Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = hypersaline conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2691 KiB  
Article
Combined Geophysical Methods in Extreme Environments—An Example from the Dead Sea
by Michael Lazar, Linjing Cheng and Uri Basson
Remote Sens. 2024, 16(11), 1978; https://doi.org/10.3390/rs16111978 - 30 May 2024
Viewed by 327
Abstract
The application of geophysical methods in saline environments is limited in their ability to discern shallow subsurface geology and tectonics due to the high subsurface conductivity, which can play havoc with the geophysical signal. Recent changes in the hypersaline Dead Sea provided the [...] Read more.
The application of geophysical methods in saline environments is limited in their ability to discern shallow subsurface geology and tectonics due to the high subsurface conductivity, which can play havoc with the geophysical signal. Recent changes in the hypersaline Dead Sea provided the opportunity to demonstrate the effectiveness and adequacy of the terrestrial frequency domain electromagnetic (henceforth FDEM) method in such settings. Since the International Continental Drilling Program (ICDP) 5017-3-C borehole was cored in 2011 in a water depth of ~2.1 m, the lake level has dropped by almost 15 m, exposing some 320 m of a new, salt-encrusted shore. An FDEM survey was carried out on what is now land across the borehole. The results of the survey were compared to downhole gamma ray logging data. Three lithologies were found based on gamma-ray cutoff values, and they are in agreement with changes in apparent electric conductivity. The FDEM survey supplied additional spatial information on the subsurface geology, highlighting areas of fluid flow and fracturing, which were found to be aligned with the trend of small strike-slip faults and earthquake clusters from previous studies. The FDEM method is a reliable way of discerning shallow subsurface geology, even in harsh conditions where other geophysical methods are limited. Full article
(This article belongs to the Special Issue Remote Sensing of the Dead Sea Region)
Show Figures

Figure 1

12 pages, 2876 KiB  
Article
The Elimination of Levofloxacin from High-Salinity Wastewater via the Electrochlorination Process
by Mingfei Wei, Jingyu Li, Bingqing Jing, Xuankun Li and Guanghui Li
Water 2024, 16(10), 1355; https://doi.org/10.3390/w16101355 - 10 May 2024
Viewed by 628
Abstract
The electrochlorination (E-Cl) process has attracted much attention as it is a highly efficient method for treating organic compounds in hypersaline wastewater. In this study, the E-Cl process was utilized for the removal of antibiotics. The optimal experimental conditions were determined to be [...] Read more.
The electrochlorination (E-Cl) process has attracted much attention as it is a highly efficient method for treating organic compounds in hypersaline wastewater. In this study, the E-Cl process was utilized for the removal of antibiotics. The optimal experimental conditions were determined to be a NaCl concentration of 100 mM, a current density of 1.5 mA/cm2, a pH of 7.0, and a plate spacing of 1 cm, with a levofloxacin (LEV) degradation efficiency reaching as high as 99% using this setup. The effects of the presence of other ions and humic acid on the E-Cl process were investigated, and it was found that the degradation of LEV was not significantly affected by the presence of coexisting substances. In addition, free chlorine was identified as the primary active species for the degradation of LEV by means of a quenching experiment. It was demonstrated by 3D EEM and TOC that LEV was not completely mineralized and that intermediate products may be present. In order to reveal the degradation pathways of LEV, its degradation products were also analyzed via LC-MS, and some possible pathways of LEV degradation in this system were proposed. The successful degradation of LEV demonstrated that the E-Cl process is an efficient and promising technique for the treatment of organic pollutants in high-salinity wastewater. Full article
Show Figures

