Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (744)

Search Parameters:
Keywords = jet impact

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10942 KiB  
Article
A Study on the Impact Erosion Effect of a Two-Phase Jet Field on a Wall at Different Impact Distances by Numerical Simulation
by Ying Li, Mingzhu Dang and Yawei Wang
Fire 2024, 7(9), 312; https://doi.org/10.3390/fire7090312 - 4 Sep 2024
Abstract
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase [...] Read more.
When a motor is accidentally started, the solid particles produced by fuel combustion have impact and erosion effects on the surrounding structure via gas ejection, and the structure of the bulkhead is damaged. Therefore, in this paper, the effect of solid particle phase motion on a bulkhead was investigated. A two-dimensional SST k-ω model was used for the analysis. The grid size of the core area of a supersonic jet was selected as RN/24 by the calculation accuracy, and the resources and time consumption of the calculation were comprehensively considered. Based on the simulation of supersonic impact jets, the influence of the phase motion of solid particles was introduced, and the impact of a two-phase jet field on a wall was investigated. The addition of a particle phase created a hysteresis effect on the airflow, changing the shock structure of the pure gas-phase flow field. The rebound of the particle phase at the wall caused the waves in front of the wall to move forward and the stagnation bubble structures to disappear in some cases. The particle aggregation degree and collision angle would affect the particle erosion rate of solid bulkheads. The increase in particle jet impingement distance would change the distribution of particle aggregation and would influence the distribution of wall particle erosion rate and deposition rate. This paper would provide theoretical and engineering guidance for the safety protection design of magazines, which is of great significance for the safety assurance of ship magazines. Full article
(This article belongs to the Special Issue Protection of Ships against Fire and Personnel Evacuation)
Show Figures

Figure 1

8 pages, 2651 KiB  
Article
Analysis of the Influence of the Size of Color-Calibrated Schlieren Filters on the General Sensitivity of Quantitative Schlieren Systems
by Emilia Georgiana Prisăcariu, Tudor Prisecaru and Mădălin Constantin Dombrovschi
Fluids 2024, 9(9), 206; https://doi.org/10.3390/fluids9090206 - 2 Sep 2024
Viewed by 225
Abstract
The quantitative color schlieren technique is renowned for its capacity to convert deflection angles into color ratios. This technique has been instrumental in providing data on 2D flows. The current study delves into assessing how the geometry and optical characteristics of color filters [...] Read more.
The quantitative color schlieren technique is renowned for its capacity to convert deflection angles into color ratios. This technique has been instrumental in providing data on 2D flows. The current study delves into assessing how the geometry and optical characteristics of color filters impact the sensitivity of the schlieren system. At present, there are many papers making the assumption that implementing a larger-sized color filter leads to better system sensitivity. However, having more calibration filter positions can lead to measurement errors due to the difficult calibration process. The present investigation focuses on the type of color filters created with a gradual evolution of colors. A turbulent, round water vapor jet serves as the test case. By comparing the results obtained with two different filter sizes, this analysis gives insight into the compromises made between system sensitivity and ease of calibration, helping one to better understand the trade-offs between the above-mentioned parameters. Moreover, the quantitative and qualitative results of the test case are presented to offer more comprehensive insights into quantitative color-calibrated schlieren. Full article
Show Figures

