiogenomics’ Artificial Intelligence Predictions in Adult Gliomas and Glioblastomas—The Promise of Virtual Biopsy?
by Xavier Maximin Le Guillou Horn, François Lecellier, Clement Giraud, Mathieu Naudin, Pierre Fayolle, Céline Thomarat, Christine Fernandez-Maloigne and Rémy Guillevin
Biomedicines 2024, 12(9), 2156; https://doi.org/10.3390/biomedicines12092156 - 23 Sep 2024
Viewed by 347
Abstract
Background: Gliomas, including the most severe form known as glioblastomas, are primary brain tumors arising from glial cells, with significant impact on adults, particularly men aged 45 to 70. Recent advancements in the WHO (World Health Organization) classification now correlate genetic markers with [...] Read more.
Background: Gliomas, including the most severe form known as glioblastomas, are primary brain tumors arising from glial cells, with significant impact on adults, particularly men aged 45 to 70. Recent advancements in the WHO (World Health Organization) classification now correlate genetic markers with glioma phenotypes, enhancing diagnostic precision and therapeutic strategies. Aims and Methods: This scoping review aims to evaluate the current state of deep learning (DL) applications in the genetic characterization of adult gliomas, addressing the potential of these technologies for a reliable virtual biopsy. Results: We reviewed 17 studies, analyzing the evolution of DL algorithms from fully convolutional networks to more advanced architectures (ResNet and DenseNet). The methods involved various validation techniques, including k-fold cross-validation and external dataset validation. Conclusions: Our findings highlight significant variability in reported performance, largely due to small, homogeneous datasets and inconsistent validation methods. Despite promising results, particularly in predicting individual genetic traits, the lack of robust external validation limits the generalizability of these models. Future efforts should focus on developing larger, more diverse datasets and integrating multidisciplinary collaboration to enhance model reliability. This review underscores the potential of DL in advancing glioma characterization, paving the way for more precise, non-invasive diagnostic tools. The development of a robust algorithm capable of predicting the somatic genetics of gliomas or glioblastomas could accelerate the diagnostic process and inform therapeutic decisions more quickly, while maintaining the same level of accuracy as the traditional diagnostic pathway, which involves invasive tumor biopsies. Full article
Show Figures

Figure 1

12 pages, 2297 KiB  
Brief Report
Enhanced Anticancer Activity of 7MeERT over Ertredin: A Comparative Study on Cancer Cell Proliferation and NDUFA12 Binding
by Sonoko Atsumi, Chisato Nosaka, Takefumi Onodera, Hayamitsu Adachi, Takumi Watanabe, Manabu Kawada, Masabumi Shibuya, Se In Park and Ho Jeong Kwon
Biomolecules 2024, 14(9), 1197; https://doi.org/10.3390/biom14091197 - 23 Sep 2024
Viewed by 273
Abstract
We have previously identified Ertredin (3-(2-amino-5-bromophenyl) quinoxalin-2(1H)-one) as a compound that suppresses 3D spheroid formation and tumorigenesis in NIH3T3 cells induced by Epidermal Growth Factor Receptor variant III (EGFRvIII) transduction. One of its targets has been shown to be NDUFA12 (NADH [...] Read more.
We have previously identified Ertredin (3-(2-amino-5-bromophenyl) quinoxalin-2(1H)-one) as a compound that suppresses 3D spheroid formation and tumorigenesis in NIH3T3 cells induced by Epidermal Growth Factor Receptor variant III (EGFRvIII) transduction. One of its targets has been shown to be NDUFA12 (NADH Dehydrogenase (Ubiquinone) 1 Alpha Subcomplex Subunit 12), a component protein of oxidative phosphorylation complex I. In this report, we compared the growth inhibitory activity of Ertredin with its methylated analogue 7MeERT (3-(2-amino-5-bromophenyl)-7-methylquinoxalin-2(1H)-one) on human cancer cells. 7MeERT induced the inhibition of the proliferation of various cancer cells similarly to Ertredin and showed higher activity in glioblastoma cells, A431 cells overexpressing EGFR (wild type), and multiple myeloma cells. Molecular docking analysis and a Cellular Thermal Shift Assay (CETSA) suggested that 7MeERT binds to NDUFA12 similarly to Ertredin. The binding of 7MeERT and Ertredin to NDUFA12 in glioblastoma was further supported by the inhibition of the oxygen consumption rate. These results suggest that 7MeERT also binds to NDUFA12, inhibits oxidative phosphorylation, and has a higher anti-cancer cell growth inhibitory activity than Ertredin. Full article
Show Figures