Figure 1

12 pages, 1167 KiB  
Review
Bacterioruberin: Biosynthesis, Antioxidant Activity, and Therapeutic Applications in Cancer and Immune Pathologies
by Micaela Giani, Carmen Pire and Rosa María Martínez-Espinosa
Mar. Drugs 2024, 22(4), 167; https://doi.org/10.3390/md22040167 - 9 Apr 2024
Viewed by 1616
Abstract
Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and [...] Read more.
Halophilic archaea, also termed haloarchaea, are a group of moderate and extreme halophilic microorganisms that constitute the major microbial populations in hypersaline environments. In these ecosystems, mainly aquatic, haloarchaea are constantly exposed to ionic and oxidative stress due to saturated salt concentrations and high incidences of UV radiation (mainly in summer). To survive under these harsh conditions, haloarchaea have developed molecular adaptations including hyperpigmentation. Regarding pigmentation, haloarchaeal species mainly synthesise the rare C50 carotenoid called bacterioruberin (BR) and its derivatives, monoanhydrobacterioruberin and bisanhydrobacterioruberin. Due to their colours and extraordinary antioxidant properties, BR and its derivatives have been the aim of research in several research groups all over the world during the last decade. This review aims to summarise the most relevant characteristics of BR and its derivatives as well as describe their reported antitumoral, immunomodulatory, and antioxidant biological activities. Based on their biological activities, these carotenoids can be considered promising natural biomolecules that could be used as tools to design new strategies and/or pharmaceutical formulas to fight against cancer, promote immunomodulation, or preserve skin health, among other potential uses. Full article
(This article belongs to the Special Issue Marine Natural Products as Anticancer Agents 3.0)
21 pages, 6238 KiB  
Article
Circulation and Stratification Changes in a Hypersaline Estuary Due to Mean Sea Level Rise
by Soheila Taebi, Charitha Pattiaratchi, Ivan Haigh and Gary Kendrick
J. Mar. Sci. Eng. 2024, 12(4), 579; https://doi.org/10.3390/jmse12040579 - 29 Mar 2024
Viewed by 786
Abstract
Hypersaline Hamelin Pool, with mean salinity >65, is located in Shark Bay, Western Australia. The high salinity has reduced its biodiversity, but it is home to a diverse assemblage of modern marine stromatolites. The limited exchange of water between Hamelin Pool and the [...] Read more.
Hypersaline Hamelin Pool, with mean salinity >65, is located in Shark Bay, Western Australia. The high salinity has reduced its biodiversity, but it is home to a diverse assemblage of modern marine stromatolites. The limited exchange of water between Hamelin Pool and the rest of Shark Bay, due to the presence of the shallow Faure Sill together with high evaporation and low rainfall-runoff have resulted in a hypersaline environment. With climate-change-induced mean sea level rise (MSLR), hydrodynamic processes that maintain the hypersaline environment may be affected and are the focus of this paper. Oceanographic observations, together with hydrodynamic model results, were used to examine the hydrodynamic processes under present and future MSLR scenarios. A large attenuation in the tidal range, changes in the tidal characteristics, and current speeds together with a strong salinity gradient were observed across the Faure Sill under present-day conditions. Under an MSLR scenario of 1 m, the tidal amplitude decreased by up to 10% to the north, whilst to the south, the tidal range increased by up to 15%. Regions of strong vertical stratification were present on both sides of the Faure Sill. The simulations indicated that, under MSLR scenarios, these regions expanded in area and exhibited higher levels of vertical stratification. The salt flux across the Faure Sill was maintained as a diffusive process under MSLR scenarios. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

38 pages, 13171 KiB  
Article
Foraminiferal and Palynological Records of an Abrupt Environmental Change at the Badenian/Sarmatian Boundary (Middle Miocene): A Case Study in Northeastern Central Paratethys
by Danuta Peryt, Przemysław Gedl, Elżbieta Worobiec, Grzegorz Worobiec and Tadeusz Marek Peryt
Geosciences 2024, 14(3), 86; https://doi.org/10.3390/geosciences14030086 - 20 Mar 2024
Cited by 1 | Viewed by 1144
Abstract
The Badenian/Sarmatian boundary in the Central Paratethyan basins is characterised by a change from open marine conditions during the late Badenian to the assumed brackish conditions during the early Sarmatian. The foraminiferal and palynological results of the Badenian/Sarmatian boundary interval in the Babczyn [...] Read more.
The Badenian/Sarmatian boundary in the Central Paratethyan basins is characterised by a change from open marine conditions during the late Badenian to the assumed brackish conditions during the early Sarmatian. The foraminiferal and palynological results of the Badenian/Sarmatian boundary interval in the Babczyn 2 borehole (in SE Poland) showed that the studied interval accumulated under variable, unstable sedimentary conditions. The Badenian/Sarmatian boundary, as correlated with a sudden extinction of stenohaline foraminifera, is interpreted as being due to the shallowing of the basin. The lack of foraminifera and marine palynomorphs just above the Badenian/Sarmatian boundary can reflect short-term anoxia. The composition of the euryhaline assemblages, characteristic for the lower Sarmatian part of the studied succession, indicates from marine to hypersaline conditions. Full article
(This article belongs to the Section Biogeosciences)
Show Figures