Figure 1

24 pages, 11599 KiB  
Article
Computational Fluid Dynamics Analysis of Erosion in Active Components of Abrasive Water Jet Machine
by Iulian Pătîrnac, Razvan George Ripeanu and Maria Tănase
Processes 2024, 12(9), 1860; https://doi.org/10.3390/pr12091860 - 31 Aug 2024
Viewed by 315
Abstract
This study presents a comprehensive three-dimensional computational fluid dynamics (CFD) analysis of abrasive fluid flow and its erosive effects on the active components of the WUXI YCWJ-380-1520 water jet cutting machine. The research investigates the behavior and impact of abrasive particles within the [...] Read more.
This study presents a comprehensive three-dimensional computational fluid dynamics (CFD) analysis of abrasive fluid flow and its erosive effects on the active components of the WUXI YCWJ-380-1520 water jet cutting machine. The research investigates the behavior and impact of abrasive particles within the fluid, determining the erosion rates for particles with diameters of 0.19 mm, 0.285 mm, and 0.38 mm (dimensions resulting from the granulometry of the experimentally established sand), considering various abrasive flow rates. The methodology includes a detailed granulometric analysis of the abrasive material, identifying critical particle sizes and distributions, with a focus on M50 granulation (average particle size of 0.285 mm). Additionally, the study employs the Wadell method to determine the shape factor (Ψi = 0.622) of the abrasive particles, which plays a significant role in the erosion process. Experimental determination of the abrasive flow rate is conducted, leading to the development of a second-order parabolic model that accurately predicts flow variations based on the control settings of the AWJ machine. The maximum erosion occurs at the entry surface of the mixing tube’s truncated zone, with a higher intensity as the particle size increases. For the 0.19 mm particles, the erosion rates range from 1.090 × 10−6 kg/m2·s to 2.022 × 10−6 kg/m2·s and follow a parabolic distribution. The particles of 0.285 mm show erosion rates ranging from 2.450 × 10−6 kg/m2·s to 6.119 × 10−6 kg/m2·s, also fitting the second-order parabolic model. The largest particles (0.38 mm) exhibit erosion rates ranging from 3.646 × 10−6 kg/m2·s to 7.123 × 10−6 kg/m2·s, described by a third-order polynomial. The study concludes that larger particle sizes result in higher erosion rates due to their increased mass and kinetic energy. Therefore, the present investigation demonstrates a significant relationship between particle size, abrasive flow rate, and erosion rate, highlighting critical wear points in the machine’s components. The findings contribute to optimizing the design and operational parameters of water jet cutting machines, thereby enhancing their efficiency and lifespan. Full article
Show Figures

Figure 1

17 pages, 9645 KiB  
Article
Research on the Erosion Law and Protective Measures of L360N Steel for Surface Pipelines Used in Shale Gas Extraction
by Shaoquan Huo, Lincai Peng, Yunpeng Li, Yong Xu, Hongbing Huang and Xi Yuan
Materials 2024, 17(17), 4278; https://doi.org/10.3390/ma17174278 - 29 Aug 2024
Viewed by 211
Abstract
The erosion of surface pipelines induced by proppant flowback during shale gas production is significant. The surface pipelines in a shale gas field in the Sichuan Basin experienced perforation failures after only five months of service. To investigate the erosion features of L360N, [...] Read more.
The erosion of surface pipelines induced by proppant flowback during shale gas production is significant. The surface pipelines in a shale gas field in the Sichuan Basin experienced perforation failures after only five months of service. To investigate the erosion features of L360N, coatings, and ceramics and optimize the selection of two protective materials, a gas–solid two-phase flow jet erosion experimental device was used to explore the erosion resistance of L360N, coatings, and ceramics under different impact velocities (15 m/s, 20 m/s, and 30 m/s). An energy dispersive spectroscope, a scanning electron microscope, and a laser confocal microscope were employed to analyze erosion morphologies. With the increase in flow velocity, the erosion depth and erosion rate of L360N, coating, and ceramic increased and peaked under an impact velocity of 30 m/s. The maximum erosion rate and maximum erosion depth of L360N were, respectively, 0.0350 mg/g and 37.5365 µm. Its primary material removal mechanism was the plowing of solid particles, and microcracks were distributed on the material surface under high flow velocities. The maximum erosion rate and maximum erosion depth of the coating were, respectively, 0.0217 mg/g and 18.9964 µm. The detachment of matrix caused by plowing is the main material removal mechanism. The maximum erosion rate and maximum erosion depth of ceramics were, respectively, 0.0108 mg/g and 12.4856 µm. The erosion mechanisms were micro-cutting and plowing. Under different particle impact velocities, different erosion morphologies were observed, but the primary erosion mechanism was the same. The erosion resistance of the ceramics was higher than that of the coatings. Therefore, ceramic lining materials could be used to protect the easily eroded parts, such as pipeline bends and tees, and reduce the failure rate by more than 93%. The study provided the data and theoretical basis for the theoretical study on oil and gas pipeline erosion and pipeline material selection. Full article
Show Figures