Figure 1

14 pages, 2561 KiB  
Article
BMP4 and Temozolomide Synergize in the Majority of Patient-Derived Glioblastoma Cultures
by Iris S. C. Verploegh, Andrea Conidi, Hoesna El Hassnaoui, Floor A. M. Verhoeven, Anne L. Korporaal, Ioannis Ntafoulis, Mirjam C. G. N. van den Hout, Rutger W. W. Brouwer, Martine L. M. Lamfers, Wilfred F. J. van IJcken, Danny Huylebroeck and Sieger Leenstra
Int. J. Mol. Sci. 2024, 25(18), 10176; https://doi.org/10.3390/ijms251810176 - 22 Sep 2024
Viewed by 311
Abstract
One of the main causes of poor prognoses in patient with glioblastoma (GBM) is drug resistance to current standard treatment, which includes chemoradiation and adjuvant temozolomide (TMZ). In addition, the concept of cancer stem cells provides new insights into therapy resistance and management [...] Read more.
One of the main causes of poor prognoses in patient with glioblastoma (GBM) is drug resistance to current standard treatment, which includes chemoradiation and adjuvant temozolomide (TMZ). In addition, the concept of cancer stem cells provides new insights into therapy resistance and management also in GBM and glioblastoma stem cell-like cells (GSCs), which might contribute to therapy resistance. Bone morphogenetic protein-4 (BMP4) stimulates astroglial differentiation of GSCs and thereby reduces their self-renewal capacity. Exposure of GSCs to BMP4 may also sensitize these cells to TMZ. A recent phase I trial has shown that local delivery of BMP4 is safe, but a large variation in survival is seen in these treated patients and in features of their cultured tumors. We wanted to combine TMZ and BMP4 (TMZ + BMP4) therapy and assess the inter-tumoral variability in response to TMZ + BMP4 in patient-derived GBM cultures. A phase II trial could then benefit a larger group of patients than those treated with BMP4 only. We first show that simultaneous treatment with TMZ + BMP4 is more effective than sequential treatment. Second, when applying our optimized treatment protocol, 70% of a total of 20 GBM cultures displayed TMZ + BMP4 synergy. This combination induces cellular apoptosis and does not inhibit cell proliferation. Comparative bulk RNA-sequencing indicates that treatment with TMZ + BMP4 eventually results in decreased MAPK signaling, in line with previous evidence that increased MAPK signaling is associated with resistance to TMZ. Based on these results, we advocate further clinical trial research to test patient benefit and validate pathophysiological hypothesis. Full article
(This article belongs to the Special Issue Biomechanics and Molecular Research on Glioblastoma)
Show Figures