Figure 1

0 pages, 3896 KiB  
Article
Anomalous Gold Concentrations in Hypersaline Wetland Sediments (Laguna Honda, South Spain) Caused by Nanoparticles Used in Agricultural Practices: Environmental Transformation
by Antonio Medina-Ruiz, Juan Jiménez-Millán, Isabel Abad and Rosario Jiménez-Espinosa
Toxics 2024, 12(3), 223; https://doi.org/10.3390/toxics12030223 - 18 Mar 2024
Viewed by 921
Abstract
Illite-rich sediments from the Laguna Honda wetland, an eutrophicated hypersaline wetland with waters enriched in Mg and Ca surrounded by olive groves in the Guadalquivir Basin River (South Spain), are polluted by elevated concentrations of gold (up to 21.9 ppm) due to agricultural [...] Read more.
Illite-rich sediments from the Laguna Honda wetland, an eutrophicated hypersaline wetland with waters enriched in Mg and Ca surrounded by olive groves in the Guadalquivir Basin River (South Spain), are polluted by elevated concentrations of gold (up to 21.9 ppm) due to agricultural practices. The highest gold contents appear in the shore sediments of the lake, where up to 20 µm homoaggregates of fused gold nanoparticles (AuNp) are found. Small nanoaggregates of up to six fused gold nanoparticles and very few isolated nanoparticles around 1 nm in size can also be observed to form heteroaggregates of AuNp-mica, especially in the deeper sediments in the central part of the wetland, where Au concentrations are lower (up to 1.89 ppm). The high nanoparticle concentration caused by the inappropriate application of pesticides favors nanoparticle collision in the wetland’s Mg- and Ca-rich waters and the fast coagulation and deposition of Au homoaggregates in the gold-rich shore sediment of the lake. The interaction of gold nanoparticles with the abundant illite particles in the wetland’s hypersaline waters promotes the simultaneous formation of low-density Au-illite heteroaggregates, which are transported and deposited in the less-rich-in-gold sediments of the central part of the lake. The small sizes of the isolated AuNp and AuNp-fused contacts of the aggregates suggest modifications in the original nanoparticles involving dissolution processes. The presence of bacterial communities resistant to heavy metal stress (Luteolibacter and Maricaulis), as well as the activity of sulfate-reducing bacteria (SRB) and particularly sulfur-oxidizing bacteria (SOB) communities from the shore sediments, favored the high-Eh and low-pH conditions adequate for the destabilization and transport of AuNp. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

23 pages, 2431 KiB  
Article
Morphophysiological Characterisation of Guayule (Parthenium argentatum A. Gray) in Response to Increasing NaCl Concentrations: Phytomanagement and Phytodesalinisation in Arid and Semiarid Areas
by Daniela Di Baccio, Aurora Lorenzi, Andrea Scartazza, Irene Rosellini, Elisabetta Franchi and Meri Barbafieri
Plants 2024, 13(3), 378; https://doi.org/10.3390/plants13030378 - 27 Jan 2024
Viewed by 858
Abstract
Water and soil salinity continuously rises due to climate change and irrigation with reused waters. Guayule (Parthenium argentatum A. Gray) is a desert perennial shrub native to northern Mexico and the southwestern United States; it is known worldwide for rubber production and [...] Read more.
Water and soil salinity continuously rises due to climate change and irrigation with reused waters. Guayule (Parthenium argentatum A. Gray) is a desert perennial shrub native to northern Mexico and the southwestern United States; it is known worldwide for rubber production and is suitable for cultivation in arid and semiarid regions, such as the Mediterranean. In the present study, we investigated the effects of high and increasing concentrations of sodium chloride (NaCl) on the growth and the morphophysiological and biochemical characteristics of guayule to evaluate its tolerance to salt stress and suitability in phytomanagement and, eventually, the phytodesalinisation of salt-affected areas. Guayule originates from desert areas, but has not been found in salt-affected soils; thus, here, we tested the potential tolerance to salinity of this species, identifying the toxicity threshold and its possible sodium (Na) accumulation capacity. In a hydroponic floating root system, guayule seedlings were subjected to salinity-tolerance tests using increasing NaCl concentrations (from 2.5 to 40 g L−1 and from 43 to 684 mM). The first impairments in leaf morphophysiological traits appeared after adding 15 g L−1 (257 mM) NaCl, but the plants survived up to the hypersaline conditions of 35–40 g L−1 NaCl (about 600 mM). The distribution of major cell cations modulated the high Na content in the leaves, stems and roots; Na bioconcentration and translocation factors were close to one and greater than one, respectively. This is the first study on the morphophysiological and (bio)chemical response of guayule to different high and increasing levels of NaCl, showing the parameters and indices useful for identifying its salt tolerance threshold, adaptative mechanisms and reclamation potential in high-saline environments. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

