Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,126)

Search Parameters:
Keywords = metaheuristic algorithms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1471 KiB  
Article
TrajectoryNAS: A Neural Architecture Search for Trajectory Prediction
by Ali Asghar Sharifi, Ali Zoljodi and Masoud Daneshtalab
Sensors 2024, 24(17), 5696; https://doi.org/10.3390/s24175696 - 1 Sep 2024
Viewed by 216
Abstract
Autonomous driving systems are a rapidly evolving technology. Trajectory prediction is a critical component of autonomous driving systems that enables safe navigation by anticipating the movement of surrounding objects. Lidar point-cloud data provide a 3D view of solid objects surrounding the ego-vehicle. Hence, [...] Read more.
Autonomous driving systems are a rapidly evolving technology. Trajectory prediction is a critical component of autonomous driving systems that enables safe navigation by anticipating the movement of surrounding objects. Lidar point-cloud data provide a 3D view of solid objects surrounding the ego-vehicle. Hence, trajectory prediction using Lidar point-cloud data performs better than 2D RGB cameras due to providing the distance between the target object and the ego-vehicle. However, processing point-cloud data is a costly and complicated process, and state-of-the-art 3D trajectory predictions using point-cloud data suffer from slow and erroneous predictions. State-of-the-art trajectory prediction approaches suffer from handcrafted and inefficient architectures, which can lead to low accuracy and suboptimal inference times. Neural architecture search (NAS) is a method proposed to optimize neural network models by using search algorithms to redesign architectures based on their performance and runtime. This paper introduces TrajectoryNAS, a novel neural architecture search (NAS) method designed to develop an efficient and more accurate LiDAR-based trajectory prediction model for predicting the trajectories of objects surrounding the ego vehicle. TrajectoryNAS systematically optimizes the architecture of an end-to-end trajectory prediction algorithm, incorporating all stacked components that are prerequisites for trajectory prediction, including object detection and object tracking, using metaheuristic algorithms. This approach addresses the neural architecture designs in each component of trajectory prediction, considering accuracy loss and the associated overhead latency. Our method introduces a novel multi-objective energy function that integrates accuracy and efficiency metrics, enabling the creation of a model that significantly outperforms existing approaches. Through empirical studies, TrajectoryNAS demonstrates its effectiveness in enhancing the performance of autonomous driving systems, marking a significant advancement in the field. Experimental results reveal that TrajcetoryNAS yields a minimum of 4.8 higger accuracy and 1.1* lower latency over competing methods on the NuScenes dataset. Full article
(This article belongs to the Special Issue Object Detection Based on Vision Sensors and Neural Network)
Show Figures

Figure 1

24 pages, 4472 KiB  
Article
An Improved Particle Swarm Optimization Algorithm Based on Variable Neighborhood Search
by Hao Li, Jianjun Zhan, Zipeng Zhao and Haosen Wang
Mathematics 2024, 12(17), 2708; https://doi.org/10.3390/math12172708 - 30 Aug 2024
Viewed by 371
Abstract
Various metaheuristic algorithms inspired by nature have been designed to deal with a variety of practical optimization problems. As an excellent metaheuristic algorithm, the improved particle swarm optimization algorithm based on grouping (IPSO) has strong global search capabilities. However, it lacks a strong [...] Read more.
Various metaheuristic algorithms inspired by nature have been designed to deal with a variety of practical optimization problems. As an excellent metaheuristic algorithm, the improved particle swarm optimization algorithm based on grouping (IPSO) has strong global search capabilities. However, it lacks a strong local search ability and the ability to solve constrained discrete optimization problems. This paper focuses on improving these two aspects of the IPSO algorithm. Based on IPSO, we propose an improved particle swarm optimization algorithm based on variable neighborhood search (VN-IPSO) and design a 0-1 integer programming solution with constraints. In the experiment, the performance of the VN-IPSO algorithm is fully tested and analyzed using 23 classic benchmark functions (continuous optimization), 6 knapsack problems (discrete optimization), and 10 CEC2017 composite functions (complex functions). The results show that the VN-IPSO algorithm wins 18 first places in the classic benchmark function test set, including 6 first places in the solutions for seven unimodal test functions, indicating a good local search ability. In solving the six knapsack problems, it wins four first places, demonstrating the effectiveness of the 0-1 integer programming constraint solution and the excellent solution ability of VN-IPSO in discrete optimization problems. In the test of 10 composite functions, VN-IPSO wins first place four times and ranks the first in the comprehensive ranking, demonstrating its excellent solving ability for complex functions. Full article
Show Figures

