Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (56,473)

Search Parameters:
Keywords = mechanical properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3060 KiB  
Article
Streamlining Skin Regeneration: A Ready-to-Use Silk Bilayer Wound Dressing
by Anabela Veiga, Inês V. Silva, Juliana R. Dias, Nuno M. Alves, Ana L. Oliveira and Viviana P. Ribeiro
Gels 2024, 10(7), 439; https://doi.org/10.3390/gels10070439 (registering DOI) - 30 Jun 2024
Abstract
Silk proteins have been highlighted in the past decade for tissue engineering (TE) and skin regeneration due to their biocompatibility, biodegradability, and exceptional mechanical properties. While silk fibroin (SF) has high structural and mechanical stability with high potential as an external protective layer, [...] Read more.
Silk proteins have been highlighted in the past decade for tissue engineering (TE) and skin regeneration due to their biocompatibility, biodegradability, and exceptional mechanical properties. While silk fibroin (SF) has high structural and mechanical stability with high potential as an external protective layer, traditionally discarded sericin (SS) has shown great potential as a natural-based hydrogel, promoting cell–cell interactions, making it an ideal material for direct wound contact. In this context, the present study proposes a new wound dressing approach by developing an SS/SF bilayer construct for full-thickness exudative wounds. The processing methodology implemented included an innovation element and the cryopreservation of the SS intrinsic secondary structure, followed by rehydration to produce a hydrogel layer, which was integrated with a salt-leached SF scaffold to produce a bilayer structure. In addition, a sterilization protocol was developed using supercritical technology (sCO2) to allow an industrial scale-up. The resulting bilayer material presented high porosity (>85%) and interconnectivity while promoting cell adhesion, proliferation, and infiltration of human dermal fibroblasts (HDFs). SS and SF exhibit distinct secondary structures, pore sizes, and swelling properties, opening new possibilities for dual-phased systems that accommodate the different needs of a wound during the healing process. The innovative SS hydrogel layer highlights the transformative potential of the proposed bilayer system for biomedical therapeutics and TE, offering insights into novel wound dressing fabrication. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
20 pages, 3405 KiB  
Article
Effect of Nb and B on the Precipitation Behaviors in Al-Ti-Nb Balanced-Ratio Ni-Based Superalloy: A Phase-Field Study
by Na Ta, Hongguang Zhou, Cong Zhang, Ruijie Zhang and Lijun Zhang
Crystals 2024, 14(7), 614; https://doi.org/10.3390/cryst14070614 (registering DOI) - 30 Jun 2024
Abstract
In this paper, quantitative two-dimensional (2-D) phase-field simulations were performed to gain insight into the effects of B and Nb for Al-Ti-Nb balanced-ratio GH4742 alloys. The microstructure evolution during the precipitation process was simulated using the MICRESS (MICRostructure Evolution Simulation Software) package developed [...] Read more.
In this paper, quantitative two-dimensional (2-D) phase-field simulations were performed to gain insight into the effects of B and Nb for Al-Ti-Nb balanced-ratio GH4742 alloys. The microstructure evolution during the precipitation process was simulated using the MICRESS (MICRostructure Evolution Simulation Software) package developed in the formalism of the multi-phase field model. The coupling to CALPHAD (CALculation of PHAse Diagram) thermodynamic databases was realized via the TQ interface. The morphological evolution, concentration distribution, and thermodynamic properties were extensively analyzed. It is indicated that a higher Nb content contributes to a faster precipitation rate and higher amounts and the smaller precipitate size of the γ′ phase, contributing to better mechanical properties. The segregation of the W element in γ′ precipitate due to its sluggish diffusion effect has also been observed. Higher temperatures and lower B contents accelerate the dissolution of boride and reduce the precipitation of borides. With the increased addition of B, the formation of borides may have a pinning effect on the grain boundary to hinder the kinetic process. In addition, borides are prone to precipitate around the interface rather than in the bulk phase. Once the M3B2 borides nucleate, they grow in the consumption of γ′ phases. Full article
(This article belongs to the Special Issue Microstructure and Properties of Metals and Alloys)
