Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = metazoa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5926 KiB  
Review
Structure and Composition of Spermatozoa Fibrous Sheath in Diverse Groups of Metazoa
by Ekaterina A. Guseva, Vitaly S. Buev, Sabina E. Mirzaeva, Philipp I. Pletnev, Olga A. Dontsova and Petr V. Sergiev
Int. J. Mol. Sci. 2024, 25(14), 7663; https://doi.org/10.3390/ijms25147663 - 12 Jul 2024
Viewed by 927
Abstract
The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein [...] Read more.
The proper functioning and assembly of the sperm flagella structures contribute significantly to spermatozoa motility and overall male fertility. However, the fine mechanisms of assembly steps are poorly studied due to the high diversity of cell types, low solubility of the corresponding protein structures, and high tissue and cell specificity. One of the open questions for investigation is the attachment of longitudinal columns to the doublets 3 and 8 of axonemal microtubules through the outer dense fibers. A number of mutations affecting the assembly of flagella in model organisms are known. Additionally, evolutionary genomics data and comparative analysis of flagella morphology are available for a set of non-model species. This review is devoted to the analysis of diverse ultrastructures of sperm flagellum of Metazoa combined with an overview of the evolutionary distribution and function of the mammalian fibrous sheath proteins. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
Show Figures

Figure 1

27 pages, 8061 KiB  
Review
Basement Membranes, Brittlestar Tendons, and Their Mechanical Adaptability
by Iain C. Wilkie
Biology 2024, 13(6), 375; https://doi.org/10.3390/biology13060375 - 24 May 2024
Viewed by 909
Abstract
Basement membranes (BMs) are thin layers of extracellular matrix that separate epithelia, endothelia, muscle cells, and nerve cells from adjacent interstitial connective tissue. BMs are ubiquitous in almost all multicellular animals, and their composition is highly conserved across the Metazoa. There is increasing [...] Read more.
Basement membranes (BMs) are thin layers of extracellular matrix that separate epithelia, endothelia, muscle cells, and nerve cells from adjacent interstitial connective tissue. BMs are ubiquitous in almost all multicellular animals, and their composition is highly conserved across the Metazoa. There is increasing interest in the mechanical functioning of BMs, including the involvement of altered BM stiffness in development and pathology, particularly cancer metastasis, which can be facilitated by BM destabilization. Such BM weakening has been assumed to occur primarily through enzymatic degradation by matrix metalloproteinases. However, emerging evidence indicates that non-enzymatic mechanisms may also contribute. In brittlestars (Echinodermata, Ophiuroidea), the tendons linking the musculature to the endoskeleton consist of extensions of muscle cell BMs. During the process of brittlestar autotomy, in which arms are detached for the purpose of self-defense, muscles break away from the endoskeleton as a consequence of the rapid destabilization and rupture of their BM-derived tendons. This contribution provides a broad overview of current knowledge of the structural organization and biomechanics of non-echinoderm BMs, compares this with the equivalent information on brittlestar tendons, and discusses the possible relationship between the weakening phenomena exhibited by BMs and brittlestar tendons, and the potential translational value of the latter as a model system of BM destabilization. Full article
(This article belongs to the Special Issue Current Advances in Echinoderm Research)
Show Figures

Figure 1

20 pages, 1388 KiB  
Review
Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System
by Sonia Spinelli, Maurizio Bruschi, Mario Passalacqua, Lucrezia Guida, Mirko Magnone, Laura Sturla and Elena Zocchi
Int. J. Mol. Sci. 2024, 25(9), 4796; https://doi.org/10.3390/ijms25094796 - 27 Apr 2024
Cited by 1 | Viewed by 1185
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose [...] Read more.
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts. Full article
(This article belongs to the Special Issue Hormone/Receptor System in Human Diseases)
Show Figures