Figure 1

38 pages, 20945 KiB  
Article
Large-Scale Optimization among Photovoltaic and Concentrated Solar Power Systems: A State-of-the-Art Review and Algorithm Analysis
by Yi’an Wang, Zhe Wu and Dong Ni
Energies 2024, 17(17), 4323; https://doi.org/10.3390/en17174323 (registering DOI) - 29 Aug 2024
Viewed by 311
Abstract
Large-scale optimization (LSO) problems among photovoltaic (PV) and concentrated solar power (CSP) systems are attracting increasing attention as they help improve the energy dispatch efficiency of PV and CSP systems to minimize power costs. Therefore, it is necessary and urgent to systematically analyze [...] Read more.
Large-scale optimization (LSO) problems among photovoltaic (PV) and concentrated solar power (CSP) systems are attracting increasing attention as they help improve the energy dispatch efficiency of PV and CSP systems to minimize power costs. Therefore, it is necessary and urgent to systematically analyze and summarize various LSO methods to showcase their advantages and disadvantages, ensuring the efficient operation of hybrid energy systems comprising different PV and CSP systems. This paper compares and analyzes the latest LSO methods for PV and CSP systems based on meta-heuristic algorithms (i.e., Particle Swarm Optimization, Genetic Algorithm, Enhanced Gravitational Search Algorithm, and Grey Wolf Optimization), numerical simulation and stochastic optimization methods (i.e., Constraint Programming, Linear Programming, Dynamic Programming Optimization Algorithm, and Derivative-Free Optimization), and machine learning-based AI methods (Double Grid Search Support Vector Machine, Long Short-Term Memory, Kalman Filter, and Random Forest). An in-depth analysis and A comparison of the essence and applications of these algorithms are conducted to explore their characteristics and suitability for PV and CSP or hybrid systems. The research results demonstrate the specificities of different LSO algorithms, providing valuable insights for researchers with diverse interests and guiding the selection of the most appropriate method as the solution algorithm for LSO problems in various PV and CSP systems. This also offers useful references and suggestions for extracting research challenges in LSO problems of PV and CSP systems and proposing corresponding solutions to guide future research development. Full article
Show Figures

Figure 1

14 pages, 292 KiB  
Article
A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows
by Herman Mawengkang, Muhammad Romi Syahputra, Sutarman Sutarman and Abdellah Salhi
Vehicles 2024, 6(3), 1482-1495; https://doi.org/10.3390/vehicles6030070 - 29 Aug 2024
Viewed by 307
Abstract
In the realm of supply chain logistics, the Multi-Depot Multi-Supplier Vehicle Routing Problem (MDMSVRP) poses a significant challenge in optimizing the transportation process to minimize costs and enhance operational efficiency. This problem involves determining the most cost-effective routes for a fleet of vehicles [...] Read more.
In the realm of supply chain logistics, the Multi-Depot Multi-Supplier Vehicle Routing Problem (MDMSVRP) poses a significant challenge in optimizing the transportation process to minimize costs and enhance operational efficiency. This problem involves determining the most cost-effective routes for a fleet of vehicles to deliver goods from multiple suppliers to multiple depots, considering various constraints and non-linear relationships. The routing problem (RP) is a critical element of many logistics systems that involve the routing and scheduling of vehicles from a depot to a set of customer nodes. One of the most studied versions of the RP is the Vehicle Routing Problem with Time Windows (VRPTW), in which each customer must be visited at certain time intervals, called time windows. In this paper, it is considered that there are multiple depots (supply centers) and multiple suppliers, along with a fleet of vehicles. The goal is to efficiently plan routes for these vehicles to deliver goods from the suppliers to various customers while considering relaxed time windows. This research is intended to establish a new relaxation scheme that relaxes the time window constraints in order to lead to feasible and good solutions. In addition, this study develops a discrete optimization model as an alternative model for the time-dependent VRPTW involving multi-suppliers. This research also develops a metaheuristic algorithm with an initial solution that is determined through time window relaxation. Full article
29 pages, 3922 KiB  
Article
Integrating AI and Blockchain for Enhanced Data Security in IoT-Driven Smart Cities
by Burhan Ul Islam Khan, Khang Wen Goh, Abdul Raouf Khan, Megat F. Zuhairi and Mesith Chaimanee
Processes 2024, 12(9), 1825; https://doi.org/10.3390/pr12091825 - 27 Aug 2024
Viewed by 689
Abstract
Blockchain is recognized for its robust security features, and its integration with Internet of Things (IoT) systems presents scalability and operational challenges. Deploying Artificial Intelligence (AI) within blockchain environments raises concerns about balancing rigorous security requirements with computational efficiency. The prime motivation resides [...] Read more.
Blockchain is recognized for its robust security features, and its integration with Internet of Things (IoT) systems presents scalability and operational challenges. Deploying Artificial Intelligence (AI) within blockchain environments raises concerns about balancing rigorous security requirements with computational efficiency. The prime motivation resides in integrating AI with blockchain to strengthen IoT security and withstand multiple variants of lethal threats. With the increasing number of IoT devices, there has also been a spontaneous increase in security vulnerabilities. While conventional security methods are inadequate for the diversification of IoT devices, adopting AI can assist in identifying and mitigating such threats in real time, whereas integrating AI with blockchain can offer more intelligent decentralized security measures. The paper contributes to a three-layered architecture encompassing the device/sensory, edge, and cloud layers. This structure supports a novel method for assessing legitimacy scores and serves as an initial security measure. The proposed scheme also enhances the architecture by introducing an Ethereum-based data repositioning framework as a potential trapdoor function, ensuring maximal secrecy. To complement this, a simplified consensus module generates a conclusive evidence matrix, bolstering accountability. The model also incorporates an innovative AI-based security optimization utilizing an unconventional neural network model that operates faster and is enhanced with metaheuristic algorithms. Comparative benchmarks demonstrate that our approach results in a 48.5% improvement in threat detection accuracy and a 23.5% reduction in processing time relative to existing systems, marking significant advancements in IoT security for smart cities. Full article
(This article belongs to the Section Advanced Digital and Other Processes)
Show Figures