14 pages, 1148 KiB  
Article
Batch-to-Batch Variation in Laser-Inscribed Graphene (LIG) Electrodes for Electrochemical Sensing
by Yifan Tang, Geisianny A. Moreira, Diana Vanegas, Shoumen P. A. Datta and Eric S. McLamore
Micromachines 2024, 15(7), 874; https://doi.org/10.3390/mi15070874 (registering DOI) - 30 Jun 2024
Abstract
Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In [...] Read more.
Laser-inscribed graphene (LIG) is an emerging material for micro-electronic applications and is being used to develop supercapacitors, soft actuators, triboelectric generators, and sensors. The fabrication technique is simple, yet the batch-to-batch variation of LIG quality is not well documented in the literature. In this study, we conduct experiments to characterize batch-to-batch variation in the manufacturing of LIG electrodes for applications in electrochemical sensing. Numerous batches of 36 LIG electrodes were synthesized using a CO2 laser system on polyimide film. The LIG material was characterized using goniometry, stereomicroscopy, open circuit potentiometry, and cyclic voltammetry. Hydrophobicity and electrochemical screening (cyclic voltammetry) indicate that LIG electrode batch-to-batch variation is less than 5% when using a commercial reference and counter electrode. Metallization of LIG led to a significant increase in peak current and specific capacitance (area between anodic/cathodic curve). However, batch-to-batch variation increased to approximately 30%. Two different platinum electrodeposition techniques were studied, including galvanostatic and frequency-modulated electrodeposition. The study shows that formation of metallized LIG electrodes with high specific capacitance and peak current may come at the expense of high batch variability. This design tradeoff has not been discussed in the literature and is an important consideration if scaling sensor designs for mass use is desired. This study provides important insight into the variation of LIG material properties for scalable development of LIG sensors. Additional studies are needed to understand the underlying mechanism(s) of this variability so that strategies to improve the repeatability may be developed for improving quality control. The dataset from this study is available via an open access repository. Full article
22 pages, 12114 KiB  
Article
Effect of Corrosion and Post-Weld Treatment on the Fatigue Behavior of Multipass Robot GMAW Welds of S700MC Steel
by Stefania Spyropoulou, Emmanouil Christofilis and Anna D. Zervaki
Crystals 2024, 14(7), 609; https://doi.org/10.3390/cryst14070609 (registering DOI) - 30 Jun 2024
Abstract
High-strength steel is a candidate material for offshore structures, which are currently being constructed with regular-strength steel. These structures are constantly exposed to harsh environmental conditions and experience cyclic loadings, which can lead to premature failure due to the synergistic effects of corrosion [...] Read more.
High-strength steel is a candidate material for offshore structures, which are currently being constructed with regular-strength steel. These structures are constantly exposed to harsh environmental conditions and experience cyclic loadings, which can lead to premature failure due to the synergistic effects of corrosion and fatigue. In this regard, the current study aims to investigate the effects of corrosion and High-Frequency Mechanical Impact (HFMI) treatment on the fatigue behavior of welded joints made of S700MC steel. Multipass butt-welded joints were fabricated via the Robot GMAW method at an optimally selected heat input of 0.7405 kJ/mm. The microstructure of the weldments was studied using light optical microscopy. Tensile and Vickers microhardness tests were performed to evaluate the mechanical properties of the welded joints. To simulate marine environment corrosion in the laboratory, the as-welded samples were exposed to salt fog spray for 720 h. Subsequently, specimens were subjected to cyclic loading to evaluate their fatigue strength, while SEM and stereomicroscopy were used to analyze the fractured surfaces, providing a comprehensive understanding of the fracture mode. The findings suggest that although corrosion led to increased surface roughness and the formation of corrosion pits, its influence on the fatigue behavior of the weldments might be less significant compared to other geometrical factors, at least for the exposure time employed in the study. Full article
(This article belongs to the Special Issue Corrosion Phenomena in Metals)
18 pages, 675 KiB  
Review
