Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,012)

Search Parameters:
Keywords = gut microbiota

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 258 KiB  
Review
Synbiotics as Treatment for Irritable Bowel Syndrome: A Review
by Henning Sommermeyer and Jacek Piątek
Microorganisms 2024, 12(7), 1493; https://doi.org/10.3390/microorganisms12071493 (registering DOI) - 21 Jul 2024
Abstract
Irritable bowel syndrome is a persistent disturbance of the function of the gastrointestinal tract with a prevalence of about 11.2% in the population at large. While the etiology of the disorder remains unclear, there is mounting evidence that the disturbance of the gut [...] Read more.
Irritable bowel syndrome is a persistent disturbance of the function of the gastrointestinal tract with a prevalence of about 11.2% in the population at large. While the etiology of the disorder remains unclear, there is mounting evidence that the disturbance of the gut microbiota is at least one contributing factor. This insight resulted in clinical trials investigating the therapeutic effects of products containing probiotic microorganisms. Most studies with IBS patients have evaluated the therapeutic effects of mono- and multi-strain probiotics, but only a few studies have investigated the efficacy of synbiotics (combinations of probiotic bacteria and one or more prebiotic components). This review summarizes the results from eight randomized, placebo-controlled clinical trials that investigated the efficacy of synbiotic preparations (three mono-strain and five multi-strain products) in adult IBS patients. While data remain sparse, some of the surveyed clinical trials have demonstrated interesting efficacy results in IBS patients. To allow a judgment of the role played by synbiotics in the treatment of IBS patients, more high-quality clinical trials are needed. Full article
(This article belongs to the Special Issue Probiotics: The Current State of Scientific Knowledge)
47 pages, 3569 KiB  
Review
Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes
by Jarosław Nuszkiewicz, Beata Kukulska-Pawluczuk, Katarzyna Piec, Dorian Julian Jarek, Karina Motolko, Karolina Szewczyk-Golec and Alina Woźniak
J. Clin. Med. 2024, 13(14), 4258; https://doi.org/10.3390/jcm13144258 (registering DOI) - 21 Jul 2024
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need [...] Read more.
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS. Full article
(This article belongs to the Special Issue Review Special Issue Series: Recent Advances in Clinical Neurology)
Show Figures

Figure 1

20 pages, 1731 KiB  
Review
Correlation between Alzheimer’s Disease and Gastrointestinal Tract Disorders
by Julia Kuźniar, Patrycja Kozubek, Magdalena Czaja and Jerzy Leszek
Nutrients 2024, 16(14), 2366; https://doi.org/10.3390/nu16142366 (registering DOI) - 21 Jul 2024
Abstract
Alzheimer’s disease is the most common cause of dementia globally. The pathogenesis is multifactorial and includes deposition of amyloid-β in the central nervous system, presence of intraneuronal neurofibrillary tangles and a decreased amount of synapses. It remains uncertain what causes the progression of [...] Read more.
Alzheimer’s disease is the most common cause of dementia globally. The pathogenesis is multifactorial and includes deposition of amyloid-β in the central nervous system, presence of intraneuronal neurofibrillary tangles and a decreased amount of synapses. It remains uncertain what causes the progression of the disease. Nowadays, it is suggested that the brain is connected to the gastrointestinal tract, especially the enteric nervous system and gut microbiome. Studies have found a positive association between AD and gastrointestinal diseases such as periodontitis, Helicobacter pylori infection, inflammatory bowel disease and microbiome disorders. H. pylori and its metabolites can enter the CNS via the oropharyngeal olfactory pathway and may predispose to the onset and progression of AD. Periodontitis may cause systemic inflammation of low severity with high levels of pro-inflammatory cytokines and neutrophils. Moreover, lipopolysaccharide from oral bacteria accompanies beta-amyloid in plaques that form in the brain. Increased intestinal permeability in IBS leads to neuronal inflammation from transference. Chronic inflammation may lead to beta-amyloid plaque formation in the intestinal tract that spreads to the brain via the vagus nerve. The microbiome plays an important role in many bodily functions, such as nutrient absorption and vitamin production, but it is also an important factor in the development of many diseases, including Alzheimer’s disease. Both the quantity and diversity of the microbiome change significantly in patients with AD and even in people in the preclinical stage of the disease, when symptoms are not yet present. The microbiome influences the functioning of the central nervous system through, among other things, the microbiota–gut–brain axis. Given the involvement of the microbiome in the pathogenesis of AD, antibiotic therapy, probiotics and prebiotics, and faecal transplantation are being considered as possible therapeutic options. Full article
(This article belongs to the Special Issue Nutrition, Gut Microbiome and Metabolism)
Show Figures