Figure 1

22 pages, 383 KiB  
Article
Quadratic p-Median Problem: A Bender’s Decomposition and a Meta-Heuristic Local-Based Approach
by Pablo Adasme, Andrés Viveros and Ali Dehghan Firoozabadi
Symmetry 2024, 16(9), 1114; https://doi.org/10.3390/sym16091114 - 27 Aug 2024
Viewed by 308
Abstract
In this paper, the quadratic p-median optimization problem is discussed, where the goal is to connect users to a selected group of facilities (emergency services, telecommunications servers, healthcare facilities) at the lowest possible cost. The problem is aimed at minimizing the cost of [...] Read more.
In this paper, the quadratic p-median optimization problem is discussed, where the goal is to connect users to a selected group of facilities (emergency services, telecommunications servers, healthcare facilities) at the lowest possible cost. The problem is aimed at minimizing the cost of connecting these selected facilities. The costs are symmetric, meaning connecting two different points is the same in both directions. This problem extends the traditional p-median problem, a combinatorial problem used in various fields like facility location, network design, transportation, supply chain networks, emergency services, healthcare, and education planning. Surprisingly, the quadratic version has not been thoroughly considered in the literature. The paper highlights the formulation of two mixed-integer quadratic programming models to find optimal solutions to this problem. One model is a classic formulation, and the other is based on set cover theory. Linear versions and Bender’s decomposition formulations for each model are also derived. A Bender’s decomposition is solved using an algorithm that adds constraints during each iteration to improve the solution. Lazy constraints in the Gurobi solver’s branch and cut algorithm are dynamically added whenever a mixed-integer programming solution is found. Additionally, an efficient local search meta-heuristic is proposed that usually finds optimal solutions for tested instances. Challenging instances with up to 60 facilities and 2000 users are successfully solved. Our results show that Bender’s models with lazy constraints are the most effective for Euclidean and random test cases, achieving optimal solutions in less CPU time. The meta-heuristic also finds near-optimal solutions rapidly for these cases. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