Advances in Instrumentation and Implant Technology for Spine Oncology: A Focus on Carbon Fiber Technologies
by Iheanyi Amadi, Jean-Luc K. Kabangu, Adip G. Bhargav and Ifije E. Ohiorhenuan
Surgeries 2024, 5(3), 499-516; https://doi.org/10.3390/surgeries5030041 (registering DOI) - 30 Jun 2024
Abstract
The challenges inherent in spinal oncology are multi-dimensional, stemming from the complex anatomy of the spine, the high risk of neurological complications, and the indispensability of personalized treatment plans. These challenges are further compounded by the variability in tumor types and locations, which [...] Read more.
The challenges inherent in spinal oncology are multi-dimensional, stemming from the complex anatomy of the spine, the high risk of neurological complications, and the indispensability of personalized treatment plans. These challenges are further compounded by the variability in tumor types and locations, which complicates the achievement of optimal treatment outcomes. To address these complexities, the manuscript highlights the pivotal role of technological advancements in surgical practices. The review focuses on the evolution of spinal oncology instrumentation, with a special emphasis on the adoption of carbon fiber implants in the management of spinal tumors. The advancements in instrumentation and implant technology are underscored as vital contributors to the improvement in patient outcomes in spine surgery. Carbon fiber implants are lauded for their reduced imaging artifacts, biocompatibility, and favorable mechanical properties. When combined with other technological innovations, these implants have substantially elevated the efficacy of surgical interventions. The review articulates how these advancements emphasize precision, customization, and the integration of innovative materials, significantly enhancing the effectiveness of surgical procedures. This collective progress marks a considerable advancement in the treatment of spinal tumors, highlighting a shift towards more effective, patient-focused outcomes in spinal oncology. Full article
23 pages, 15975 KiB  
Article
Anodizing of AA2024 Aluminum–Copper Alloy in Citric-Sulfuric Acid Solution: Effect of Current Density on Corrosion Resistance
by Jose Cabral-Miramontes, Noe Cabral-Miramontes, Demetrio Nieves-Mendoza, Maria Lara-Banda, Erick Maldonado-Bandala, Javier Olguín-Coca, Luis Daimir Lopez-Leon, Francisco Estupiñan-Lopez, F. Almeraya Calderon and Citlalli Gaona Tiburcio
Coatings 2024, 14(7), 816; https://doi.org/10.3390/coatings14070816 (registering DOI) - 30 Jun 2024
Abstract
Al–Cu alloys are widely used as a structural material in the manufacture of commercial aircraft due to their high mechanical properties such as hardness, strength, low density, and tolerance to fatigue damage and corrosion. One of the main problems of these Al–Cu alloy [...] Read more.
Al–Cu alloys are widely used as a structural material in the manufacture of commercial aircraft due to their high mechanical properties such as hardness, strength, low density, and tolerance to fatigue damage and corrosion. One of the main problems of these Al–Cu alloy systems is their low corrosion resistance. The purpose of this study is to analyze the influence of anodizing parameters on aluminum–copper alloy (AA 2024) using a bath of citric-sulfuric acid with different anodizing current densities on the thickness, microhardness, and corrosion resistance of the anodized layer. Hard anodizing is performed on AA 2024 Al–Cu alloy in mixtures of solutions composed of citric and sulfuric acid at different concentrations for 60 min and using current densities (i) of 0.03, 0.045, and 0.06 A/cm2. Scanning electron microscopy (SEM) was used to analyze the surface morphology and thickness of the anodized layer. The mechanical properties of the hard anodized material are evaluated using the Vickers hardness test. The electrochemical techniques use cyclic potentiodynamic polarization curves (CPPC) according to ASTM-G6 and electrochemical impedance spectroscopy (EIS) according to ASTM-G61 and ASTM-G106, respectively, in the electrolyte of NaCl at 3.5 wt. % as a simulation of the marine atmosphere. The results indicate that corrosion resistance anodizing in citric-sulfuric acid solutions with a current density of 0.06 A/cm2 is the best with a corrosion current density (jcorr) of 1.29 × 10−8 A/cm2. It is possible to produce hard anodizing with citric and sulfuric acid solutions that exhibit mechanical properties and corrosion resistance similar or superior to conventional sulfuric acid anodizing. Full article
Show Figures