Figure 1

17 pages, 9694 KiB  
Article
Dynamic Characteristics and Flow Field Evolution of Flat Plate Water Entry Slamming Based on Smoothed Particle Hydrodynamics
by Zhongming Li, Yingfei Zan, Ruinan Guo, Yaogang Sun and Nan Sun
J. Mar. Sci. Eng. 2024, 12(9), 1491; https://doi.org/10.3390/jmse12091491 - 29 Aug 2024
Viewed by 312
Abstract
Water entry slamming is a complicated issue in marine engineering, characterized by significant impact loads and complex flow. This paper establishes a 3D numerical model of flat plate water entry slamming based on smoothed particle hydrodynamics (SPH), and the dynamics and flow field [...] Read more.
Water entry slamming is a complicated issue in marine engineering, characterized by significant impact loads and complex flow. This paper establishes a 3D numerical model of flat plate water entry slamming based on smoothed particle hydrodynamics (SPH), and the dynamics and flow field evolution are analyzed during water entry. The results indicate that SPH effectively captures the key dynamic characteristics of flat plate water entry. The experimental data validate the model, and the SPH particles reproduce the phenomena of jet formation, cavity development, and fluid splashing. The observed pressure is maximum at the center of the flat plate, and the maximum pressure and vertical force of the flat plate exhibit a quadratic relationship with the water entry velocity. The flow field evolution from initial jet formation at the time of slamming to droplet splashing shows obvious stages. As the water entry depth of the flat plate increases, the growth rates of the cavity width and splash height gradually slow under fluid viscosity and drag. The water entry velocity has the greatest influence on droplet splashing, whereas its influence on the jet separation point and the position of the free liquid surface is less significant. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

44 pages, 10643 KiB  
Review
Jet Fuel Contamination: Forms, Impact, Control, and Prevention
by Daniel Pruski and Myroslav Sprynskyy
Energies 2024, 17(17), 4267; https://doi.org/10.3390/en17174267 - 26 Aug 2024
Viewed by 244
Abstract
This paper describes commonly used processes to produce aviation fuel and alternative routes with potential production yields for sustainable aviation fuels (SAF) like HEFA and ATJ. It also presents the possible sources (crude oil, refinery processes), causes (filter clogging, engine failure), and forms [...] Read more.
This paper describes commonly used processes to produce aviation fuel and alternative routes with potential production yields for sustainable aviation fuels (SAF) like HEFA and ATJ. It also presents the possible sources (crude oil, refinery processes), causes (filter clogging, engine failure), and forms of contamination in both conventional and alternatively produced aviation fuels. Special attention is focused on the threats of fuel contamination with solid particles/trace elements, water, microorganisms, and fatty acid methyl esters (FAME). This review also presents the standard and novel advanced methods (ICP-MS, MALDI, ViPA) for identifying contaminations in aviation fuel. It also identifies possible ways to control and eliminate the risk of contamination, such as the fallowing coherent JIG system to ensure the quality of aviation fuel. Another approach that is very interesting and worth considering for future development is the idea of predictive maintenance and machine learning in monitoring and detecting contamination. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