29 pages, 3806 KiB  
Article
A Self-Learning Hyper-Heuristic Algorithm Based on a Genetic Algorithm: A Case Study on Prefabricated Modular Cabin Unit Logistics Scheduling in a Cruise Ship Manufacturer
by Jinghua Li, Ruipu Dong, Xiaoyuan Wu, Wenhao Huang and Pengfei Lin
Biomimetics 2024, 9(9), 516; https://doi.org/10.3390/biomimetics9090516 - 27 Aug 2024
Viewed by 496
Abstract
Hyper-heuristic algorithms are known for their flexibility and efficiency, making them suitable for solving engineering optimization problems with complex constraints. This paper introduces a self-learning hyper-heuristic algorithm based on a genetic algorithm (GA-SLHH) designed to tackle the logistics scheduling problem of prefabricated modular [...] Read more.
Hyper-heuristic algorithms are known for their flexibility and efficiency, making them suitable for solving engineering optimization problems with complex constraints. This paper introduces a self-learning hyper-heuristic algorithm based on a genetic algorithm (GA-SLHH) designed to tackle the logistics scheduling problem of prefabricated modular cabin units (PMCUs) in cruise ships. This problem can be regarded as a multi-objective fuzzy logistics collaborative scheduling problem. Hyper-heuristic algorithms effectively avoid the extensive evaluation and repair of infeasible solutions during the iterative process, which is a common issue in meta-heuristic algorithms. The GA-SLHH employs a genetic algorithm combined with a self-learning strategy as its high-level strategy (HLS), optimizing low-level heuristics (LLHs) while uncovering potential relationships between adjacent decision-making stages. LLHs utilize classic scheduling rules as solution support. Multiple sets of numerical experiments demonstrate that the GA-SLHH exhibits a stronger comprehensive optimization ability and stability when solving this problem. Finally, the validity of the GA-SLHH in addressing real-world decision-making issues in cruise ship manufacturing companies is validated through practical enterprise cases. The results of a practical enterprise case show that the scheme solved using the proposed GA-SLHH can reduce the transportation time by up to 37%. Full article
(This article belongs to the Special Issue Nature-Inspired Metaheuristic Optimization Algorithms 2024)
Show Figures

Graphical abstract

20 pages, 8668 KiB  
Article
A Multi-Objective Optimization Approach for Solar Farm Site Selection: Case Study in Maputo, Mozambique
by Tomé Sicuaio, Pengxiang Zhao, Petter Pilesjö, Andrey Shindyapin and Ali Mansourian
Sustainability 2024, 16(17), 7333; https://doi.org/10.3390/su16177333 - 26 Aug 2024
Viewed by 527
Abstract
Solar energy is an important source of clean energy to combat climate change issues that motivate the establishment of solar farms. Establishing solar farms has been considered a proper alternative for energy production in countries like Mozambique, which need reliable and clean sources [...] Read more.
Solar energy is an important source of clean energy to combat climate change issues that motivate the establishment of solar farms. Establishing solar farms has been considered a proper alternative for energy production in countries like Mozambique, which need reliable and clean sources of energy for sustainable development. However, selecting proper sites for creating solar farms is a function of various economic, environmental, and technical criteria, which are usually conflicting with each other. This makes solar farm site selection a complex spatial problem that requires adapting proper techniques to solve it. In this study, we proposed a multi-objective optimization (MOO) approach for site selection of solar farms in Mozambique, by optimizing six objective functions using an improved NSGA-II (Non-dominated Sorting Genetic Algorithm II) algorithm. The MOO model is demonstrated by implementing a case study in KaMavota district, Maputo city, Mozambique. The improved NSGA-II algorithm displays a better performance in comparison to standard NSGA-II. The study also demonstrated how decision-makers can select optimum solutions, based on their preferences, despite trade-offs existing between all objective functions, which support the decision-making. Full article
Show Figures