Figure 1

19 pages, 7002 KiB  
Article
Experimental Study on Fracture Toughness of Shale Based on Three-Point Bending Semi-Circular Disk Samples
by Jinglin Wen, Yongming Yin and Mingming Zhang
Processes 2024, 12(7), 1368; https://doi.org/10.3390/pr12071368 (registering DOI) - 30 Jun 2024
Abstract
A large number of construction practice projects have found that there are many joints and microcracks in rock, concrete, and other structures, which cause the complexity of rock mechanical properties and are the main cause of geological or engineering disasters such as earthquakes, [...] Read more.
A large number of construction practice projects have found that there are many joints and microcracks in rock, concrete, and other structures, which cause the complexity of rock mechanical properties and are the main cause of geological or engineering disasters such as earthquakes, landslides, and rock bursts. To establish a rock fracture toughness evaluation method and understand the distribution range of fracture toughness of Longmaxi Formation shale, this study prepared three-point bending semi-circular disk shale samples of Longmaxi Formation with different crack inclination angles. The dimensionless fracture parameters of the samples, including the dimensionless stress intensity factors of type I, type II, and T-stress, were calibrated using the finite element method. Then, the peak load of the samples was tested using quasi-static loading, and the load–displacement curve characteristics of Longmaxi Formation shale and the variation in fracture toughness with crack inclination angle were analyzed. The study concluded that the specimens exhibited significant brittle failure characteristics and that the stress intensity factor is not the sole parameter controlling crack propagation in rock materials. With an increase in crack inclination angle, the prefabricated crack propagation gradually transitions from being dominated by type I fracture to type II fracture, and the T-stress changes from negative to positive, gradually increasing its influence on the fracture. An excessively large relative crack length increases the error in fracture toughness test results. Therefore, this paper suggests that the relative crack length a/R should be between 0.2 and 0.6. The fracture load distribution range of shale samples with different crack angles is 3.27 kN to 10.92 kN. As the crack inclination angle increases, the maximum load that the semi-circular disk shale samples can bear gradually increases. The pure type I fracture toughness of Longmaxi Formation shale is 1.13–1.38 MPa·m1/2, the pure type II fracture toughness is 0.55–0.62 MPa·m1/2, and the T-stress variation range of shale samples with different inclination angles is −0.49–9.48 MPa. Full article
(This article belongs to the Topic Green Mining, 2nd Volume)
Show Figures

Figure 1

19 pages, 6647 KiB  
Article
A Hybrid Prediction Model for Rock Reservoir Bank Slope Deformation Considering Fractured Rock Mass Parameters
by Jiachen Liang, Jian Chen and Chuan Lin
Water 2024, 16(13), 1880; https://doi.org/10.3390/w16131880 (registering DOI) - 30 Jun 2024
Abstract
Deformation monitoring data provide a direct representation of the structural behavior of reservoir bank rock slopes, and accurate deformation prediction is pivotal for slope safety monitoring and disaster warning. Among various deformation prediction models, hybrid models that integrate field monitoring data and numerical [...] Read more.
Deformation monitoring data provide a direct representation of the structural behavior of reservoir bank rock slopes, and accurate deformation prediction is pivotal for slope safety monitoring and disaster warning. Among various deformation prediction models, hybrid models that integrate field monitoring data and numerical simulations stand out due to their well-defined physical and mechanical concepts, and their ability to make effective predictions with limited monitoring data. The predictive accuracy of hybrid models is closely tied to the precise determination of rock mass mechanical parameters in structural numerical simulations. However, rock masses in rock slopes are characterized by intersecting geological structural planes, resulting in reduced strength and the creation of multiple fracture flow channels. These factors contribute to the heterogeneous, anisotropic, and size-dependent properties of the macroscopic deformation parameters of the rock mass, influenced by the coupling of seepage and stress. To improve the predictive accuracy of the hybrid model, this study introduces the theory of equivalent continuous media. It proposes a method for determining the equivalent deformation parameters of fractured rock mass considering the coupling of seepage and stress. This method, based on a discrete fracture network (DFN) model, is integrated into the hybrid prediction model for rock slope deformation. Engineering case studies demonstrate that this approach achieves a high level of prediction accuracy and holds significant practical value. Full article
(This article belongs to the Special Issue Safety Evaluation of Dam and Geotechnical Engineering, Volume II)
Show Figures