23 pages, 2645 KiB  
Article
Mitigating Salinity Stress in Quinoa (Chenopodium quinoa Willd.) with Biochar and Superabsorber Polymer Amendments
by Imed Derbali, Walid Derbali, Jihed Gharred, Arafet Manaa, Inès Slama and Hans-Werner Koyro
Plants 2024, 13(1), 92; https://doi.org/10.3390/plants13010092 - 27 Dec 2023
Cited by 4 | Viewed by 1438
Abstract
In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on [...] Read more.
In agriculture, soil amendments are applied to improve soil quality by increasing the water retention capacity and regulating the pH and ion exchange. Our study was carried out to investigate the impact of a commercial biochar (Bc) and a superabsorbent polymer (SAP) on the physiological and biochemical processes and the growth performance of Chenopodium quinoa (variety ICBA-5) when exposed to high salinity. Plants were grown for 25 days under controlled greenhouse conditions in pots filled with a soil mixture with or without 3% Bc or 0.2% SAP by volume before the initiation of 27 days of growth in hypersaline conditions, following the addition of 300 mM NaCl. Without the Bc or soil amendments, multiple negative effects of hypersalinity were detected on photosynthetic CO2 assimilation (Anet minus 70%) and on the production of fresh matter from the whole plant, leaves, stems and roots (respectively, 55, 46, 64 and 66%). Moreover, increased generation of reactive oxygen species (ROS) was indicated by higher levels of MDA (plus 142%), antioxidant activities and high proline levels (plus 311%). In the pots treated with 300 mM NaCl, the amendments Bc or SAP improved the plant growth parameters, including fresh matter production (by 10 and 17%), an increased chlorophyll content by 9 and 13% and Anet in plants (by 98 and 115%). Both amendments (Bc and SAP) resulted in significant salinity mitigation effects, decreasing proline and malondialdehyde (MDA) levels whilst increasing both the activity of enzymatic antioxidants and non-enzymatic antioxidants that reduce the levels of ROS. This study confirms how soil amendments can help to improve plant performance and expand the productive range into saline areas. Full article
Show Figures

Figure 1

23 pages, 15395 KiB  
Article
Analysis of Depths Derived by Airborne Lidar and Satellite Imaging to Support Bathymetric Mapping Efforts with Varying Environmental Conditions: Lower Laguna Madre, Gulf of Mexico
by Kutalmis Saylam, Alejandra Briseno, Aaron R. Averett and John R. Andrews
Remote Sens. 2023, 15(24), 5754; https://doi.org/10.3390/rs15245754 - 16 Dec 2023
Viewed by 1171
Abstract
In 2017, Bureau of Economic Geology (BEG) researchers at the University of Texas at Austin (UT Austin) conducted an airborne lidar survey campaign, collecting topographic and bathymetric data over Lower Laguna Madre, which is a shallow hypersaline lagoon in south Texas. Researchers acquired [...] Read more.
In 2017, Bureau of Economic Geology (BEG) researchers at the University of Texas at Austin (UT Austin) conducted an airborne lidar survey campaign, collecting topographic and bathymetric data over Lower Laguna Madre, which is a shallow hypersaline lagoon in south Texas. Researchers acquired 60 hours of lidar data, covering an area of 1600 km2 with varying environmental conditions influencing water quality and surface heights. In the southernmost parts of the lagoon, in-situ measurements were collected from a boat to quantify turbidity, water transparency, and depths. Data analysis included processing of Sentinel-2 L1C satellite imagery pixel reflectance to classify locations with intermittent turbidity. Lidar measurements were compared to sonar recordings, and results revealed height differences of 5–25 cm where the lagoon was shallower than 3.35 m. Further, researchers analyzed satellite bathymetry at relatively transparent lagoon locations, and the results produced height agreement within 13 cm. The study concluded that bathymetric efforts with airborne lidar and optical satellite imaging have practical limitations and comparable results in large and dynamic shallow coastal estuaries, where in-situ measurements and tide adjustments are essential for height comparisons. Full article
Show Figures