Figure 1

21 pages, 4563 KiB  
Article
Effect of Simulated Eutrophication of Peatlands on the Microbiome of Utricularia vulgaris L.
by Aleksandra Bartkowska and Tomasz Mieczan
Water 2024, 16(7), 1046; https://doi.org/10.3390/w16071046 - 5 Apr 2024
Viewed by 906
Abstract
Global climate change and increasing human impact are the main factors intensifying eutrophication of peatland ecosystems. Due to the high sensitivity of certain groups of microorganisms, they can serve as indicators of the degree of eutrophication and thereby provide much important information for [...] Read more.
Global climate change and increasing human impact are the main factors intensifying eutrophication of peatland ecosystems. Due to the high sensitivity of certain groups of microorganisms, they can serve as indicators of the degree of eutrophication and thereby provide much important information for assessment of the state of peatland ecosystems. However, there is still little knowledge of how changes in the fertility of the environment can affect the microbiome of carnivorous plants in these ecosystems. This study was conducted to verify the following hypotheses: (1) the microbiome of carnivorous plant traps reflects the trophic status of the habitat; (2) an increase in the concentration of biogenic compounds causes a greater increase in the size of microbial communities in the aquatic environment than in the traps. An experiment was carried out in laboratory conditions to determine the effect of simulated eutrophication on the microbiome of Utricularia vulgaris L. An experimental increase in habitat fertility caused an increase in the abundance of bacteria, flagellates, testate amoebae, ciliates, and rotifers, while a decrease in abundance was observed for crustaceans. The increase in the concentration of biogenic compounds also modified the taxonomic composition of communities of microorganisms and small metazoa as well as the strength of trophic relationships; as the trophic level increased, the relationships between bacteria and heterotrophic flagellates; bacteria and testate amoebae; and bacteria and ciliates became stronger. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

18 pages, 2124 KiB  
Article
Deep Learning Techniques to Characterize the RPS28P7 Pseudogene and the Metazoa-SRP Gene as Drug Potential Targets in Pancreatic Cancer Patients
by Iván Salgado, Ernesto Prado Montes de Oca, Isaac Chairez, Luis Figueroa-Yáñez, Alejandro Pereira-Santana, Andrés Rivera Chávez, Jesús Bernardino Velázquez-Fernandez, Teresa Alvarado Parra and Adriana Vallejo
Biomedicines 2024, 12(2), 395; https://doi.org/10.3390/biomedicines12020395 - 8 Feb 2024
Viewed by 1873
Abstract
The molecular explanation about why some pancreatic cancer (PaCa) patients die early and others die later is poorly understood. This study aimed to discover potential novel markers and drug targets that could be useful to stratify and extend expected survival in prospective early-death [...] Read more.
The molecular explanation about why some pancreatic cancer (PaCa) patients die early and others die later is poorly understood. This study aimed to discover potential novel markers and drug targets that could be useful to stratify and extend expected survival in prospective early-death patients. We deployed a deep learning algorithm and analyzed the gene copy number, gene expression, and protein expression data of death versus alive PaCa patients from the GDC cohort. The genes with higher relative amplification (copy number >4 times in the dead compared with the alive group) were EWSR1, FLT3, GPC3, HIF1A, HLF, and MEN1. The most highly up-regulated genes (>8.5-fold change) in the death group were RPL30, RPL37, RPS28P7, RPS11, Metazoa_SRP, CAPNS1, FN1, H33B, LCN2, and OAZ1. None of their corresponding proteins were up or down-regulated in the death group. The mRNA of the RPS28P7 pseudogene could act as ceRNA sponging the miRNA that was originally directed to the parental gene RPS28. We propose RPS28P7 mRNA as the most druggable target that can be modulated with small molecules or the RNA technology approach. These markers could be added as criteria to patient stratification in future PaCa drug trials, but further validation in the target populations is encouraged. Full article
(This article belongs to the Special Issue Artificial Intelligence in the Detection of Diseases)
Show Figures