Figure 1

14 pages, 2300 KiB  
Article
Glioblastoma Multiforme: Sensitivity to Antimicrobial Peptides LL-37 and PG-1, and Their Combination with Chemotherapy for Predicting the Overall Survival of Patients
by Alexander N. Chernov, Sofia S. Skliar, Alexander V. Kim, Anna Tsapieva, Sarng S. Pyurveev, Tatiana A. Filatenkova, Marina V. Matsko, Sergey D. Ivanov, Olga V. Shamova and Alexander N. Suvorov
Pharmaceutics 2024, 16(9), 1234; https://doi.org/10.3390/pharmaceutics16091234 - 22 Sep 2024
Viewed by 581
Abstract
Background/Objectives: Glioblastomas (GBMs) are the most malignant and intractable of all cancers, with an unfavorable clinical prognosis for affected patients. The objective was to analyze the sensitivity of GBM cells to the antimicrobial peptides (AMPs) cathelicidin (LL-37) and protegrin-1 (PG-1), both alone and [...] Read more.
Background/Objectives: Glioblastomas (GBMs) are the most malignant and intractable of all cancers, with an unfavorable clinical prognosis for affected patients. The objective was to analyze the sensitivity of GBM cells to the antimicrobial peptides (AMPs) cathelicidin (LL-37) and protegrin-1 (PG-1), both alone and in combination with chemotherapy, to predict overall survival (OS) in the patients. Methods: The study was conducted on 27 GBM patients treated in the neurosurgical department of the Almazov Medical Research Centre (Saint Petersburg, Russia) from 2021 to 2024. The cytotoxic effects of chemotherapy, AMPs, and their combinations on brain tumor cells were assessed by an MTT assay using a 50% inhibitory concentration (IC50). Results: In GBM cells from the patients, LL-37 and PG-1 exhibited strong anticancer effects, surpassing those of chemotherapy drugs. These LL-37 and PG-1 anticancer effects were associated with a statistically significant increase in life expectancy and OS in GBM patients. These findings were confirmed by experiments on rats with C6 glioma, where the intranasal administration of LL-37 (300 μM) and PG-1 (600 μM) increased the life expectancy of the animals to 69 and 55 days, respectively, compared to 24 days in the control group (HR = 4.139, p = 0.0005; HR = 2.542, p = 0.0759). Conclusions: Additionally, the combination of LL-37 and PG-1 with chemotherapy drugs showed that a high IC50 of LL-37 with cisplatin (cutoff > 800 μM) in GBM cells was associated with increased life expectancy (19 vs. 5 months, HR = 4.708, p = 0.0101) and OS in GBM patients. These combinations could be used in future GBM treatments. Full article
Show Figures

Figure 1

21 pages, 3494 KiB  
Article
Glioma Stem Cells: GPRC5A as a Novel Predictive Biomarker and Therapeutic Target Associated with Mesenchymal and Stemness Features
by Sara Sadat Aghamiri and Rada Amin
Appl. Sci. 2024, 14(18), 8482; https://doi.org/10.3390/app14188482 - 20 Sep 2024
Viewed by 377
Abstract
Glioblastoma multiforme (GBM) represents the deadliest form of brain cancer, characterized by complex interactions within its microenvironment. Despite the understanding of GBM biology, GBM remains highly resistant to any therapy. Therefore, defining innovative biomarkers in GBM can provide insights into tumor biology and [...] Read more.
Glioblastoma multiforme (GBM) represents the deadliest form of brain cancer, characterized by complex interactions within its microenvironment. Despite the understanding of GBM biology, GBM remains highly resistant to any therapy. Therefore, defining innovative biomarkers in GBM can provide insights into tumor biology and potential therapeutic targets. In this study, we explored the potential of GPRC5A to serve as a pertinent biomarker for GBM. We utilized the GBM-TCGA dataset and presented the reproducible bioinformatics analysis for our results. We identified that GPRC5A expression was significantly upregulated in GBM compared to normal tissues, with higher levels correlating with poor overall survival (OS) and progression-free interval (PFI). Moreover, it was associated with key genetic mutations, particularly NF1 and PTEN mutations, and strongly correlated with the mesenchymal stem-like phenotype. GPRC5A was also predominantly associated with aggressive GBM features, including hypoxia, high extracellular matrix (ECM) environments, and extensive stromal and immune infiltrations. Its strong correlation with mesenchymal markers and hypoxic regions underscores its potential as a biomarker and therapeutic target in GBM. These findings provide valuable insights into the role of GPRC5A in GBM pathology and its potential impact as a target for GBM stratifications and treatment strategies. Full article
Show Figures