Figure 1

642 KiB  
Proceeding Paper
Production Assay and Partial Characterization of a Protease Produced by Idiomarina loihiensis, a Moderately Halophilic Bacterium Strain
by Hania Benmebarek and Karima Kharroub
Biol. Life Sci. Forum 2024, 31(1), 18; https://doi.org/10.3390/ECM2023-16464 - 30 Nov 2023
Viewed by 299
Abstract
Halophiles are microorganisms that inhabit saline and hypersaline environments, requiring salinity to survive in such extreme conditions. These microorganisms are mainly researched for their biotechnological potential. This study aims to investigate the phenology of the studied strain, Idiomarina loihiensis, and to demonstrate [...] Read more.
Halophiles are microorganisms that inhabit saline and hypersaline environments, requiring salinity to survive in such extreme conditions. These microorganisms are mainly researched for their biotechnological potential. This study aims to investigate the phenology of the studied strain, Idiomarina loihiensis, and to demonstrate its extracellular proteolytic activity, as well as the production of a protease via batch fermentation in halophilic microorganisms. Macroscopic studies revealed small colonies (≤5 mm) with a convex spherical structure, regular outline, smooth surface, and color ranging from beige to opaque cream. Protease production was investigated in high-salinity conditions with a moderately halophilic bacterium using basal media with varying nitrogen sources. This study found that the highest proteolytic activity occurred in media with tryptone and casein peptone as nitrogen sources, at pH 10, a temperature of 70 °C, and 22.5% salt concentration. The results also demonstrated that the studied protease was a thermostable enzyme. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Microbiology)
Show Figures

Figure 1

17 pages, 2783 KiB  
Article
Bacterial Strains from Saline Environment Modulate the Expression of Saline Stress-Responsive Genes in Pepper (Capsicum annuum)
by María Goretty Caamal-Chan, Abraham Loera-Muro, Reyna De Jesús Romero-Geraldo and Rogelio Ramírez-Serrano
Plants 2023, 12(20), 3576; https://doi.org/10.3390/plants12203576 - 15 Oct 2023
Cited by 1 | Viewed by 1157
Abstract
Salinity stress is one of the most important problems in crop productivity. Plant growth-promoting bacteria (PGPB) can also confer stress tolerance in plants under saline soil conditions. In a previous work, it was reported that bacteria strains isolated from hypersaline sites mitigated salt [...] Read more.
Salinity stress is one of the most important problems in crop productivity. Plant growth-promoting bacteria (PGPB) can also confer stress tolerance in plants under saline soil conditions. In a previous work, it was reported that bacteria strains isolated from hypersaline sites mitigated salt stress in chili pepper (Capsicum annuum var. Caballero) plants and promoted plant growth in some cases. The aim of this study was to evaluate the modulation of gene expression in C. annuum plants by bacteria strains isolated from saline environments. Two bacteria strains from high salinity ponds in Guerrero Negro, BCS, Mexico (Bacillus sp. strain 32 and Staphylococcus sp. strain 155) and Azospirillum brasilense Cd (DSM 1843) were used. Significant improvement in fresh weight yield (stem (28%), root (128.9%), and leaves (20%)) was observed in plants inoculated with Bacillus sp. strain 32. qPCR analysis showed that both strains modulated the expression of stress-responsive genes (MYB, ETR1, JAR1, WRKY, and LOX2) as well as heat shock factors and protein genes (CahsfA2, CahsfA3, CahsfB3a, CaDNaJ02, and CaDNaJ04). Finally, the expression levels of genes related to early salt stress and ISR showed differences in plants with dual treatment (bacteria-inoculated and salt-stressed) compared to plants with simple salinity stress. This work confirmed the differential modification of the transcriptional levels of genes observed in plants inoculated with bacteria under salinity stress. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