Figure 1

11 pages, 2476 KiB  
Communication
An Insulin-Modified pH-Responsive Nanopipette Based on Ion Current Rectification
by Xu-Fan Wang, Yi-Fan Duan, Yue-Qian Zhu, Zi-Jing Liu, Yu-Chen Wu, Tian-Hao Liu, Ling Zhang, Jian-Feng Wei and Guo-Chang Liu
Sensors 2024, 24(13), 4264; https://doi.org/10.3390/s24134264 (registering DOI) - 30 Jun 2024
Abstract
The properties of nanopipettes largely rely on the materials introduced onto their inner walls, which allow for a vast extension of their sensing capabilities. The challenge of simultaneously enhancing the sensitivity and selectivity of nanopipettes for pH sensing remains, hindering their practical applications. [...] Read more.
The properties of nanopipettes largely rely on the materials introduced onto their inner walls, which allow for a vast extension of their sensing capabilities. The challenge of simultaneously enhancing the sensitivity and selectivity of nanopipettes for pH sensing remains, hindering their practical applications. Herein, we report insulin-modified nanopipettes with excellent pH response performances, which were prepared by introducing insulin onto their inner walls via a two-step reaction involving silanization and amidation. The pH response intensity based on ion current rectification was significantly enhanced by approximately 4.29 times when utilizing insulin-modified nanopipettes compared with bare ones, demonstrating a linear response within the pH range of 2.50 to 7.80. In addition, insulin-modified nanopipettes featured good reversibility and selectivity. The modification processes were monitored using the I-V curves, and the relevant mechanisms were discussed. The effects of solution pH and insulin concentration on the modification results were investigated to achieve optimal insulin introduction. This study showed that the pH response behavior of nanopipettes can be greatly improved by introducing versatile molecules onto the inner walls, thereby contributing to the development and utilization of pH-responsive nanopipettes. Full article
(This article belongs to the Special Issue Electrochemical Nanobiosensors II)
Show Figures

Graphical abstract

18 pages, 4342 KiB  
Article
Shear-Wave Velocity Prediction Based on the CNN-BiGRU Integrated Network with Spatiotemporal Attention Mechanism
by Yaqi Liu, Chuqiao Gao and Bin Zhao
Processes 2024, 12(7), 1367; https://doi.org/10.3390/pr12071367 (registering DOI) - 30 Jun 2024
Abstract
Shear wave velocity is one of the important parameters reflecting the lithological and physical properties of reservoirs, and it is widely used in the fields of lithology and fluid property identification, reservoir evaluation, seismic data processing, and interpretation. However, due to the high [...] Read more.
Shear wave velocity is one of the important parameters reflecting the lithological and physical properties of reservoirs, and it is widely used in the fields of lithology and fluid property identification, reservoir evaluation, seismic data processing, and interpretation. However, due to the high cost and challenge of obtaining shear wave velocity, only a few key wells are measured. Considering the intricate nonlinear mapping relationship between shear wave velocity and conventional logging data, an integrated network incorporating an attention mechanism, a convolutional neural network, and a bidirectional gated recurrent unit (STACBiN) is proposed for predicting shear wave velocity. The impact of conventional logging data on shear wave velocity is analyzed, thus employing the attention mechanism to focus on data correlated with shear wave velocity, which can enable the prediction results of the method proposed superior to those of conventional methods. Additionally, the prediction results of this method are compared with the prediction results of the two-dimensional convolutional neural network (2DCNN) and bidirectional gated recurrent unit (BiGRU). It is verified that the network proposed can effectively predict the shear wave velocity, with minimal error between predicted and true values. Full article
Show Figures