Figure 1

26 pages, 4584 KiB  
Article
Hierarchical Learning-Enhanced Chaotic Crayfish Optimization Algorithm: Improving Extreme Learning Machine Diagnostics in Breast Cancer
by Jilong Zhang and Yuan Diao
Mathematics 2024, 12(17), 2641; https://doi.org/10.3390/math12172641 - 26 Aug 2024
Viewed by 428
Abstract
Extreme learning machines (ELMs), single hidden-layer feedforward neural networks, are renowned for their speed and efficiency in classification and regression tasks. However, their generalization ability is often undermined by the random generation of hidden layer weights and biases. To address this issue, this [...] Read more.
Extreme learning machines (ELMs), single hidden-layer feedforward neural networks, are renowned for their speed and efficiency in classification and regression tasks. However, their generalization ability is often undermined by the random generation of hidden layer weights and biases. To address this issue, this paper introduces a Hierarchical Learning-based Chaotic Crayfish Optimization Algorithm (HLCCOA) aimed at enhancing the generalization ability of ELMs. Initially, to resolve the problems of slow search speed and premature convergence typical of traditional crayfish optimization algorithms (COAs), the HLCCOA utilizes chaotic sequences for population position initialization. The ergodicity of chaos is leveraged to boost population diversity, laying the groundwork for effective global search efforts. Additionally, a hierarchical learning mechanism encourages under-performing individuals to engage in extensive cross-layer learning for enhanced global exploration, while top performers directly learn from elite individuals at the highest layer to improve their local exploitation abilities. Rigorous testing with CEC2019 and CEC2022 suites shows the HLCCOA’s superiority over both the original COA and nine renowned heuristic algorithms. Ultimately, the HLCCOA-optimized extreme learning machine model, the HLCCOA-ELM, exhibits superior performance over reported benchmark models in terms of accuracy, sensitivity, and specificity for UCI breast cancer diagnosis, underscoring the HLCCOA’s practicality and robustness, as well as the HLCCOA-ELM’s commendable generalization performance. Full article
Show Figures

Figure 1

43 pages, 24842 KiB  
Article
MICFOA: A Novel Improved Catch Fish Optimization Algorithm with Multi-Strategy for Solving Global Problems
by Zhihao Fu, Zhichun Li, Yongkang Li and Haoyu Chen
Biomimetics 2024, 9(9), 509; https://doi.org/10.3390/biomimetics9090509 - 23 Aug 2024
Viewed by 439
Abstract
Catch fish optimization algorithm (CFOA) is a newly proposed meta-heuristic algorithm based on human behaviors. CFOA shows better performance on multiple test functions and clustering problems. However, CFOA shows poor performance in some cases, and there is still room for improvement in convergence [...] Read more.
Catch fish optimization algorithm (CFOA) is a newly proposed meta-heuristic algorithm based on human behaviors. CFOA shows better performance on multiple test functions and clustering problems. However, CFOA shows poor performance in some cases, and there is still room for improvement in convergence accuracy, getting rid of local traps, and so on. To further enhance the performance of CFOA, a multi-strategy improved catch fish optimization algorithm (MICFOA) is proposed in this paper. In the exploration phase, we propose a Lévy-based differential independent search strategy to enhance the global search capability of the algorithm while minimizing the impact on the convergence speed. Secondly, in the exploitation phase, a weight-balanced selection mechanism is used to maintain population diversity, enhance the algorithm’s ability to get rid of local optima during the search process, and effectively boost the convergence accuracy. Furthermore, the structure of CFOA is also modified in this paper. A fishermen position replacement strategy is added at the end of the algorithm as a way to strengthen the robustness of the algorithm. To evaluate the performance of MICFOA, a comprehensive comparison with nine other metaheuristic algorithms is performed on the 10/30/50/100 dimensions of the CEC 2017 test functions and the 10/20 dimensions of the CEC2022 test functions. Statistical experiments show that MICFOA has more significant dominance in numerical optimization problems, and its overall performance outperforms the CFOA, PEOA, TLBO, COA, ARO, EDO, YDSE, and other state-of-the-art algorithms such as LSHADE, JADE, IDE-EDA, and APSM-jSO. Full article
Show Figures

Figure 1

20 pages, 34619 KiB  
Article
A Method of Dual-AGV-Ganged Path Planning Based on the Genetic Algorithm
by Yongrong Cai, Haibin Liu, Mingfei Li and Fujie Ren
Appl. Sci. 2024, 14(17), 7482; https://doi.org/10.3390/app14177482 - 23 Aug 2024
Viewed by 359
Abstract
The genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection, and it is known for its iterative optimization capabilities in both constrained and unconstrained environments. In this paper, a novel method for GA-based dual-automatic guided vehicle (AGV)-ganged path planning [...] Read more.
The genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection, and it is known for its iterative optimization capabilities in both constrained and unconstrained environments. In this paper, a novel method for GA-based dual-automatic guided vehicle (AGV)-ganged path planning is proposed to address the problem of frequent steering collisions in dual-AGV-ganged autonomous navigation. This method successfully plans global paths that are safe, collision-free, and efficient for both leader and follower AGVs. Firstly, a new ganged turning cost function was introduced based on the safe turning radius of dual-AGV-ganged systems to effectively search for selectable safe paths. Then, a dual-AGV-ganged fitness function was designed that incorporates the pose information of starting and goal points to guide the GA toward iterative optimization for smooth, efficient, and safe movement of dual AGVs. Finally, to verify the feasibility and effectiveness of the proposed algorithm, simulation experiments were conducted, and its performance was compared with traditional genetic algorithms, Astra algorithms, and Dijkstra algorithms. The results show that the proposed algorithm effectively solves the problem of frequent steering collisions, significantly shortens the path length, and improves the smoothness and safety stability of the path. Moreover, the planned paths were validated in real environments, ensuring safe paths while making more efficient use of map resources. Compared to the Dijkstra algorithm, the path length was reduced by 30.1%, further confirming the effectiveness of the method. This provides crucial technical support for the safe autonomous navigation of dual-AGV-ganged systems. Full article
Show Figures