13 pages, 592 KiB  
Article
Effects of Ammonia and Salinity Stress on Non-Volatile and Volatile Compounds of Ivory Shell (Babylonia areolata)
by Chunsheng Liu, Yunchao Sun, Xin Hong, Feng Yu, Yi Yang, Aimin Wang and Zhifeng Gu
Foods 2023, 12(17), 3200; https://doi.org/10.3390/foods12173200 - 25 Aug 2023
Cited by 5 | Viewed by 1071
Abstract
In this study, the flavor compounds of ivory shell (Babylonia areolata) and their changes caused by ammonia and salinity stresses were studied. Ammonia stress improved the contents of free amino acids (FAAs), 5′-adenosine monophosphate (AMP), citric acid, and some mineral ions [...] Read more.
In this study, the flavor compounds of ivory shell (Babylonia areolata) and their changes caused by ammonia and salinity stresses were studied. Ammonia stress improved the contents of free amino acids (FAAs), 5′-adenosine monophosphate (AMP), citric acid, and some mineral ions such as Na+, PO43−, and Cl. The FAA contents decreased with increasing salinity, while the opposite results were observed in most inorganic ions (e.g., K+, Na+, Mg2+, Mn2+, PO43−, and Cl). Hyposaline and hypersaline stresses increased the AMP and citric acid contents compared to the control group. The equivalent umami concentration (EUC) values were 3.53–5.14 g monosodium glutamate (MSG)/100 g of wet weight, and the differences in EUC values among treatments were mainly caused by AMP. Hexanal, butanoic acid, and 4-(dimethylamino)-3-hydroxy- and (E, E)-3,5-octadien-2-one were the top three volatile compounds, and their profiles were significantly affected when ivory shells were cultured under different ammonia and salinity conditions. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Figure 1

23 pages, 4106 KiB  
Article
Deep Isolated Aquifer Brines Harbor Atypical Halophilic Microbial Communities in Quebec, Canada
by Jean-Christophe Gagnon, Samuel Beauregard-Tousignant, Jean-Sébastien Marcil and Cassandre Sara Lazar
Genes 2023, 14(8), 1529; https://doi.org/10.3390/genes14081529 - 26 Jul 2023
Cited by 1 | Viewed by 1285
Abstract
The deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological [...] Read more.
The deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological time. Because it is extremely difficult to access the deep biosphere, little is known about the identity and metabolisms of these communities, although they likely possess unknown pathways and might interfere with deep waste deposits. Therefore, we analyzed rock and groundwater microbial communities from deep, isolated brine aquifers in two regions dating back to the Ordovician and Devonian, using amplicon and whole genome sequencing. We observed significant differences in diversity and community structure between both regions, suggesting an impact of site age and composition. The deep hypersaline groundwater did not contain typical halophilic bacteria, and genomes suggested pathways involved in protein and hydrocarbon degradation, and carbon fixation. We identified mainly one strategy to cope with osmotic stress: compatible solute uptake and biosynthesis. Finally, we detected many bacteriophage families, potentially indicating that bacteria are infected. However, we also found auxiliary metabolic genes in the viral genomes, probably conferring an advantage to the infected hosts. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