29 pages, 7446 KiB  
Article
Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin
by Luoyi Yao, Rong Wu, Zijun Wang, Tingyi Xue, Yangyang Liu, Ercha Hu, Zhongming Wen, Haijing Shi, Jiaqi Yang, Peidong Han, Yinghan Zhao and Jingyao Hu
Agronomy 2024, 14(9), 1910; https://doi.org/10.3390/agronomy14091910 - 26 Aug 2024
Viewed by 388
Abstract
Within the Earth’s terrestrial environment, evapotranspiration significantly contributes to the hydrological cycle, accounting for around 80% of the precipitation on landmasses to be reintroduced into the atmosphere. This mechanism profoundly affects the distribution and availability of surface water resources throughout the ecosystem. Gaining [...] Read more.
Within the Earth’s terrestrial environment, evapotranspiration significantly contributes to the hydrological cycle, accounting for around 80% of the precipitation on landmasses to be reintroduced into the atmosphere. This mechanism profoundly affects the distribution and availability of surface water resources throughout the ecosystem. Gaining insight into the factors influencing local evapotranspiration fluctuations in response to varying climatic and vegetative scenarios is crucial for effective water management strategies and rehabilitating ecosystem resilience. To this end, our study focuses on the Jing River Basin in the Loess Plateau, utilizing multi-source remote sensing data and climatic information to investigate the spatiotemporal dynamics of evapotranspiration from 1984 to 2018 through the application of the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model. Our research results indicate a general ascending tendency in evapotranspiration across the investigated region, demonstrating a notably discernible escalation at a pace of approximately 3.11 mm/year (p < 0.01), with an annual vegetation ET volume reaching 533.88 mm. Across different vegetation types in the Jing River Basin between 1984 and 2018, the mean yearly ET was observed to be highest in forests (572.88 mm), followed by croplands (564.74 mm), shrublands (536.43 mm), and grasslands (503.42 mm). The leaf area index (LAI) demonstrated the strongest partial correlation with ET (r = 0.35) and contributed the most significantly to the variation in ET within the Jing River Basin (0.41 mm/year). Additionally, LAI indirectly influences ET through its impact on vapor pressure deficit (VPD), precipitation (Pre), and temperature (Temp). Radiation is found to govern most ET changes across the region, while radiation and precipitation notably affected ET by modulating air temperature. In summary, these radiant energy changes directly affect the evaporation rate and total evapotranspiration of surface water. It provides important support for understanding how evapotranspiration in the Jing River Basin is adjusting to climate change and increased vegetation cover. These findings serve as a theoretical foundation for devising sustainable vegetation restoration strategies to optimize water resource utilization within the region. Full article
Show Figures

Figure 1

18 pages, 10433 KiB  
Article
Comparative Study on Heat Dissipation Performance of Pure Immersion and Immersion Jet Liquid Cooling System for Single Server
by Linhui Yuan, Yu Wang, Risto Kosonen, Zhengchao Yang, Yingying Zhang and Xincheng Wang
Buildings 2024, 14(9), 2635; https://doi.org/10.3390/buildings14092635 - 25 Aug 2024
Viewed by 445
Abstract
Heat dissipation has emerged as a critical challenge in server cooling due to the escalating number of servers within data centers. The potential of immersion jet technology to be applied in large-scale data center server operations remains unexplored. This paper introduces an innovative [...] Read more.
Heat dissipation has emerged as a critical challenge in server cooling due to the escalating number of servers within data centers. The potential of immersion jet technology to be applied in large-scale data center server operations remains unexplored. This paper introduces an innovative immersion jet liquid cooling system. The primary objective is to investigate the synergistic integration of immersion liquid cooling and jet cooling to enhance the heat dissipation capacity of server liquid cooling systems. By constructing a single-server liquid cooling test bench, this study compares the heat dissipation efficiencies of pure immersion and immersion jet liquid cooling systems and examines the impact of inlet water temperature, jet distance, and inlet water flow rate on system performance. The experimental outcomes show that the steady-state surface heat transfer coefficient of the immersion jet liquid cooling system is 2.6 times that of the pure immersion system, with increases of approximately 475.9 W/(m2·K) and 1745.0 W/(m2·K) upon adjustment of the jet distance and flow rate, respectively. Furthermore, the system model is streamlined through dimensional analysis, yielding a dimensionless relationship that encompasses parameters such as inlet water temperature, jet distance, and inlet water velocity. The correlation error is maintained below 18%, thereby enhancing the comprehension of the immersion jet cooling mechanism. Full article
(This article belongs to the Special Issue High-Efficiency Heat Transfer Technology in Buildings)
Show Figures