Figure 1

19 pages, 2164 KiB  
Article
Effect of Palmitoylethanolamide Compared to a Placebo on the Gut Microbiome and Biochemistry in an Overweight Adult Population: A Randomised, Placebo Controlled, Double-Blind Study
by Romeo Batacan, David Briskey, Yadav Sharma Bajagai, Chelsie Smith, Dana Stanley and Amanda Rao
Biomedicines 2024, 12(7), 1620; https://doi.org/10.3390/biomedicines12071620 (registering DOI) - 20 Jul 2024
Viewed by 125
Abstract
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18–65 years with a BMI range of 30–40 kg/m2 were recruited. Participants were randomised to receive PEA (n = [...] Read more.
This study investigates the effects of palmitoylethanolamide (PEA) on the gut microbiome of overweight adults. Fifty-eight participants (twenty males, thirty-eight females) aged 18–65 years with a BMI range of 30–40 kg/m2 were recruited. Participants were randomised to receive PEA (n = 36) or a placebo (n = 22) for 12 weeks. Microbiota composition, richness, diversity, and metabolic functions, faecal short chain fatty acids and calprotectin, pathology markers, and health-related questionnaires were analysed throughout the 12 weeks of supplementation. PEA supplementation significantly reduced triglyceride levels and IL-2 concentrations. No significant differences were found in the overall microbiota composition between the groups, and microbiota richness and diversity remained consistent for both groups. Functional analysis demonstrated no differences in functional richness and diversity, but specific pathways were modified. PEA supplementation resulted in a decrease in the abundance of pathways related to aromatic compound degradation, NAD interconversion, and L-glutamate degradation, while pathways associated with molybdopterin biosynthesis and O-antigen building blocks exhibited increased abundance. Increased production of O-antigen results in smooth LPS associated with reduced pathogenic stealth and persistence. PEA supplementation may influence specific microbial species, metabolic pathways, and reduce serum triglyceride and IL-2 concentration, shedding light on the intricate relationship between PEA, the microbiome, and host health. Full article
(This article belongs to the Section Microbiology in Human Health and Disease)
Show Figures