Figure 1

20 pages, 6470 KiB  
Article
PID Controller Design for an E. coli Fed-Batch Fermentation Process System Using Chaotic Electromagnetic Field Optimization
by Olympia Roeva, Tsonyo Slavov and Jordan Kralev
Processes 2024, 12(9), 1795; https://doi.org/10.3390/pr12091795 - 23 Aug 2024
Viewed by 385
Abstract
This paper presents an optimal tuning of a proportional integral differential (PID) controller used to maintain glucose concentration at a desired set point. The PID controller synthesizes an appropriate feed rate profile for an E. coli fed-batch cultivation process. Mathematical models are developed [...] Read more.
This paper presents an optimal tuning of a proportional integral differential (PID) controller used to maintain glucose concentration at a desired set point. The PID controller synthesizes an appropriate feed rate profile for an E. coli fed-batch cultivation process. Mathematical models are developed based on dynamic mass balance equations for biomass, substrate, and product concentration of the E. coli BL21(DE3)pPhyt109 fed-batch cultivation for bacterial phytase extracellular production. For model parameter identification and PID tuning, a hybrid metaheuristic technique—chaotic electromagnetic field optimization (CEFO)—is proposed. In the hybridization, a chaotic map is used for the generation of a new electromagnetic particle instead of the electromagnetic field optimization (EFO) search strategy. The CEFO combines the exploitation capability of the EFO algorithm and the exploration power of ten different chaotic maps. The comparison of the results with classical EFO shows the superior behaviour of the designed CEFO. An improvement of 30% of the objective function is achieved by applying CEFO. Based on the obtained mathematical models, 10 PID controllers are tuned. The simulation experiments show that the designed controllers are robust, resulting in a good control system performance. The closed-loop transient responses for the corresponding controllers are similar to the estimated models. The settling time of the control system based on the third PID controller for all estimated models is approximately 9 min and the overshoot is approximately 15%. The proposed CEFO algorithm can be considered an effective methodology for mathematical modelling and achievement of high quality and better performance of the designed closed-loop system for cultivation processes. Full article
(This article belongs to the Special Issue Challenges and Advances of Process Control Systems)
Show Figures

Figure 1

20 pages, 7347 KiB  
Article
Linear Antenna Array Pattern Synthesis Using Multi-Verse Optimization Algorithm
by Anoop Raghuvanshi, Abhinav Sharma, Abhishek Kumar Awasthi, Rahul Singhal, Abhishek Sharma, Sew Sun Tiang, Chin Hong Wong and Wei Hong Lim
Electronics 2024, 13(17), 3356; https://doi.org/10.3390/electronics13173356 - 23 Aug 2024
Viewed by 393
Abstract
The design of an effective antenna array is a major challenge encountered in most communication systems. A much-needed requirement is obtaining a directional and high-gain radiation pattern. This study deals with the design of a linear antenna array that radiates with reduced peak-side [...] Read more.
The design of an effective antenna array is a major challenge encountered in most communication systems. A much-needed requirement is obtaining a directional and high-gain radiation pattern. This study deals with the design of a linear antenna array that radiates with reduced peak-side lobe levels (PSLL), decreases side-lobe average power with and without the first null beamwidth (FNBW) constraint, places deep nulls in the desired direction, and minimizes the close-in-side lobe levels (CSLL). The nature-inspired metaheuristic algorithm multi-verse optimization (MVO) is explored with other state-of-the-art algorithms to optimize the parameters of the antenna array. MVO is a global search method that is less prone to being stuck in the local optimal solution, providing a better alternative for beam-pattern synthesis. Eleven design examples have been demonstrated, which optimizes the amplitude and position of antenna array elements. The simulation results illustrate that MVO outperforms other algorithms in all the design examples and greatly enhances the radiation characteristics, thus promoting industrial innovation in antenna array design. In addition, the MVO algorithm’s performance was validated using the Wilcoxon non-parametric test. Full article
(This article belongs to the Special Issue AI Used in Mobile Communications and Networks)
Show Figures