Figure 1

19 pages, 7944 KiB  
Article
Experimental Study on the Performance and Internal Flow Characteristics of Liquid–Gas Jet Pump with Square Nozzle
by Zhengqing Cao, Xuelong Yang, Xiao Xu, Chenbing Zhu, Daohang Zou, Qiwei Zhou, Kaiyue Fang, Xinchen Zhang and Jiegang Mou
Water 2024, 16(17), 2358; https://doi.org/10.3390/w16172358 - 23 Aug 2024
Viewed by 382
Abstract
In order to ascertain the impact of working water flow rate and inlet pressure on the performance of the liquid–gas jet pump with square nozzle, the pumping volume ratio and efficiency of the liquid–gas jet pump with square nozzle were experimentally investigated at [...] Read more.
In order to ascertain the impact of working water flow rate and inlet pressure on the performance of the liquid–gas jet pump with square nozzle, the pumping volume ratio and efficiency of the liquid–gas jet pump with square nozzle were experimentally investigated at different inlet pressures and working water flow rates. Furthermore, the internal flow characteristics of the liquid–gas jet pump with square nozzle were explored through the utilization of visualization technology in the self-designed square-nozzle liquid–gas jet pump experimental setup. The findings indicate that the pumping ratio of the liquid–gas jet pump increases in conjunction with an elevation in the inlet pressure. Liquid–gas jet pump efficiency is higher at lower inlet pressures, up to 42.48%, and drops rapidly as inlet pressure increases. The pumping volume ratio of the liquid–gas jet pump increases significantly as the working water flow rate increases, and the working water flow rate exerts a minimal effect on the working efficiency of the liquid–gas jet pump. In the context of extreme vacuum conditions, a considerable number of droplets undergo substantial reflux in the posterior section of the throat, with a notable absence of bubbles in the diffusion tube. The size and number of bubbles diminish gradually along the axial direction. The objective of this paper is to provide a reference point for determining the optimal operational parameters for a square-nozzle liquid–gas jet pump in a practical context. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

16 pages, 12709 KiB  
Article
A Study on the Optimization of Water Jet Decontamination Performance Parameters Based on the Response Surface Method
by Xianyan Qiu, Mengkun Wang, Bingzheng Chen and Yang Ai
Appl. Sci. 2024, 14(16), 7409; https://doi.org/10.3390/app14167409 - 22 Aug 2024
Viewed by 328
Abstract
The substrate that adheres between the teeth of the traveling track plate during the operation of a deep-sea polymetallic nodule mining vehicle affects the driving performance, so this study aimed to investigate the effect of the water jet on the cleaning and decontamination [...] Read more.
The substrate that adheres between the teeth of the traveling track plate during the operation of a deep-sea polymetallic nodule mining vehicle affects the driving performance, so this study aimed to investigate the effect of the water jet on the cleaning and decontamination performance of the track under different conditions. An optimization design method based on response surface methodology (RSM) is proposed. Based on the Box–Behnken design, the optimization variables of jet pressure, jet target distance, and impact angle, and the target response of jet strike pressure on tracks, were selected, and the numerical simulation method was combined with the response surface method to establish the regression model of the response of each optimization variable to the jet strike pressure on tracks and to determine the optimal parameter combinations. The study findings indicate that the primary factor influencing the pressure of the jet striking the crawler is the jet pressure. The hierarchical order of influence on the pressure of the jet striking the crawler, under the interaction of the three factors, is as follows: jet pressure and impact angle, jet pressure and target distance of the jet, and target distance of the jet and impact angle. The maximum pressure of the jet striking the crawler occurs when the jet pressure is 0.983 MPa, the target distance is 0.14 m, and the impact angle is 89.5°. Overall, the proposed design serves as a systematic framework for parameter optimization in the cleaning and decontamination process, and the research method and results provide theoretical references for the optimal design of mining truck desorption efficiency, which is critical for increasing mining efficiency and lowering energy consumption. Full article
Show Figures