Figure 1

34 pages, 8871 KiB  
Review
Cellulose Membranes: Synthesis and Applications for Water and Gas Separation and Purification
by Jinwu Wang, Syed Comail Abbas, Ling Li, Colleen C. Walker, Yonghao Ni and Zhiyong Cai
Membranes 2024, 14(7), 148; https://doi.org/10.3390/membranes14070148 (registering DOI) - 30 Jun 2024
Viewed by 120
Abstract
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and [...] Read more.
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing–structure–property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance. Full article
(This article belongs to the Special Issue Cellulose Membranes: From Synthesis to Applications)
Show Figures

Figure 1

16 pages, 1400 KiB  
Article
Study on Improving Physical–Mechanical Properties and Frost  Resistance of Straw–Mortar Composite Wall Materials by Pretreatment
by Rongfei Zhao, Binbin Feng, Jia Fu and Wei Gao
Sustainability 2024, 16(13), 5608; https://doi.org/10.3390/su16135608 (registering DOI) - 30 Jun 2024
Viewed by 145
Abstract
In recent years, China has increased the material utilization of crop straw, and the strength of straw–mortar composite wall materials is low, which limits their large-scale utilization. Pretreatment can improve the physico-mechanical and frost resistance properties of straw–mortar composite wall materials. In this [...] Read more.
In recent years, China has increased the material utilization of crop straw, and the strength of straw–mortar composite wall materials is low, which limits their large-scale utilization. Pretreatment can improve the physico-mechanical and frost resistance properties of straw–mortar composite wall materials. In this study, the Box–Behnken design in the Design-Expert software was used to design and carry out a three-factor and three-level interactive experiment and freeze–thaw cycle experiment with the straw content, pretreatment time, and reagent concentration as influencing factors, and the compressive strength, water absorption rate, and dry density as response values. The results showed that the impact of each factor on the response value, from high to low, was the straw content, pre-preparation time, and reagent concentration. When the straw content was 10%, the preparation time was 5 min, and the reagent concentration was 5%, the physical and mechanical properties of the straw–mortar composite wall material were the best. At the same time, the compressive strength was 6.52 MPa, the water absorption rate was 17.7%, and the dry density was 1396.33 kg·m−3, which was 67% higher, 31% lower, and 37% higher than that of the untreated straw–mortar composite wall materials. After the freeze–thaw cycle, the mass loss rate of the composite materials was less than 5%, which met the requirements of the frost resistance specifications; the strength loss rate of the composite materials varied between 19.7% and 27.8%, although some test blocks did not meet the requirements of less than 25% in the specification. The compressive strength was greatly improved compared with the untreated composite materials in the related research, and the water absorption rate was about 25% lower than that of the untreated straw–mortar composite wall materials. Pretreatment significantly improved the physico-mechanical and frost resistance properties of the straw–mortar composite wall materials. Full article
14 pages, 4289 KiB  
Review
Application of Computer Calculation in the Study of Grain Boundary
by Longfei Pu, Chengxuan Peng, Min Zhu, Yan Li and Longxian Li
Coatings 2024, 14(7), 815; https://doi.org/10.3390/coatings14070815 (registering DOI) - 30 Jun 2024
Viewed by 96
Abstract
A grain boundary (GB) is a structure of great concern in materials research, which affects the mechanical properties and electrical conductivity of materials, but the microscopic thermodynamic properties of GBs cannot be explained comprehensively. In this review, we demonstrate a variety of calculation [...] Read more.
A grain boundary (GB) is a structure of great concern in materials research, which affects the mechanical properties and electrical conductivity of materials, but the microscopic thermodynamic properties of GBs cannot be explained comprehensively. In this review, we demonstrate a variety of calculation methods for GBs: density functional theory (DFT) and molecular dynamics (MDs) aim to extract the thermodynamic and kinetic properties of GBs on the atomic scale, and machine learning accelerates DFT or improves the accuracy of MDs. These methods explain the microscopic properties of a GB from different perspectives and are combined by machine learning. It is hoped that this review can inspire new ideas and provide more practical applications of computer calculations in GB engineering. Full article
Show Figures