Figure 1

15 pages, 7280 KiB  
Article
Diminished Immune Response and Elevated Abundance in Gut Microbe Dubosiella in Mouse Models of Chronic Colitis with GBP5 Deficiency
by Yichen Li, Wenxia Wang, Yuxuan Liu, Senru Li, Jingyu Wang and Linlin Hou
Biomolecules 2024, 14(7), 873; https://doi.org/10.3390/biom14070873 (registering DOI) - 20 Jul 2024
Viewed by 115
Abstract
Guanylate binding protein 5 (GBP5) is an emerging immune component that has been increasingly recognized for its involvement in autoimmune diseases, particularly inflammatory bowel disease (IBD). IBD is a complex disease involving inflammation of the gastrointestinal tract. Here, we explored the functional significance [...] Read more.
Guanylate binding protein 5 (GBP5) is an emerging immune component that has been increasingly recognized for its involvement in autoimmune diseases, particularly inflammatory bowel disease (IBD). IBD is a complex disease involving inflammation of the gastrointestinal tract. Here, we explored the functional significance of GBP5 using Gbp5 knockout mice and wildtype mice exposed to dextran sulfate sodium (DSS) to generate chronic colitis model. We found that Gbp5 deficiency protected mice from DSS-induced chronic colitis. Transcriptome analysis of colon tissues showed reduced immune responses in Gbp5 knockout mice compared to those in corresponding wildtype mice. We further observed that after repeated DSS exposure, the gut microbiota was altered, both in wildtype mice and Gbp5 knockout mice; however, the gut microbiome health index was higher in the Gbp5 knockout mice. Notably, a probiotic murine commensal bacterium, Dubosiella, was predominantly enriched in these knockout mice. Our findings suggest that GBP5 plays an important role in promoting inflammation and dysbiosis in the intestine, the prevention of which might therefore be worth exploring in regards to IBD treatment. Full article
(This article belongs to the Special Issue Molecular Advances in Inflammatory Bowel Disease)
14 pages, 726 KiB  
Article
Effects of Mink-Origin Enterococcus faecium on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Microbiota of Growing Male Minks
by Lin Cao, Fengxue Sun, Qifeng Ren, Ziyi Jiang, Jian Chen, Yalin Li and Lihua Wang
Animals 2024, 14(14), 2120; https://doi.org/10.3390/ani14142120 (registering DOI) - 20 Jul 2024
Viewed by 104
Abstract
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were [...] Read more.
The purpose of this experiment was to explore the effects of dietary Enterococcus faecium (EF) on the growth performance, antioxidant capacity, immunity, and intestinal microbiota of growing male minks. A total of 60 male Regal White minks at 12 weeks of age were randomly assigned to two groups, each with 15 replicates of two minks per replicate. The minks in two groups were fed the basal diets and the basal diets with viable Enterococcus faecium (more than 107 cfu/kg of diet), respectively. Compared with the minks in control, Enterococcus faecium minks had heavier body weight (BW) at week 4 and week 8 of the study (p < 0.05), greater average daily gain (ADG), and a lower feed/gain ratio (F/G) of male minks during the initial 4 weeks and the entire 8-week study period (p < 0.05). Furthermore, Enterococcus faecium increased the apparent digestibility of crude protein (CP) and dry matter (DM) compared to the control (p < 0.05). Moreover, Enterococcus faecium enhanced the serum superoxide dismutase (SOD) activity and decreased the malondialdehyde (MDA) contents (p < 0.05). The results also confirmed that Enterococcus faecium increased the levels of serum immunoglobulin A (IgA), immunoglobulin G (IgG), and the concentrations of secretory immunoglobulin A (SIgA) in the jejunal mucosa while decreasing the interleukin-8 (IL-8) and interleukin-1β (IL-1β) levels in the jejunal mucosa (p < 0.05). Intestinal microbiota analysis revealed that Enterococcus faecium increased the species numbers at the OUT level. Compared with the control, Enterococcus faecium had significant effects on the relative abundance of Paraclostridium, Brevinema, and Comamonas (p < 0.05). The results showed that Enterococcus faecium could improve the growth performance, increase the antioxidant capacity, improve the immunity of growing male minks, and also modulate the gut microbiota. Full article
(This article belongs to the Special Issue Recent Advances in Probiotics Application on Animal Health)
24 pages, 1050 KiB  
Review
Saffron as a Promising Therapy for Inflammatory Bowel Disease
by Mudasir Rashid, Rumaisa Rashid, Sabtain Saroya, Mrinalini Deverapalli, Hassan Brim and Hassan Ashktorab
Nutrients 2024, 16(14), 2353; https://doi.org/10.3390/nu16142353 (registering DOI) - 20 Jul 2024
Viewed by 104
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the gastrointestinal tract (GI), characterized by recurrent episodes of inflammation and tissue destruction. It affects an increasing number of individuals worldwide who suffer from Crohn’s disease (CD) or ulcerative colitis (UC). Despite substantial [...] Read more.
Inflammatory bowel disease (IBD) is a chronic inflammatory illness of the gastrointestinal tract (GI), characterized by recurrent episodes of inflammation and tissue destruction. It affects an increasing number of individuals worldwide who suffer from Crohn’s disease (CD) or ulcerative colitis (UC). Despite substantial advances in understanding the underlying causes of IBD, the available treatments remain restricted and are sometimes accompanied by severe consequences. Consequently, there is an urgent need to study alternate therapeutic options. This review assesses the present drugs, identifies their limitations, and proposes the use of saffron, a natural plant with great therapeutic potential based on preclinical and clinical investigations. Saffron has gained attention for its potential therapeutic benefits in treating various ailments due to its established bioactive compounds possessing antioxidant and anti-inflammatory properties. This review covers how saffron impacts the levels of calprotectin, an inflammatory marker, for various inflammatory responses in multiple diseases including IBD. Data from clinical trials were assessed to determine the efficacy and safety of using saffron to counter inflammation in multiple diseases. Studies have shown that saffron may protect against inflammatory bowel disease (IBD) through several mechanisms by inhibiting pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), reducing oxidative stress through antioxidant effects, enhancing mucosal barrier function by upregulating tight junction proteins, and modulating the gut microbiota composition to promote beneficial bacteria while suppressing pathogenic ones; these combined actions contribute to its therapeutic potential in managing and alleviating the symptoms of IBD. This will enable future research endeavors and expedite the translation of saffron-based interventions into clinical practice as a valuable adjunctive therapy or a potential alternative to conventional treatments, thereby enhancing the quality of life for individuals suffering from inflammatory diseases including IBD. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