Figure 1

18 pages, 2917 KiB  
Article
Elevated Cellular Uptake of Succinimide- and Glucose-Modified Liposomes for Blood–Brain Barrier Transfer and Glioblastoma Therapy
by Larissa J. Lubitz, Moritz P. Haffner, Harden Rieger and Gero Leneweit
Biomedicines 2024, 12(9), 2135; https://doi.org/10.3390/biomedicines12092135 - 20 Sep 2024
Viewed by 393
Abstract
The uptake of four liposomal formulations was tested with the murine endothelial cell line bEnd.3 and the human glioblastoma cell line U-87 MG. All formulations were composed of DPPC, cholesterol, 5 mol% of mPEG (2000 Da, conjugated to DSPE), and the dye DiD. [...] Read more.
The uptake of four liposomal formulations was tested with the murine endothelial cell line bEnd.3 and the human glioblastoma cell line U-87 MG. All formulations were composed of DPPC, cholesterol, 5 mol% of mPEG (2000 Da, conjugated to DSPE), and the dye DiD. Three of the formulations had an additional PEG chain (nominally 5000 Da, conjugated to DSPE) with either succinimide (NHS), glucose (PEG-bound at C-6), or 4-aminophenyl β-D-glucopyranoside (bound at C-1) as ligands at the distal end. Measuring the uptake kinetics at 1 h and 3 h for liposomal incubation concentrations of 100 µM, 500 µM, and 1000 µM, we calculated the liposomal uptake saturation S and the saturation half-time t1/2. We show that only succinimide has an elevated uptake in bEnd.3 cells, which makes it a very promising and so far largely unexplored candidate for BBB transfer and brain cancer therapies. Half-times are uniform at low concentrations but diversify for high concentrations for bEnd.3 cells. Contrary, U-87 MG cells show almost identical saturations for all three ligands, making a uniform uptake mechanism likely. Only mPEG liposomes stay at 60% of the saturation for ligand-coated liposomes. Half-times are diverse at low concentrations but unify at high concentrations for U-87 MG cells. Full article
(This article belongs to the Special Issue Gliomas: Signaling Pathways, Molecular Mechanisms and Novel Therapies)
Show Figures

Figure 1

3 pages, 2111 KiB  
Correction
Correction: Cao et al. Tubeimoside-1 Inhibits Glioblastoma Growth, Migration, and Invasion via Inducing Ubiquitylation of MET. Cells 2019, 8, 774
by Jiangjun Cao, Erhu Zhao, Qingzong Zhu, Juanli Ji, Zekun Wei, Bo Xu and Hongjuan Cui
Cells 2024, 13(18), 1577; https://doi.org/10.3390/cells13181577 - 19 Sep 2024
Viewed by 216
Abstract
In the Correspondence information of the original publication [...] Full article
Show Figures

Figure 1

3 pages, 983 KiB  
Correction
Correction: Dong et al. Smurf1 Suppression Enhances Temozolomide Chemosensitivity in Glioblastoma by Facilitating PTEN Nuclear Translocation. Cells 2022, 11, 3302
by Lei Dong, Yang Li, Liqun Liu, Xinyi Meng, Shengzhen Li, Da Han, Zhenyu Xiao and Qin Xia
Cells 2024, 13(18), 1575; https://doi.org/10.3390/cells13181575 - 19 Sep 2024
Viewed by 202
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Double-Strand DNA Break Repair and Human Disease II)
Show Figures

Figure 1

56 pages, 7459 KiB  
Review
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment
by Veronica Manescu (Paltanea), Iulian Antoniac, Gheorghe Paltanea, Iosif Vasile Nemoianu, Aurel George Mohan, Aurora Antoniac, Julietta V. Rau, Stefan Alexandru Laptoiu, Petruta Mihai, Horia Gavrila, Abdel Rahim Al-Moushaly and Alin Danut Bodog
Int. J. Mol. Sci. 2024, 25(18), 10065; https://doi.org/10.3390/ijms251810065 - 19 Sep 2024
Viewed by 448
Abstract
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 [...] Read more.
Glioblastoma multiforme (GBM) represents one of the most critical oncological diseases in neurological practice, being considered highly aggressive with a dismal prognosis. At a worldwide level, new therapeutic methods are continuously being researched. Magnetic hyperthermia (MHT) has been investigated for more than 30 years as a solution used as a single therapy or combined with others for glioma tumor assessment in preclinical and clinical studies. It is based on magnetic nanoparticles (MNPs) that are injected into the tumor, and, under the effect of an external alternating magnetic field, they produce heat with temperatures higher than 42 °C, which determines cancer cell death. It is well known that iron oxide nanoparticles have received FDA approval for anemia treatment and to be used as contrast substances in the medical imagining domain. Today, energetic, efficient MNPs are developed that are especially dedicated to MHT treatments. In this review, the subject’s importance will be emphasized by specifying the number of patients with cancer worldwide, presenting the main features of GBM, and detailing the physical theory accompanying the MHT treatment. Then, synthesis routes for thermally efficient MNP manufacturing, strategies adopted in practice for increasing MHT heat performance, and significant in vitro and in vivo studies are presented. This review paper also includes combined cancer therapies, the main reasons for using these approaches with MHT, and important clinical studies on human subjects found in the literature. This review ends by describing the most critical challenges associated with MHT and future perspectives. It is concluded that MHT can be successfully and regularly applied as a treatment for GBM if specific improvements are made. Full article
(This article belongs to the Special Issue Implication of Nanoparticles in Cancer Therapy Research, 2nd Edition)
Show Figures