Figure 1

16 pages, 5558 KiB  
Article
Impact of Doxycycline Addition on Activated Sludge Microflora and Microbial Communities
by Hayet Djelal, Djouza Haddouche, Megane Lebreton, Vanessa Barros, Cristian Villegas and Patrick Dabert
Processes 2024, 12(2), 350; https://doi.org/10.3390/pr12020350 - 7 Feb 2024
Viewed by 971
Abstract
Municipal wastewater treatment plants (WWTPs) are exposed to high concentrations of micropollutants that can impact conventional activated sludge treatment. The consequences of this include failure to meet discharge standards and the disintegration of flocs, leading to poor sludge settleability. This lab-scale study focuses [...] Read more.
Municipal wastewater treatment plants (WWTPs) are exposed to high concentrations of micropollutants that can impact conventional activated sludge treatment. The consequences of this include failure to meet discharge standards and the disintegration of flocs, leading to poor sludge settleability. This lab-scale study focuses on the influence of doxycycline, an antibiotic widely used against human and animal diseases, on protozoa, metazoa, and bacterial communities under sludge growing conditions. Doxycycline was added to the mixed liquor of a communal WWTP up to 0, 100, 200, and 400 mg of doxycycline L−1 and incubated in batch conditions for 23 days. The regular addition of nutrient and carbon sources was preformed every 2 days to prevent sludge starvation. Sludge growth, conductivity, and settleability were measured and compared to sludge microbial community structure, determined by microscopic observations and high-throughput 16S rDNA sequencing. The high doxycycline concentration negatively impacted settleability and correlated with a decrease in bacterial diversity and floc disintegration. The addition of doxycycline promoted the enrichment of Proteobacteria Brevundimonas sp., Luteibacter anthropi, and the Bacteroidetes Chryseobacterium massoliae. These species are known to be resistant to a wide spectrum of antibiotics, including tetracyclines. A study of a larger scale may be conducted based on this study’ results. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

13 pages, 3420 KiB  
Review
Nonribosomal Peptide Synthetases in Animals
by Wouter Suring, Dylan Hoogduin, Giang Le Ngoc, Abraham Brouwer, Nico M. van Straalen and Dick Roelofs
Genes 2023, 14(9), 1741; https://doi.org/10.3390/genes14091741 - 30 Aug 2023
Cited by 4 | Viewed by 1598
Abstract
Nonribosomal peptide synthetases (NRPSs) are a class of cytosolic enzymes that synthesize a range of bio-active secondary metabolites including antibiotics and siderophores. They are widespread among both prokaryotes and eukaryotes but are considered rare among animals. Recently, several novel NRPS genes have been [...] Read more.
Nonribosomal peptide synthetases (NRPSs) are a class of cytosolic enzymes that synthesize a range of bio-active secondary metabolites including antibiotics and siderophores. They are widespread among both prokaryotes and eukaryotes but are considered rare among animals. Recently, several novel NRPS genes have been described in nematodes, schistosomes, and arthropods, which led us to investigate how prevalent NRPS genes are in the animal kingdom. We screened 1059 sequenced animal genomes and showed that NRPSs were present in 7 out of the 19 phyla analyzed. A phylogenetic analysis showed that the identified NRPSs form clades distinct from other adenylate-forming enzymes that contain similar domains such as fatty acid synthases. NRPSs show a remarkably scattered distribution over the animal kingdom. They are especially abundant in rotifers and nematodes. In rotifers, we found a large variety of domain architectures and predicted substrates. In the nematode Plectus sambesii, we identified the beta-lactam biosynthesis genes L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase, isopenicillin N synthase, and deacetoxycephalosporin C synthase that catalyze the formation of beta-lactam antibiotics in fungi and bacteria. These genes are also present in several species of Collembola, but not in other hexapods analyzed so far. In conclusion, our survey showed that NRPS genes are more abundant and widespread in animals than previously known. Full article
(This article belongs to the Section Population and Evolutionary Genetics and Genomics)
Show Figures