21 pages, 2042 KiB  
Review
Gut Microbiota Signatures in Colorectal Cancer as a Potential Diagnostic Biomarker in the Future: A Systematic Review
by Lucian-Flavius Herlo, Andreea Salcudean, Roxana Sirli, Stela Iurciuc, Alexandra Herlo, Andreea Nelson-Twakor, Luana Alexandrescu and Raluca Dumache
Int. J. Mol. Sci. 2024, 25(14), 7937; https://doi.org/10.3390/ijms25147937 (registering DOI) - 20 Jul 2024
Viewed by 163
Abstract
The gut microbiota has acquired significant attention in recent years for its potential as a diagnostic biomarker for colorectal cancer (CRC). In this literature review, we looked at the studies exploring alterations in gut microbiota composition associated with CRC, the potential mechanisms linking [...] Read more.
The gut microbiota has acquired significant attention in recent years for its potential as a diagnostic biomarker for colorectal cancer (CRC). In this literature review, we looked at the studies exploring alterations in gut microbiota composition associated with CRC, the potential mechanisms linking gut dysbiosis to CRC development, and the diagnostic approaches utilizing gut microbiota analysis. Our research has led to the conclusion that individuals with CRC often display alterations in their gut microbiota composition compared to healthy individuals. These alterations can include changes in the diversity, abundance, and type of bacteria present in the gut. While the use of gut microbiota as a diagnostic biomarker for CRC holds promise, further research is needed to validate its effectiveness and standardize testing protocols. Additionally, considerations such as variability in the microbiota composition among individuals and potential factors must be addressed before microbiota-based tests can be widely implemented in clinical practice. Full article
(This article belongs to the Special Issue Gut Microbiota Modulation for Health)
Show Figures

Figure 1

19 pages, 6202 KiB  
Article
Ramulus Mori (Sangzhi) Alkaloids Alleviate Diabetic Nephropathy through Improving Gut Microbiota Disorder
by Wenxiu Liu, Saijun Xu, Bin Zhang and Xiaobo Sun
Nutrients 2024, 16(14), 2346; https://doi.org/10.3390/nu16142346 (registering DOI) - 20 Jul 2024
Viewed by 182
Abstract
Diabetic nephropathy (DN), one of the leading causes of end-stage kidney failure worldwide, is closely associated with high mortality in diabetic patients. However, therapeutic drugs for DN are still lacking. Ramulus Mori alkaloids (SZ-A), an effective component of alkaloids extracted from Ramulus Mori [...] Read more.
Diabetic nephropathy (DN), one of the leading causes of end-stage kidney failure worldwide, is closely associated with high mortality in diabetic patients. However, therapeutic drugs for DN are still lacking. Ramulus Mori alkaloids (SZ-A), an effective component of alkaloids extracted from Ramulus Mori, have been found to improve glucose and lipid metabolism to mitigate diabetes and obesity; however, few studies have focused on their effects on DN progression. Thus, we investigated the protective role of SZ-A on DN through 16S rRNA sequencing, non-targeted metabolomics, and fecal microbiota transplantation (FMT) experiments. To address our hypothesis, we established the DN mouse model by combining a high-fat diet (HFD) with streptozotocin (STZ) injection. Herein, we demonstrated that SZ-A supplementation was recalcitrant to renal injury in DN mice, improving glomerular morphology, reversing the blood biochemistry parameters, and ameliorating podocyte injury. Importantly, the composition of the gut microbiota altered after SZ-A treatment, especially with the elevated abundance of Dubosiella and the increased level of serum pentadecanoic acid. FMT experiments further revealed that the gut microbiota exerted critical effects in mediating the beneficial roles of SZ-A. In vitro experiments proved that pentadecanoic acid administration improved podocyte apoptosis induced by AGEs. Taken together, SZ-A play a renoprotective role, possibly through regulating the gut microbiota and promoting pentadecanoic acid production. Our current study lends support to more extensive clinical applications of SZ-A. Full article
(This article belongs to the Special Issue Recent Advances in Nutrigenomics and Nutrigenetics)
Show Figures