Figure 1

30 pages, 2044 KiB  
Review
Metabolic Reprogramming in Glioblastoma Multiforme: A Review of Pathways and Therapeutic Targets
by Ashley Irin Cortes Ballen, Maryam Amosu, Surya Ravinder, Joey Chan, Emre Derin, Hasan Slika and Betty Tyler
Cells 2024, 13(18), 1574; https://doi.org/10.3390/cells13181574 - 19 Sep 2024
Viewed by 550
Abstract
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating [...] Read more.
Glioblastoma (GBM) is an aggressive and highly malignant primary brain tumor characterized by rapid growth and a poor prognosis for patients. Despite advancements in treatment, the median survival time for GBM patients remains low. One of the crucial challenges in understanding and treating GBMs involves its remarkable cellular heterogeneity and adaptability. Central to the survival and proliferation of GBM cells is their ability to undergo metabolic reprogramming. Metabolic reprogramming is a process that allows cancer cells to alter their metabolism to meet the increased demands of rapid growth and to survive in the often oxygen- and nutrient-deficient tumor microenvironment. These changes in metabolism include the Warburg effect, alterations in several key metabolic pathways including glutamine metabolism, fatty acid synthesis, and the tricarboxylic acid (TCA) cycle, increased uptake and utilization of glutamine, and more. Despite the complexity and adaptability of GBM metabolism, a deeper understanding of its metabolic reprogramming offers hope for developing more effective therapeutic interventions against GBMs. Full article
(This article belongs to the Special Issue Glioblastoma: What Do We Know?)
Show Figures

Figure 1

9 pages, 620 KiB  
Commentary
Effectiveness and Safety of mRNA Vaccines in the Therapy of Glioblastoma
by Zdeslav Strika, Karlo Petković and Robert Likić
J. Pers. Med. 2024, 14(9), 993; https://doi.org/10.3390/jpm14090993 - 19 Sep 2024
Viewed by 339
Abstract
Glioblastoma (GBM) is the most common and most malignant primary brain tumor, presenting significant treatment challenges due to its heterogeneity, invasiveness, and resistance to conventional therapies. Despite aggressive treatment protocols, the prognosis remains poor, with a median survival time of approximately 15 months. [...] Read more.
Glioblastoma (GBM) is the most common and most malignant primary brain tumor, presenting significant treatment challenges due to its heterogeneity, invasiveness, and resistance to conventional therapies. Despite aggressive treatment protocols, the prognosis remains poor, with a median survival time of approximately 15 months. Recent advancements in mRNA vaccine technology, particularly the development of lipid nanoparticles (LNPs), have revitalized interest in mRNA-based therapies. These vaccines offer unique advantages, including rapid production, personalization based on tumor-specific mutations, and a strong induction of both humoral and cellular immune responses. mRNA vaccines have demonstrated potential in preclinical models, showing significant tumor regression and improved survival rates. Early-phase clinical trials have indicated that mRNA vaccines are safe and can induce robust immune responses in GBM patients. Combining mRNA vaccines with other immunotherapeutic approaches, such as checkpoint inhibitors, has shown synergistic effects, further enhancing their efficacy. However, challenges such as optimizing delivery systems and overcoming the immunosuppressive tumor microenvironment remain. Future research should focus on addressing these challenges and exploring combination therapies to maximize therapeutic benefits. Large-scale, randomized clinical trials are essential to validate the efficacy and safety of mRNA vaccines in GBM therapy. The potential to reshape the tumor microenvironment and establish long-term immunological memory underscores the transformative potential of mRNA vaccines in cancer immunotherapy. Full article
Show Figures