Figure 1

16 pages, 17219 KiB  
Article
Experimental Investigation on the Impact of Sand Particle Size on the Jet Pump Wall Surface Erosion
by Heng Qian, Jian Liu, Maosen Xu, Chuanhao Fan and Zhenhua Duan
J. Mar. Sci. Eng. 2024, 12(8), 1390; https://doi.org/10.3390/jmse12081390 - 14 Aug 2024
Viewed by 455
Abstract
Silt removal is crucial for maintaining navigable waterways in harbors. Jet pumps, without moving parts, are highly suitable for underwater operations such as channel dredging in port environments. Despite their structural advantages in slurry handling, the prolonged transport of solid–liquid two-phase flows can [...] Read more.
Silt removal is crucial for maintaining navigable waterways in harbors. Jet pumps, without moving parts, are highly suitable for underwater operations such as channel dredging in port environments. Despite their structural advantages in slurry handling, the prolonged transport of solid–liquid two-phase flows can lead to wear on the wall materials, resulting in decreased efficiency and potential pump failure. The wear characteristics of the jet pump walls due to sand particles of varying grain sizes were experimentally investigated. The characteristic of the sands having a higher distribution above the axis as they enter the jet pump was captured by a high-speed camera. The experiment recorded the variations in mass loss at different sections of the jet pump over a period of 120 h, identifying that backflow within the throat region is a significant contributor to wall wear. Scanning electron microscopy was employed to examine the microstructure of the abraded pump surfaces. It was found that there are noticeable differences in the surface wear microstructure across various pump areas, and that particles of different grain sizes result in distinct wear patterns on the pump surfaces. The underlying causes of this phenomenon were discussed from the perspective of particle motion. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 435 KiB  
Article
Improvement of Jet Lag and Travel Fatigue Symptoms and Their Association with Prior International Travel Experience in Junior Athletes
by Yuka Tsukahara, Hiroshi Kamada, Suguru Torii and Fumihiro Yamasawa
Sports 2024, 12(8), 220; https://doi.org/10.3390/sports12080220 - 14 Aug 2024
Viewed by 364
Abstract
Jet lag and travel fatigue can occur after crossing multiple time zones in a short period of time, possibly affecting various aspects of an athlete’s behavior. However, there are few studies regarding this issue, particularly considering junior athletes. This study aimed to investigate [...] Read more.
Jet lag and travel fatigue can occur after crossing multiple time zones in a short period of time, possibly affecting various aspects of an athlete’s behavior. However, there are few studies regarding this issue, particularly considering junior athletes. This study aimed to investigate and quantify the symptoms of jet lag and travel fatigue and the factors impacting these conditions. A survey was completed by 41 Japanese junior athletes (21 men and 20 women), competing at an international game in Finland, to assess their performance, sleeping habits, digestion, fatigue, and jet lag on the first day of arrival and on the opening day of the competition. Although athletes awoke less often during sleep on the opening day of the competition compared with the first day, sleep time, ease of falling asleep, and sleep quality decreased significantly. Prior experience traveling abroad for international competitions was positively associated with improvements regarding ease of falling asleep (coefficient = 2.22, p = 0.01), quality of sleep (coefficient = 2.16, p = 0.02), and alertness after waking up (coefficient = 1.85, p = 0.05) by the opening day of the competition when compared with the results for athletes who had no such prior experiences. Junior athletes experience symptoms of jet lag and travel fatigue that may persist until the day of competition, and prior experience traveling abroad may help in alleviating their symptoms. Full article
Show Figures

Figure 1

23 pages, 32900 KiB  
Article
Analysis of the Influence of Nozzle Structure of Dry Powder Fire Extinguishing System on Supersonic Jet Characteristics
by Hongen Ge, Peng Zhao, Cong Zhu, Xin Zhang and Yuqi Liu
Machines 2024, 12(8), 553; https://doi.org/10.3390/machines12080553 - 13 Aug 2024
Viewed by 401
Abstract
The nozzle, as a critical jet component in dry powder fire extinguishing systems, significantly affects jet characteristics through its geometric configuration. To explore the influence of structural parameters on ultrafine dry powder gas-solid two-phase jet characteristics, a bidirectional coupled numerical model based on [...] Read more.
The nozzle, as a critical jet component in dry powder fire extinguishing systems, significantly affects jet characteristics through its geometric configuration. To explore the influence of structural parameters on ultrafine dry powder gas-solid two-phase jet characteristics, a bidirectional coupled numerical model based on the SST k-ω turbulence model and the Discrete Phase Model is employed. This study examines how variations in the semi-expansion angle (α) and semi-contraction angle (β) of the nozzle affect compressible gas flow behavior and particle distribution trajectories through a combination of simulations and experiments. The results indicate that when α = 2°, the gas jet is in an under-expanded state, leading to increased particle dispersion due to the stripping effect of the surrounding high-speed airflow. Within the range of x = 0–180 mm, the dry powder exhibits a diffusion trend. When α = 4.5°, the gas jet core region is the longest, providing optimal particle acceleration. Under constant inlet pressure, reducing α enhances particle collimation. The reduction of α alters the gas jet state, with α = 2° showing better powder diffusion compared to α = 6°. However, an excessively small α is detrimental to increasing the range of dry powder. With consistent structural parameters, the diffusion and range of dry powder remain the same across different β values, and variations in β have a relatively minor impact on supersonic jet characteristics. These findings offer theoretical guidance for optimizing and improving nozzles in ultrafine dry powder fire extinguishing systems. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