Figure 1

7 pages, 1645 KiB  
Opinion
Compositional Data and Microbiota Analysis: Imagination and Reality
by Tatsuki Itagaki, Hirokazu Kobayashi, Ken-ichiro Sakata, Ikuya Miyamoto, Akira Hasebe and Yoshimasa Kitagawa
Microorganisms 2024, 12(7), 1484; https://doi.org/10.3390/microorganisms12071484 (registering DOI) - 20 Jul 2024
Viewed by 184
Abstract
The relationships among bacterial flora, diseases, and diet have been described by many authors. An operational taxonomic units (OTUs) are the result of clustering the 16S rRNA gene sequences at a certain cutoff value, and they are considered compositional data. As Pearson’s correlation [...] Read more.
The relationships among bacterial flora, diseases, and diet have been described by many authors. An operational taxonomic units (OTUs) are the result of clustering the 16S rRNA gene sequences at a certain cutoff value, and they are considered compositional data. As Pearson’s correlation coefficient is difficult to interpret, Aitchison’s ratio analysis was used to develop a method to handle compositional data. Multivariate analysis was developed because univariate analysis can be subject to large biases. Simulations regarding absolute abundance based on certain assumptions and some analyses, such as nonparametric multidimensional scaling (NMDS), principal component analysis (PCA), and ratio analysis, were conducted in this study. The same content as a 100% stacked bar graph could be expressed in low dimensions using PCA. However, the relative diversity was not reproducible with NMDS. Various assumptions were made regarding absolute abundance based on the relative abundance. However, which assumptions are true could not be determined. In summary, ratio analysis and PCA are useful for analyzing compositional data and the gut microbiota. Full article
(This article belongs to the Special Issue Novel Strategies in the Study of the Human Gut Microbiota 2.0)
Show Figures

Figure 1

16 pages, 972 KiB  
Article
Effect of Intake of Bifidobacteria and Dietary Fiber on Resting Energy Expenditure: A Randomized, Placebo-Controlled, Double-Blind, Parallel-Group Comparison Study
by Yuhei Baba, Naoki Azuma, Yasuo Saito, Kazuma Takahashi, Risa Matsui and Tsuyoshi Takara
Nutrients 2024, 16(14), 2345; https://doi.org/10.3390/nu16142345 (registering DOI) - 20 Jul 2024
Viewed by 279
Abstract
Bifidobacterium animalis subsp. lactis GCL2505 in combination with inulin has been shown to have several health benefits, including an improvement in the intestinal microbiota and a reduction in human visceral fat. Previous studies have suggested that the visceral fat reduction of GCL2505 and inulin [...] Read more.
Bifidobacterium animalis subsp. lactis GCL2505 in combination with inulin has been shown to have several health benefits, including an improvement in the intestinal microbiota and a reduction in human visceral fat. Previous studies have suggested that the visceral fat reduction of GCL2505 and inulin may be achieved by improving daily energy expenditure. This parallel, placebo-controlled, randomized, double-blind study was conducted to evaluate the effects of GCL2505 and inulin on resting energy expenditure (REE) in overweight or mildly obese Japanese adults (n = 44). Participants ingested 1 × 1010 colony forming units of GCL2505 and 5.0 g of inulin daily for 4 weeks. REE score at week 4 was set as the primary endpoint. At week 4, the REE score of the GCL2505 and inulin group was significantly higher than that of the placebo group, with a difference of 84.4 kcal/day. In addition, fecal bifidobacteria counts were significantly increased in the GCL2505 and inulin group. Our results indicated that the intake of GCL2505 and inulin improves energy balance, which is known to be a major factor of obesity, by modulating the microbiota in the gut. This is the first report to demonstrate the effects of probiotics and dietary fiber on REE in humans. Full article
Show Figures