Figure 1

12 pages, 1162 KiB  
Article
Gallium Uncouples Iron Metabolism to Enhance Glioblastoma Radiosensitivity
by Stephenson B. Owusu, Amira Zaher, Stephen Ahenkorah, Darpah N. Pandya, Thaddeus J. Wadas and Michael S. Petronek
Int. J. Mol. Sci. 2024, 25(18), 10047; https://doi.org/10.3390/ijms251810047 - 18 Sep 2024
Viewed by 314
Abstract
Gallium-based therapy has been considered a potentially effective cancer therapy for decades and has recently re-emerged as a novel therapeutic strategy for the management of glioblastoma tumors. Gallium targets the iron-dependent phenotype associated with aggressive tumors by mimicking iron in circulation and gaining [...] Read more.
Gallium-based therapy has been considered a potentially effective cancer therapy for decades and has recently re-emerged as a novel therapeutic strategy for the management of glioblastoma tumors. Gallium targets the iron-dependent phenotype associated with aggressive tumors by mimicking iron in circulation and gaining intracellular access through transferrin-receptor-mediated endocytosis. Mechanistically, it is believed that gallium inhibits critical iron-dependent enzymes like ribonucleotide reductase and NADH dehydrogenase (electron transport chain complex I) by replacing iron and removing the ability to transfer electrons through the protein secondary structure. However, information regarding the effects of gallium on cellular iron metabolism is limited. As mitochondrial iron metabolism serves as a central hub of the iron metabolic network, the goal of this study was to investigate the effects of gallium on mitochondrial iron metabolism in glioblastoma cells. Here, it has been discovered that gallium nitrate can induce mitochondrial iron depletion, which is associated with the induction of DNA damage. Moreover, the generation of gallium-resistant cell lines reveals a highly unstable phenotype characterized by impaired colony formation associated with a significant decrease in mitochondrial iron content and loss of the mitochondrial iron uptake transporter, mitoferrin-1. Moreover, gallium-resistant cell lines are significantly more sensitive to radiation and have an impaired ability to repair any sublethal damage and to survive potentially lethal radiation damage when left for 24 h following radiation. These results support the hypothesis that gallium can disrupt mitochondrial iron metabolism and serve as a potential radiosensitizer. Full article
Show Figures

Figure 1

15 pages, 2308 KiB  
Article
Thermoregulation Effects of Phoneutria nigriventer Isolated Toxins in Rats
by Carla Bogri Butkeraitis, Monica Viviana Abreu Falla and Ivo Lebrun
Toxins 2024, 16(9), 398; https://doi.org/10.3390/toxins16090398 - 18 Sep 2024
Viewed by 429
Abstract
Body temperature is primarily regulated by the hypothalamus, ensuring proper metabolic function. Envenomation by Phoneutria nigriventer can cause symptoms such as hypothermia, hyperthermia, sweating, and shivering, all related to thermoregulation. This study aims to analyze and identify components of the venom that affect [...] Read more.
Body temperature is primarily regulated by the hypothalamus, ensuring proper metabolic function. Envenomation by Phoneutria nigriventer can cause symptoms such as hypothermia, hyperthermia, sweating, and shivering, all related to thermoregulation. This study aims to analyze and identify components of the venom that affect thermoregulation and to evaluate possible mechanisms. Rats were used for thermoregulation analysis, venom fractionation by gel filtration and reverse-phase chromatography (C18), and sequencing by Edman degradation. The venom exhibited hypothermic effects in rats, while its fractions demonstrated both hypothermic (pool II) and hyperthermic (pool III) effects. Further separations of the pools with C18 identified specific peaks responsible for these effects. However, as the peaks were further purified, their effects became less significant. Tests on U87 human glioblastoma cells showed no toxicity. Sequencing of the most active peaks revealed masses similar to those of the Tachykinin and Ctenotoxin families, both known to act on the nervous system. The study concludes that molecules derived from venom can act synergistically or antagonistically. Additionally, toxins that affect thermoregulation are poorly studied and require further characterization. These toxins could potentially serve as sources for the development of new thermoregulatory drugs. Full article
Show Figures

Graphical abstract

Back to TopTop