Figure 1

19 pages, 16728 KiB  
Article
Influence of Copper Addition on the Mechanical Properties and Corrosion Resistance of Self-Hardening Secondary Aluminium Alloy AlZn10Si8Mg
by Martin Mikolajčík, Lenka Kuchariková, Eva Tillová, Jon Mikel Sanchez, Zuzana Šurdová and Mária Chalupová
Metals 2024, 14(7), 776; https://doi.org/10.3390/met14070776 (registering DOI) - 30 Jun 2024
Viewed by 104
Abstract
Aluminium alloys have a wide range of applications, mainly due to their advantageous strength-to-weight ratio, denoted as specific strength and corrosion resistance. In recent decades, there has been a notable surge in the usage of recycled alloys, attributed to their reduced production costs [...] Read more.
Aluminium alloys have a wide range of applications, mainly due to their advantageous strength-to-weight ratio, denoted as specific strength and corrosion resistance. In recent decades, there has been a notable surge in the usage of recycled alloys, attributed to their reduced production costs and emissions. One of the conditions for secondary production is the optimal sorting of used scrap. Once the aluminium scrap has been melted, it is tough to reduce the content of the various additives. Copper is the primary alloying element in some aluminium alloys, which leads to an increased amount of copper in the aluminium scrap. Therefore, it is important to investigate its effect on the properties of aluminium alloys in which it is not commonly present. For this reason, this paper is concerned with the influence of copper on the microstructure and properties of the secondary aluminium alloy AlZn10Si8Mg. Specifically, it compares two melts of self-hardening AlZn10Si8Mg alloys differing in copper content (0.019% and 1.72%). A complex quantitative and metallographic analysis by optical and electron microscopy has been performed. Mechanical properties were investigated by tensile test, Brinell hardness, and Vickers microhardness measurements. The corrosion resistance of the individual melts was verified by the Audi test. Full article
Show Figures

Figure 1

14 pages, 2931 KiB  
Article
Study on Mechanical Properties of Sandy Soil Solidified by Enzyme-Induced Calcium Carbonate Precipitation (EICP)
by Lujing Yuan, Gang Li, Jia Liu, Pengzhou Wang, Cong Liu and Jinli Zhang
Buildings 2024, 14(7), 1977; https://doi.org/10.3390/buildings14071977 (registering DOI) - 30 Jun 2024
Viewed by 120
Abstract
Earth–rock dams are widely distributed in China and play an important role in flood control, water storage, water-level regulation, and water quality improvement. As an emerging seepage control and reinforcement technology in the past few years, enzyme (urease)-induced calcium carbonate precipitation (EICP) has [...] Read more.
Earth–rock dams are widely distributed in China and play an important role in flood control, water storage, water-level regulation, and water quality improvement. As an emerging seepage control and reinforcement technology in the past few years, enzyme (urease)-induced calcium carbonate precipitation (EICP) has the qualities of durability, environmental friendliness, and great economic efficiency. For EICP-solidified standard sand, this study analyzes the effect of dry density, amount of cementation, standing time, perfusion method, and other factors on the permeability and strength characteristics of solidified sandy soil by conducting a permeability test and an unconfined compression test and then working out the optimal solidification conditions of EICP. Furthermore, a quantitative relationship is established between the permeability coefficient (PC), unconfined compressive strength (UCS), and CaCO3 generation (CG). The test findings indicate that the PC of the solidified sandy soil decreases and the UCS rises as the starting dry density, amount of cementation, and standing time rise. With the increase of CG, the PC of the solidified sandy soil decreases while the UCS increases, indicating a good correlation among PC, UCS, and CG. The optimal condition of solidification by EICP is achieved by the two-stage grouting method with an initial dry density of 1.65 g/cm3, cementation time of 6 d, and standing time of 5 d. Under such conditions, the permeability of the solidified sandy soil is 6.25 × 10−4 cm/s, and the UCS is 1646.94 kPa. The findings of this study are of great theoretical value and scientific significance for guiding the reinforcement of earth–rock dams. Full article
Show Figures

Figure 1

Back to TopTop