Figure 1

12 pages, 2227 KiB  
Article
A Large-Scale Study into Protist-Animal Interactions Based on Public Genomic Data Using DNA Barcodes
by Jiazheng Xie, Bowen Tan and Yi Zhang
Animals 2023, 13(14), 2243; https://doi.org/10.3390/ani13142243 - 8 Jul 2023
Cited by 3 | Viewed by 1712
Abstract
With the birth of next-generation sequencing (NGS) technology, genomic data in public databases have increased exponentially. Unfortunately, exogenous contamination or intracellular parasite sequences in assemblies could confuse genomic analysis. Meanwhile, they can provide a valuable resource for studies of host-microbe interactions. Here, we [...] Read more.
With the birth of next-generation sequencing (NGS) technology, genomic data in public databases have increased exponentially. Unfortunately, exogenous contamination or intracellular parasite sequences in assemblies could confuse genomic analysis. Meanwhile, they can provide a valuable resource for studies of host-microbe interactions. Here, we used a strategy based on DNA barcodes to scan protistan contamination in the GenBank WGS/TSA database. The results showed a total of 13,952 metazoan/animal assemblies in GenBank, where 17,036 contigs were found to be protistan contaminants in 1507 assemblies (10.8%), with even higher contamination rates in taxa of Cnidaria (150/281), Crustacea (237/480), and Mollusca (107/410). Taxonomic analysis of the protists derived from these contigs showed variations in abundance and evenness of protistan contamination across different metazoan taxa, reflecting host preferences of Apicomplexa, Ciliophora, Oomycota and Symbiodiniaceae for mammals and birds, Crustacea, insects, and Cnidaria, respectively. Finally, mitochondrial proteins COX1 and CYTB were predicted from these contigs, and the phylogenetic analysis corroborated the protistan origination and heterogeneous distribution of the contaminated contigs. Overall, in this study, we conducted a large-scale scan of protistan contaminant in genomic resources, and the protistan sequences detected will help uncover the protist diversity and relationships of these picoeukaryotes with Metazoa. Full article
(This article belongs to the Topic Host–Parasite Interactions)
Show Figures

Figure 1

12 pages, 2276 KiB  
Review
Metabolic “Sense Relay” in Stem Cells: A Short But Impactful Life of PAS Kinase Balancing Stem Cell Fates
by Chintan K. Kikani
Cells 2023, 12(13), 1751; https://doi.org/10.3390/cells12131751 - 30 Jun 2023
Viewed by 1135
Abstract
Tissue regeneration is a complex molecular and biochemical symphony. Signaling pathways establish the rhythmic proliferation and differentiation cadence of participating cells to repair the damaged tissues and repopulate the tissue-resident stem cells. Sensory proteins form a critical bridge between the environment and cellular [...] Read more.
Tissue regeneration is a complex molecular and biochemical symphony. Signaling pathways establish the rhythmic proliferation and differentiation cadence of participating cells to repair the damaged tissues and repopulate the tissue-resident stem cells. Sensory proteins form a critical bridge between the environment and cellular response machinery, enabling precise spatiotemporal control of stem cell fate. Of many sensory modules found in proteins from prokaryotes to mammals, Per-Arnt-Sim (PAS) domains are one of the most ancient and found in the most diverse physiological context. In metazoa, PAS domains are found in many transcription factors and ion channels; however, PAS domain-containing Kinase (PASK) is the only metazoan kinase where the PAS sensory domain is connected to a signaling kinase domain. PASK is predominantly expressed in undifferentiated, self-renewing embryonic and adult stem cells, and its expression is rapidly lost upon differentiation, resulting in its nearly complete absence from the adult mammalian tissues. Thus, PASK is expressed within a narrow but critical temporal window when stem cell fate is established. In this review, we discuss the emerging insight into the sensory and signaling functions of PASK as an integrator of metabolic and nutrient signaling information that serves to balance self-renewal and differentiation programs during mammalian tissue regeneration. Full article
(This article belongs to the Special Issue Regulation Mechanisms of Myogenic and Cardiomyogenic Differentiation)
Show Figures

Graphical abstract

17 pages, 15021 KiB  
Article
A Genomic and Transcriptomic Analysis of the C-Type Lectin Gene Family Reveals Highly Expanded and Diversified Repertoires in Bivalves
by Amaro Saco, Hugo Suárez, Beatriz Novoa and Antonio Figueras
Mar. Drugs 2023, 21(4), 254; https://doi.org/10.3390/md21040254 - 20 Apr 2023
Cited by 8 | Viewed by 1907
Abstract
C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an [...] Read more.
C-type lectins belong to a widely conserved family of lectins characterized in Metazoa. They show important functional diversity and immune implications, mainly as pathogen recognition receptors. In this work, C-type lectin-like proteins (CTLs) of a set of metazoan species were analyzed, revealing an important expansion in bivalve mollusks, which contrasted with the reduced repertoires of other mollusks, such as cephalopods. Orthology relationships demonstrated that these expanded repertoires consisted of CTL subfamilies conserved within Mollusca or Bivalvia and of lineage-specific subfamilies with orthology only between closely related species. Transcriptomic analyses revealed the importance of the bivalve subfamilies in mucosal immunity, as they were mainly expressed in the digestive gland and gills and modulated with specific stimuli. CTL domain-containing proteins that had additional domains (CTLDcps) were also studied, revealing interesting gene families with different conservation degrees of the CTL domain across orthologs from different taxa. Unique bivalve CTLDcps with specific domain architectures were revealed, corresponding to uncharacterized bivalve proteins with putative immune function according to their transcriptomic modulation, which could constitute interesting targets for functional characterization. Full article
(This article belongs to the Special Issue Marine Glycomics 2nd Edition)
Show Figures