Figure 1

35 pages, 5814 KiB  
Article
A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources
by Mohd Bilal, Pitshou N. Bokoro, Gulshan Sharma and Giovanni Pau
Energies 2024, 17(16), 4194; https://doi.org/10.3390/en17164194 - 22 Aug 2024
Viewed by 624
Abstract
Alternative energy sources have significantly impacted the global electrical sector by providing continuous power to consumers. The deployment of renewable energy sources in order to serve the charging requirements of plug-in electric vehicles (PEV) has become a crucial area of research in emerging [...] Read more.
Alternative energy sources have significantly impacted the global electrical sector by providing continuous power to consumers. The deployment of renewable energy sources in order to serve the charging requirements of plug-in electric vehicles (PEV) has become a crucial area of research in emerging nations. This research work explores the techno-economic and environmental viability of on-grid charging of PEVs integrated with renewable energy sources in the Surat region of India. The system is designed to facilitate power exchange between the grid network and various energy system components. The chosen location has contrasting wind and solar potential, ensuring diverse renewable energy prospects. PEV charging hours vary depending on the location. A novel metaheuristic-based optimization algorithm, the Pufferfish Optimization Algorithm (POA), was employed to optimize system component sizing by minimizing the system objectives including Cost of Energy (COE) and the total net present cost (TNPC), ensuring a lack of power supply probability (LPSP) within a permissible range. Our findings revealed that the optimal PEV charging station configuration is a grid-tied system combining solar photovoltaic (SPV) panels and wind turbines (WT). This setup achieves a COE of USD 0.022/kWh, a TNPC of USD 222,762.80, and a life cycle emission of 16,683.74 kg CO2-equivalent per year. The system also reached a 99.5% renewable energy penetration rate, with 3902 kWh/year of electricity purchased from the grid and 741,494 kWh/year of energy sold back to the grid. This approach could reduce reliance on overburdened grids, particularly in developing nations. Full article
(This article belongs to the Special Issue Novel Energy Management Approaches in Microgrid Systems)
Show Figures

Figure 1

24 pages, 1749 KiB  
Article
Improved African Vulture Optimization Algorithm Based on Random Opposition-Based Learning Strategy
by Xingsheng Kuang, Junfa Hou, Xiaotong Liu, Chengming Lin, Zhu Wang and Tianlei Wang
Electronics 2024, 13(16), 3329; https://doi.org/10.3390/electronics13163329 - 22 Aug 2024
Viewed by 304
Abstract
This paper proposes an improved African vulture optimization algorithm (IROAVOA), which integrates the random opposition-based learning strategy and disturbance factor to solve problems such as the relatively weak global search capability and the poor ability to balance exploration and exploitation stages. IROAVOA is [...] Read more.
This paper proposes an improved African vulture optimization algorithm (IROAVOA), which integrates the random opposition-based learning strategy and disturbance factor to solve problems such as the relatively weak global search capability and the poor ability to balance exploration and exploitation stages. IROAVOA is divided into two parts. Firstly, the random opposition-based learning strategy is introduced in the population initialization stage to improve the diversity of the population, enabling the algorithm to more comprehensively explore the potential solution space and improve the convergence speed of the algorithm. Secondly, the disturbance factor is introduced at the exploration stage to increase the randomness of the algorithm, effectively avoiding falling into the local optimal solution and allowing a better balance of the exploration and exploitation stages. To verify the effectiveness of the proposed algorithm, comprehensive testing was conducted using the 23 benchmark test functions, the CEC2019 test suite, and two engineering optimization problems. The algorithm was compared with seven state-of-the-art metaheuristic algorithms in benchmark test experiments and compared with five algorithms in engineering optimization experiments. The experimental results indicate that IROAVOA achieved better mean and optimal values in all test functions and achieved significant improvement in convergence speed. It can also solve engineering optimization problems better than the other five algorithms. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

Back to TopTop