Figure 1

23 pages, 11981 KiB  
Article
Hesperetin Alleviated Experimental Colitis via Regulating Ferroptosis and Gut Microbiota
by Jinzhi Wang, Yuanyuan Yao, Ting Yao, Qingmiao Shi, Yifan Zeng and Lanjuan Li
Nutrients 2024, 16(14), 2343; https://doi.org/10.3390/nu16142343 - 19 Jul 2024
Viewed by 209
Abstract
Hesperetin (HT) is a type of citrus flavonoid with various pharmacological activities, including anti-tumor, anti-inflammation, antioxidant, and neuroprotective properties. However, the role and mechanism of HT in ulcerative colitis (UC) have been rarely studied. Our study aimed to uncover the beneficial effects of [...] Read more.
Hesperetin (HT) is a type of citrus flavonoid with various pharmacological activities, including anti-tumor, anti-inflammation, antioxidant, and neuroprotective properties. However, the role and mechanism of HT in ulcerative colitis (UC) have been rarely studied. Our study aimed to uncover the beneficial effects of HT and its detailed mechanism in UC. Experimental colitis was induced by 2.5% dextran sodium sulfate (DSS) for seven days. HT ameliorated DSS-induced colitis in mice, showing marked improvement in weight loss, colon length, colonic pathological severity, and the levels of TNFα and IL6 in serum. A combination of informatics, network pharmacology, and molecular docking identified eight key targets and multi-pathways influenced by HT in UC. As a highlight, the experimental validation demonstrated that PTGS2, a marker of ferroptosis, along with other indicators of ferroptosis (such as ACSL4, Gpx4, and lipid peroxidation), were regulated by HT in vivo and in vitro. Additionally, the supplement of HT increased the diversity of gut microbiota, decreased the relative abundance of Proteobacteria and Gammaproteobacteria, and restored beneficial bacteria (Lachnospiraceae_NK4A136_group and Prevotellaceae_UCG-001). In conclusion, HT is an effective nutritional supplement against experimental colitis by suppressing ferroptosis and modulating gut microbiota. Full article
(This article belongs to the Special Issue Bioactive Compounds in Potential Disease Treatment)
14 pages, 4174 KiB  
Article
Microbial and Metabolic Profiling of Obese and Lean Luchuan Pigs: Implications for Phenotypic Divergence
by Lihui Zhu, Shengwei Ma, Chuan He, Lan Bai, Weilong Tu and Xiao Wu
Animals 2024, 14(14), 2111; https://doi.org/10.3390/ani14142111 - 19 Jul 2024
Viewed by 209
Abstract
Luchuan (LC) pigs are a Chinese breed renowned for their distinctive black and white coloring, superior meat quality and rapid reproduction, but their growth rate is slow. Over the course of approximately two decades of controlled breeding, the LC pigs maintained at the [...] Read more.
Luchuan (LC) pigs are a Chinese breed renowned for their distinctive black and white coloring, superior meat quality and rapid reproduction, but their growth rate is slow. Over the course of approximately two decades of controlled breeding, the LC pigs maintained at the Shanghai Academy of Agricultural Sciences (Shanghai, China) have diverged into two phenotypes: one characterized by obesity (FLC) and the other by leanness (LLC). Recent studies indicate a correlation between microorganisms and the differentiation of host phenotypes. In this study, we examined the fecal microbiota profiles and serum metabolites of FLC and LLC pigs. The body weight, chest circumference, and alanine aminotransferase and aspartate aminotransferase enzyme activities were increased in the FLC pigs compared to the LLC pigs. Conversely, the levels of the Fusobacterium and Streptococcus genera were lower in the FLC pigs, while the number of Firmicutes, Lactobacillus, Phascolartobacterium, and Rikenellaceae_RC9_gut_group members were higher. A total of 52 metabolites were altered between the two groups, with many playing crucial roles in prolactin signaling, oocyte meiosis, and aldosterone-regulated sodium reabsorption pathways. The correlation analyses demonstrated a significant association between the modified microbiota and metabolites and the phenotypic variations observed in the LC pigs. Specifically, Jeotgalicoccus was positively correlated with the body weight and chest circumference, but was negatively correlated with metabolites such as 2-mercaptobenzothiazole and N1-pyrazin-2-yl-4-chlorobenzamide, which were positively associated with Bacteroides. These results provide compelling evidence for a novel relationship between the gut microbiome and metabolome in the phenotypic differentiation of LC pigs. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