Figure 1

20 pages, 5465 KiB  
Article
Metabarcoding and Metabolomics Reveal the Effect of the Invasive Alien Tree Miconia calvescens DC. on Soil Diversity on the Tropical Island of Mo’orea (French Polynesia)
by Camille Clerissi, Slimane Chaïb, Delphine Raviglione, Benoit Espiau, Cédric Bertrand and Jean-Yves Meyer
Microorganisms 2023, 11(4), 832; https://doi.org/10.3390/microorganisms11040832 - 24 Mar 2023
Cited by 3 | Viewed by 1977
Abstract
Miconia calvescens is a dominant invasive alien tree species that threatens several endemic plants in French Polynesia (South Pacific). While most analyses have been performed at the scale of plant communities, the effects on the rhizosphere have not been described so far. However, [...] Read more.
Miconia calvescens is a dominant invasive alien tree species that threatens several endemic plants in French Polynesia (South Pacific). While most analyses have been performed at the scale of plant communities, the effects on the rhizosphere have not been described so far. However, this compartment can be involved in plant fitness through inhibitory activities, nutritive exchanges, and communication with other organisms. In particular, it was not known whether M. calvescens forms specific associations with soil organisms or has a specific chemical composition of secondary metabolites. To tackle these issues, the rhizosphere of six plant species was sampled on the tropical island of Mo’orea in French Polynesia at both the seedling and tree stages. The diversity of soil organisms (bacteria, microeukaryotes, and metazoa) and of secondary metabolites was studied using high-throughput technologies (metabarcoding and metabolomics, respectively). We found that trees had higher effects on soil diversity than seedlings. Moreover, M. calvescens showed a specific association with microeukaryotes of the Cryptomycota family at the tree stage. This family was positively correlated with the terpenoids found in the soil. Many terpenoids were also found within the roots of M. calvescens, suggesting that these molecules were probably produced by the plant and favored the presence of Cryptomycota. Both terpenoids and Cryptomycota were thus specific chemicals and biomarkers of M. calvescens. Additional studies must be performed in the future to better understand if they contribute to the success of this invasive tree. Full article
(This article belongs to the Special Issue Microbial Interactions in Soil 2.0)
Show Figures

Figure 1

21 pages, 3072 KiB  
Review
Protein–Ligand Interactions in Scarcity: The Stringent Response from Bacteria to Metazoa, and the Unanswered Questions
by Sailen Barik
Int. J. Mol. Sci. 2023, 24(4), 3999; https://doi.org/10.3390/ijms24043999 - 16 Feb 2023
Cited by 2 | Viewed by 1859
Abstract
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other [...] Read more.
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

21 pages, 5094 KiB  
Article
Transfection of Sponge Cells and Intracellular Localization of Cancer-Related MYC, RRAS2, and DRG1 Proteins
by Kristina Dominko, Antea Talajić, Martina Radić, Nikolina Škrobot Vidaček, Kristian Vlahoviček, Maja Herak Bosnar and Helena Ćetković
Mar. Drugs 2023, 21(2), 119; https://doi.org/10.3390/md21020119 - 10 Feb 2023
Cited by 2 | Viewed by 2555
Abstract
The determination of the protein’s intracellular localization is essential for understanding its biological function. Protein localization studies are mainly performed on primary and secondary vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties, studies on invertebrate cells, [...] Read more.
The determination of the protein’s intracellular localization is essential for understanding its biological function. Protein localization studies are mainly performed on primary and secondary vertebrate cell lines for which most protocols have been optimized. In spite of experimental difficulties, studies on invertebrate cells, including basal Metazoa, have greatly advanced. In recent years, the interest in studying human diseases from an evolutionary perspective has significantly increased. Sponges, placed at the base of the animal tree, are simple animals without true tissues and organs but with a complex genome containing many genes whose human homologs have been implicated in human diseases, including cancer. Therefore, sponges are an innovative model for elucidating the fundamental role of the proteins involved in cancer. In this study, we overexpressed human cancer-related proteins and their sponge homologs in human cancer cells, human fibroblasts, and sponge cells. We demonstrated that human and sponge MYC proteins localize in the nucleus, the RRAS2 in the plasma membrane, the membranes of the endolysosomal vesicles, and the DRG1 in the cell’s cytosol. Despite the very low transfection efficiency of sponge cells, we observed an identical localization of human proteins and their sponge homologs, indicating their similar cellular functions. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Graphical abstract