13 pages, 16801 KiB  
Article
Experimental Erosion Flow Pattern Study of Pelton Runner Buckets Using a Non-Recirculating Test Rig
by Baig Mirza Umar, Zhengwei Wang, Sailesh Chitrakar, Bhola Thapa, Xingxing Huang, Ravi Poudel and Aaditya Karna
Energies 2024, 17(16), 4006; https://doi.org/10.3390/en17164006 - 13 Aug 2024
Viewed by 1104
Abstract
Sediment erosion of hydraulic turbines is a significant challenge in hydropower plants in mountainous regions like the European Alps, the Andes, and the Himalayan region. The erosive wear of Pelton runner buckets is influenced by a variety of factors, including the size, hardness, [...] Read more.
Sediment erosion of hydraulic turbines is a significant challenge in hydropower plants in mountainous regions like the European Alps, the Andes, and the Himalayan region. The erosive wear of Pelton runner buckets is influenced by a variety of factors, including the size, hardness, and concentration of silt particles; the velocity of the flow and impingement angle of the jet; the properties of the base material; and the operating hours of the turbine. This research aims to identify the locations most susceptible to erosion and to elucidate the mechanisms of erosion propagation in two distinct designs of Pelton runner buckets. The Pelton runner buckets were subjected to static condition tests with particle sizes of 500 microns and a concentration of 14,000 mg/L. The buckets were coated with four layers of paint, sequentially applied in red, yellow, green, and blue. The two Pelton buckets, D1 and D2, were evaluated for their erosion resistance properties. D2 demonstrated superior erosion resistance, attributed to its geometrical features and material composition, lower erosion rates, less material loss, and improved surface integrity compared with D1. This difference is primarily attributed to factors such as the splitter’s thickness, the jet’s impact angle, the velocity at which particles strike, and the concentration of sand. D2 exhibits a great performance in terms of erosion resistance among the two designs. This study reveals that the angle of jet impingement influences erosion progression and material loss, which is important to consider during a Pelton turbine’s design and operating conditions. Full article
Show Figures

Figure 1

21 pages, 9619 KiB  
Article
Study on Thermal Radiation Characteristics and the Multi-Point Source Model of Hydrogen Jet Fire
by Haiyang Zhang, Xun Cao, Xuhao Yuan, Fengrong Wu, Jing Wang, Yankang Zhang, Qianqian Li, Hu Liu and Zuohua Huang
Appl. Sci. 2024, 14(16), 7098; https://doi.org/10.3390/app14167098 - 13 Aug 2024
Viewed by 464
Abstract
Hydrogen safety remains a paramount concern in pipeline transportation. Once hydrogen leaks and ignites, it quickly escalates into a jet fire incident. The substantial thermal radiation released poses significant risks of fire and explosion. Therefore, studying the thermal radiation characteristics of hydrogen jet [...] Read more.
Hydrogen safety remains a paramount concern in pipeline transportation. Once hydrogen leaks and ignites, it quickly escalates into a jet fire incident. The substantial thermal radiation released poses significant risks of fire and explosion. Therefore, studying the thermal radiation characteristics of hydrogen jet fires and developing accurate prediction models are crucial for establishing relevant safety standards. To address the oversimplified consideration of weighted coefficients in thermal radiation prediction models, this study investigated the thermal radiation characteristics of hydrogen jet fire by carrying out experiments and numerical simulations. The results reveal the significant impacts of the leakage diameter and pressure on thermal radiation. Increases in both the leakage diameter and pressure lead to a rapid escalation in the thermal radiation release, highlighting their critical importance in establishing safety standards for hydrogen pipeline transportation. Additionally, this study optimized the weight coefficients in the multi-point source prediction model based on temperature distribution along the flame axis. The optimized model was validated through comparison with experimental data. After optimization, the prediction error of the multi-point source radiation model was reduced from 19.5% to 13.9%. This model provides significant support for accurately evaluating the risk of hydrogen jet fire. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

Back to TopTop