12 pages, 791 KiB  
Article
Germination-Induced Enhancement of Brown Rice Noodle Nutritional Profile and Gut Microbiota Modulation
by Ruiyun Chen, Huibin Zhang, Jiamei Cai, Mingxi Cai, Taotao Dai, Yunfei Liu and Jianyong Wu
Foods 2024, 13(14), 2279; https://doi.org/10.3390/foods13142279 - 19 Jul 2024
Viewed by 359
Abstract
This study explored how germination influences the starch digestion and intestinal fermentation characteristics of brown rice noodle. The study began with in vitro starch digestion tests to assess how germination affects starch digestibility in brown rice noodles, revealing an increase in rapidly digestible [...] Read more.
This study explored how germination influences the starch digestion and intestinal fermentation characteristics of brown rice noodle. The study began with in vitro starch digestion tests to assess how germination affects starch digestibility in brown rice noodles, revealing an increase in rapidly digestible starch content and a decrease in resistant starch content. Subsequently, an in vitro human fecal fermentation model was used to simulate the human intestinal environment, showing that germination altered pH levels and the production of short-chain fatty acids, particularly by increasing propionate while decreasing acetate and butyrate. Additionally, the study noted a decrease in gut microbiota diversity following fermentation, accompanied by an increase in Megamonas growth and a decrease in Bacteroides and Bifidobacterium. In conclusion, these findings suggest that germination could enhance the nutritional value and intestinal probiotic properties of brown rice noodles. This research contributes valuable insights into the role of germination in improving the nutritional properties of rice-based products and provides a foundation for further exploration into the development of health-promoting rice noodles. Full article
7 pages, 614 KiB  
Communication
Gut Microbiota Composition Is Causally Linked to Multiple Sclerosis: A Mendelian Randomization Analysis
by Valeria Zancan, Martina Nasello, Rachele Bigi, Roberta Reniè, Maria Chiara Buscarinu, Rosella Mechelli, Giovanni Ristori, Marco Salvetti and Gianmarco Bellucci
Microorganisms 2024, 12(7), 1476; https://doi.org/10.3390/microorganisms12071476 - 19 Jul 2024
Viewed by 132
Abstract
Accumulating evidence links the microbial communities inhabiting the gut to the pathophysiological processes underlying multiple sclerosis (MS). However, most studies on the microbiome in MS are correlative in nature, thus being at risk of confounding and reverse causality. Mendelian randomization (MR) analyses allow [...] Read more.
Accumulating evidence links the microbial communities inhabiting the gut to the pathophysiological processes underlying multiple sclerosis (MS). However, most studies on the microbiome in MS are correlative in nature, thus being at risk of confounding and reverse causality. Mendelian randomization (MR) analyses allow the estimation of the causal relationship between a risk factor and an outcome of interest using genetic variants as proxies for environmental exposures. Here, we performed a two-sample MR to assess the causality between the gut microbiome and MS. We extracted genetic instruments from summary statistics from three large genome-wide association studies (GWASs) on the gut microbiome (18,340, 8959, and 7738 subjects). The exposure data were derived from the latest GWAS on MS susceptibility (47,429 patients and 68,374 controls). We pinpointed several microbial strains whose abundance is linked with enhanced MS risk (Actinobacteria class, Bifidobacteriaceae family, Lactobacillus genus) or protection (Prevotella spp., Lachnospiranaceae genus, Negativibacillus genus). The largest risk effect was seen for Ruminococcus Torques (OR, 2.89, 95% C.I. 1.67–5, p = 1.51 × 10−4), while Akkermansia municiphila emerged as strongly protective (OR, 0.43, 95% C.I. 0.32–0.57, p = 1.37 × 10−8). Our findings support a causal relationship between the gut microbiome and MS susceptibility, reinforcing the relevance of the microbiome–gut–brain axis in disease etiology, opening wider perspectives on host–environmental interactions for MS prevention. Full article
(This article belongs to the Special Issue Effects of Gut Microbiota on Human Health and Disease)
Show Figures

Figure 1

Back to TopTop