17 pages, 1342 KiB  
Review
The ABA/LANCL Hormone/Receptor System in the Control of Glycemia, of Cardiomyocyte Energy Metabolism, and in Neuroprotection: A New Ally in the Treatment of Diabetes Mellitus?
by Sonia Spinelli, Mirko Magnone, Lucrezia Guida, Laura Sturla and Elena Zocchi
Int. J. Mol. Sci. 2023, 24(2), 1199; https://doi.org/10.3390/ijms24021199 - 7 Jan 2023
Cited by 2 | Viewed by 2407
Abstract
Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress [...] Read more.
Abscisic acid (ABA), long known as a plant stress hormone, is present and functionally active in organisms other than those pertaining to the land plant kingdom, including cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. The ancient, cross-kingdom role of this stress hormone allows ABA and its signaling pathway to control cell responses to environmental stimuli in diverse organisms such as marine sponges, higher plants, and humans. Recent advances in our knowledge about the physiological role of ABA and of its mammalian receptors in the control of energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells allow us to foresee therapeutic applications for ABA in the fields of pre-diabetes, diabetes, and cardio- and neuro-protection. Vegetal extracts titrated in their ABA content have shown both efficacy and tolerability in preliminary clinical studies. As the prevalence of glucose intolerance, diabetes, and cardiovascular and neurodegenerative diseases is steadily increasing in both industrialized and rapidly developing countries, new and cost-efficient therapeutics to combat these ailments are much needed to ensure disease-free aging for the current and future working generations. Full article
(This article belongs to the Special Issue Diabetes: Molecular Mechanisms)
Show Figures

Graphical abstract

15 pages, 2913 KiB  
Article
Roles for the RNA-Binding Protein Caper in Reproductive Output in Drosophila melanogaster
by Erika J. Tixtha, Meg K. Super, M. Brandon Titus, Jeremy M. Bono and Eugenia C. Olesnicky
J. Dev. Biol. 2023, 11(1), 2; https://doi.org/10.3390/jdb11010002 - 23 Dec 2022
Viewed by 2534
Abstract
RNA binding proteins (RBPs) play a fundamental role in the post-transcriptional regulation of gene expression within the germline and nervous system. This is underscored by the prevalence of mutations within RBP-encoding genes being implicated in infertility and neurological disease. We previously described roles [...] Read more.
RNA binding proteins (RBPs) play a fundamental role in the post-transcriptional regulation of gene expression within the germline and nervous system. This is underscored by the prevalence of mutations within RBP-encoding genes being implicated in infertility and neurological disease. We previously described roles for the highly conserved RBP Caper in neurite morphogenesis in the Drosophila larval peripheral system and in locomotor behavior. However, caper function has not been investigated outside the nervous system, although it is widely expressed in many different tissue types during embryogenesis. Here, we describe novel roles for Caper in fertility and mating behavior. We find that Caper is expressed in ovarian follicles throughout oogenesis but is dispensable for proper patterning of the egg chamber. Additionally, reduced caper function, through either a genetic lesion or RNA interference-mediated knockdown of caper in the female germline, results in females laying significantly fewer eggs than their control counterparts. Moreover, this phenotype is exacerbated with age. caper dysfunction also results in partial embryonic and larval lethality. Given that caper is highly conserved across metazoa, these findings may also be relevant to vertebrates. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Developmental Biology II)
Show Figures

Graphical abstract

Back to TopTop