22 pages, 10713 KiB  
Article
Imaging of Ancient Microbial Biomarkers within Miocene Dolomite (Kuwait) Using Time-of-Flight Secondary Ion Mass Spectrometry
by Ammar S. Alibrahim, Rana N. S. Sodhi, Michael J. Duane and Maria Dittrich
Minerals 2023, 13(7), 968; https://doi.org/10.3390/min13070968 - 21 Jul 2023
Cited by 1 | Viewed by 1616
Abstract
Time-of-Flight–Secondary Ion Mass Spectrometry (ToF-SIMS) using a bismuth liquid metal ion source was utilized to characterize and image microbial biomarkers within dolomite from early-middle Miocene coastal mud volcano outcrops in Kuwait. ToF-SIMS analysis revealed biomarkers of ancient microbial consortia of sulfate reducers and [...] Read more.
Time-of-Flight–Secondary Ion Mass Spectrometry (ToF-SIMS) using a bismuth liquid metal ion source was utilized to characterize and image microbial biomarkers within dolomite from early-middle Miocene coastal mud volcano outcrops in Kuwait. ToF-SIMS analysis revealed biomarkers of ancient microbial consortia of sulfate reducers and methane oxidizers participating in the anaerobic oxidation of methane. The identified lipid biomarkers comprised 17α(H),21β(H)-Norhopane, Hop-17(21)-ene or Hop-22(29)-ene (diploptene), non-isoprenoidal dialkyl glycerol diethers (DAGEs), and Diacylglycerol esters (DGs). The ion µ-scale images of carbonate rocks showed two characteristic styles: (1) high signal intensity of dolomite, halite, and biomarkers, where the biomarkers demonstrate a distinctive co-localization pattern with both dolomite and halite; and (2) a lack of dolomite, halite low signal intensity, and an absence of biomarker co-localization patterns. Our results highlight three remarkable observations. Firstly, the concomitance of dolomite and halite suggests a common source of magnesium and sodium supply, likely from the hypersaline Al-Subiya sabkha. This emphasizes the importance of hypersaline seawater for dolomite formation. Secondly, microbial biomarkers correspond to methane- and sulfate-rich conditions under which dolomite was formed. Lastly, the high intensity of biomarker signals and their association with dolomite and halite indicate that the consortia involved in dolomite formation have preferences for high-salinity conditions. The three observations align with previous studies that have highlighted the importance of methane-sulfate redox, high salinity, and halophilic microbes for dolomite formation. This work is the first to acknowledge ancient microbial biomarkers within Miocene dolomite in Kuwait, which aims to broaden the understanding of the biogeochemical processes triggering dolomite formation in similar environments and ancient geologic settings. Full article
Show Figures

Figure 1

20 pages, 5724 KiB  
Article
Mesocosm Design and Implementation of Two Synchronized Case Study Experiments to Determine the Impacts of Salinization and Climate Change on the Structure and Functioning of Shallow Lakes
by Korhan Özkan, Mustafa Korkmaz, Cihelio Alves Amorim, Gültekin Yılmaz, Meltem Koru, Yasemin Can, Juan Pablo Pacheco, Vildan Acar, Mehmet Arda Çolak, Gül Canan Yavuz, Lucía Cabrera-Lamanna, Onat Arıkan, Öykü Tanrıverdi, Serhat Ertuğrul, İrem Gamze Arık, Hande Nesli, İlker H. Tunur, Burak Kuyumcu, Zuhal Akyürek, Can Özen, Meryem Beklioğlu and Erik Jeppesenadd Show full author list remove Hide full author list
Water 2023, 15(14), 2611; https://doi.org/10.3390/w15142611 - 18 Jul 2023
Cited by 2 | Viewed by 2117
Abstract
Salinization of freshwater ecosystems is one of the major challenges imposed largely by climate change and excessive water abstraction for irrigated crop farming. Understanding how aquatic ecosystems respond to salinization is essential for mitigation and adaptation to the changing climate, especially in arid [...] Read more.
Salinization of freshwater ecosystems is one of the major challenges imposed largely by climate change and excessive water abstraction for irrigated crop farming. Understanding how aquatic ecosystems respond to salinization is essential for mitigation and adaptation to the changing climate, especially in arid landscapes. Field observations provide invaluable data for this purpose, but they rarely include sufficient spatial and temporal domains; however, experimental approaches are the key to elucidating complex ecosystem responses to salinization. We established similar experimental mesocosm facilities in two different climate zones in Turkey, specifically designed to simulate the effects of salinization and climate change on shallow lake ecosystems. These facilities were used for two case-study experiments: (1) a salinity gradient experiment consisting of 16 salinity levels (range: 0–50 g/L); and (2) a heatwave experiment where two different temperature regimes (no heatwave and +6 °C for two weeks) were crossed with two salinity levels (4 and 40 g/L) with four replicates in each treatment. The experiments lasted 8 and 2 months, respectively, and the experimental mesocosms were monitored frequently. Both experiments demonstrated a significant role of salinization modulated by climate on the structure and function of lake ecosystems. Here, we present the design of the mesocosm facilities, show the basic results for both experiments and provide recommendations for the best practices for mesocosm experiments conducted under saline/hypersaline conditions. Full article
(This article belongs to the Special Issue Global Change Effects on Water Level and Salinity: Causes and Effects)
Show Figures

Figure 1

Back to TopTop