Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = kicked top model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1341 KiB  
Article
A Model for Detecting Abnormal Elevator Passenger Behavior Based on Video Classification
by Jingsheng Lei, Wanfa Sun, Yuhao Fang, Ning Ye, Shengying Yang and Jianfeng Wu
Electronics 2024, 13(13), 2472; https://doi.org/10.3390/electronics13132472 - 24 Jun 2024
Viewed by 524
Abstract
In the task of human behavior detection, video classification based on deep learning has become a prevalent technique. The existing models are limited due to an inadequate understanding of behavior characteristics, which restricts their ability to achieve more accurate recognition results. To address [...] Read more.
In the task of human behavior detection, video classification based on deep learning has become a prevalent technique. The existing models are limited due to an inadequate understanding of behavior characteristics, which restricts their ability to achieve more accurate recognition results. To address this issue, this paper proposes a new model, which is an improvement upon the existing PPTSM model. Specifically, our model employs a multi-scale dilated attention mechanism, which enables the model to integrate multi-scale semantic information and capture characteristic information of abnormal human behavior more effectively. Additionally, to enhance the characteristic information of human behavior, we propose a gradient flow feature information fusion module that integrates high-level semantic features with low-level detail features, enabling the network to extract more comprehensive features. Experiments conducted on an elevator passenger dataset containing four abnormal behaviors (door picking, jumping, kicking, and door blocking) show that the top-1 Acc of our model is improved by 10% compared to the PPTSM model, reaching 95%. Moreover, experiments with four publicly available datasets(UCF24, UCF101, HMDB51, and the Something-Something-v1 dataset) demonstrate that our method achieves results superior to PPTSM by 6.8%, 6.1%, 21.2%, and 3.96%, respectively. Full article
(This article belongs to the Special Issue Pattern Recognition and Machine Learning Applications, 2nd Edition)
Show Figures

Figure 1

13 pages, 1425 KiB  
Article
Quantum Bounds on the Generalized Lyapunov Exponents
by Silvia Pappalardi and Jorge Kurchan
Entropy 2023, 25(2), 246; https://doi.org/10.3390/e25020246 - 30 Jan 2023
Cited by 11 | Viewed by 1961
Abstract
We discuss the generalized quantum Lyapunov exponents Lq, defined from the growth rate of the powers of the square commutator. They may be related to an appropriately defined thermodynamic limit of the spectrum of the commutator, which plays the role of [...] Read more.
We discuss the generalized quantum Lyapunov exponents Lq, defined from the growth rate of the powers of the square commutator. They may be related to an appropriately defined thermodynamic limit of the spectrum of the commutator, which plays the role of a large deviation function, obtained from the exponents Lq via a Legendre transform. We show that such exponents obey a generalized bound to chaos due to the fluctuation–dissipation theorem, as already discussed in the literature. The bounds for larger q are actually stronger, placing a limit on the large deviations of chaotic properties. Our findings at infinite temperature are exemplified by a numerical study of the kicked top, a paradigmatic model of quantum chaos. Full article
Show Figures

Figure 1

16 pages, 5801 KiB  
Article
Pseudoclassical Dynamics of the Kicked Top
by Zhixing Zou and Jiao Wang
Entropy 2022, 24(8), 1092; https://doi.org/10.3390/e24081092 - 9 Aug 2022
Cited by 3 | Viewed by 1815
Abstract
The kicked rotor and the kicked top are two paradigms of quantum chaos. The notions of quantum resonance and the pseudoclassical limit, developed in the study of the kicked rotor, have revealed an intriguing and unconventional aspect of classical–quantum correspondence. Here, we show [...] Read more.
The kicked rotor and the kicked top are two paradigms of quantum chaos. The notions of quantum resonance and the pseudoclassical limit, developed in the study of the kicked rotor, have revealed an intriguing and unconventional aspect of classical–quantum correspondence. Here, we show that, by extending these notions to the kicked top, its rich dynamical behavior can be appreciated more thoroughly; of special interest is the entanglement entropy. In particular, the periodic synchronization between systems subject to different kicking strength can be conveniently understood and elaborated from the pseudoclassical perspective. The applicability of the suggested general pseudoclassical theory to the kicked rotor is also discussed. Full article
Show Figures

Figure 1

19 pages, 3193 KiB  
Article
Multifractality in Quasienergy Space of Coherent States as a Signature of Quantum Chaos
by Qian Wang and Marko Robnik
Entropy 2021, 23(10), 1347; https://doi.org/10.3390/e23101347 - 15 Oct 2021
Cited by 12 | Viewed by 2524
Abstract
We present the multifractal analysis of coherent states in kicked top model by expanding them in the basis of Floquet operator eigenstates. We demonstrate the manifestation of phase space structures in the multifractal properties of coherent states. In the classical limit, the classical [...] Read more.
We present the multifractal analysis of coherent states in kicked top model by expanding them in the basis of Floquet operator eigenstates. We demonstrate the manifestation of phase space structures in the multifractal properties of coherent states. In the classical limit, the classical dynamical map can be constructed, allowing us to explore the corresponding phase space portraits and to calculate the Lyapunov exponent. By tuning the kicking strength, the system undergoes a transition from regularity to chaos. We show that the variation of multifractal dimensions of coherent states with kicking strength is able to capture the structural changes of the phase space. The onset of chaos is clearly identified by the phase-space-averaged multifractal dimensions, which are well described by random matrix theory in a strongly chaotic regime. We further investigate the probability distribution of expansion coefficients, and show that the deviation between the numerical results and the prediction of random matrix theory behaves as a reliable detector of quantum chaos. Full article
(This article belongs to the Special Issue Current Trends in Quantum Phase Transitions)
Show Figures

Figure 1

15 pages, 3356 KiB  
Article
Anticipating the Direction of Soccer Penalty Shots Depends on the Speed and Technique of the Kick
by Andrew H. Hunter, Sean C. Murphy, Michael J. Angilletta and Robbie S. Wilson
Sports 2018, 6(3), 73; https://doi.org/10.3390/sports6030073 - 29 Jul 2018
Cited by 4 | Viewed by 12502
Abstract
To succeed at a sport, athletes must manage the biomechanical trade-offs that constrain their performance. Here, we investigate a previously unknown trade-off in soccer: how the speed of a kick makes the outcome more predictable to an opponent. For this analysis, we focused [...] Read more.
To succeed at a sport, athletes must manage the biomechanical trade-offs that constrain their performance. Here, we investigate a previously unknown trade-off in soccer: how the speed of a kick makes the outcome more predictable to an opponent. For this analysis, we focused on penalty kicks to build on previous models of factors that influence scoring. More than 700 participants completed an online survey, watching videos of penalty shots from the perspective of a goalkeeper. Participants (ranging in soccer playing experience from never played to professional) watched 60 penalty kicks, each of which was occluded at a particular moment (−0.4 s to 0.0 s) before the kicker contacted the ball. For each kick, participants had to predict shot direction toward the goal (left or right). As expected, predictions became more accurate as time of occlusion approached ball contact. However, the effect of occlusion was more pronounced when players kicked with the side of the foot than when they kicked with the top of the foot (instep). For side-foot kicks, the direction of shots was predicted more accurately for faster kicks, especially when a large portion of the kicker’s approach was presented. Given the trade-off between kicking speed and directional predictability, a penalty kicker might benefit from kicking below their maximal speed. Full article
Show Figures

Figure 1

Back to TopTop