Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,135)

Search Parameters:
Keywords = microRNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2105 KiB  
Article
MicroRNA-193a-3p as a Valuable Biomarker for Discriminating between Colorectal Cancer and Colorectal Adenoma Patients
by Marija Fabijanec, Andrea Hulina-Tomašković, Mario Štefanović, Donatella Verbanac, Ivana Ćelap, Anita Somborac-Bačura, Marija Grdić Rajković, Alma Demirović, Snježana Ramić, Božo Krušlin, Lada Rumora, Andrea Čeri, Martha Koržinek, József Petrik, Neven Ljubičić, Neven Baršić and Karmela Barišić
Int. J. Mol. Sci. 2024, 25(15), 8156; https://doi.org/10.3390/ijms25158156 (registering DOI) - 26 Jul 2024
Abstract
Specific markers for colorectal cancer (CRC), preceded by colorectal adenoma (pre-CRC), are lacking. This study aimed to investigate whether microRNAs (miR-19a-3p, miR-92a-3p, miR-193a-3p, and miR-210-3p) from tissues and exosomes are potential CRC biomarkers and compare them to existing biomarkers, namely carcinoembryonic antigen (CEA) [...] Read more.
Specific markers for colorectal cancer (CRC), preceded by colorectal adenoma (pre-CRC), are lacking. This study aimed to investigate whether microRNAs (miR-19a-3p, miR-92a-3p, miR-193a-3p, and miR-210-3p) from tissues and exosomes are potential CRC biomarkers and compare them to existing biomarkers, namely carcinoembryonic antigen (CEA) and carbohydrate antigen (CA) 19-9. MiRNA was isolated in the samples of 52 CRC and 76 pre-CRC patients. Expression levels were analyzed by RT-qPCR. When comparing pre-CRC and CRC tissue expression levels, only miR-193a-3p showed statistically significant result (p < 0.0001). When comparing the tissues and exosomes of CRC samples, a statistically significant difference was found for miR-193a-3p (p < 0.0001), miR-19a-3p (p < 0.0001), miR-92a-3p (p = 0.0212), and miR-210-3p (p < 0.0001). A receiver-operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to evaluate the diagnostic value of CEA, CA 19-9, and miRNAs. CEA and CA 19-9 had good diagnostic values (AUCs of 0.798 and 0.668). The diagnostic value only of miR-193a-3p was highlighted (AUC = 0.725). The final logistic regression model, in which we put a combination of CEA concentration and the miR-193a-3p expression level in tissues, showed that using these two markers can distinguish CRC and pre-CRC in 71.3% of cases (AUC = 0.823). MiR-193a-3p from tissues could be a potential CRC biomarker. Full article
(This article belongs to the Special Issue New Insights into Colorectal Cancer)
Show Figures

Figure 1

17 pages, 2947 KiB  
Article
New Insights into the Mechanism by Which the Pituitary Gland Copes with Hypoxia Stress Based on a Transcriptomic Analysis of Megalobrama amblycephala
by Ruilin Xie, Huandi Guo, Yuanyuan Luo, Wen Huang, Zhuohao Ruan and Wensheng Liu
Genes 2024, 15(8), 987; https://doi.org/10.3390/genes15080987 - 26 Jul 2024
Abstract
Hypoxia is a common environmental stressor in aquatic ecosystems, and during the cultivation process, Megalobrama amblycephala is prone to death because it is hypoxia-intolerant, which brings huge economic losses to farmers. The pituitary gland is a crucial endocrine gland in fish, and it [...] Read more.
Hypoxia is a common environmental stressor in aquatic ecosystems, and during the cultivation process, Megalobrama amblycephala is prone to death because it is hypoxia-intolerant, which brings huge economic losses to farmers. The pituitary gland is a crucial endocrine gland in fish, and it is mainly involved in the secretion, storage, and regulation of hormones. In the present study, we compared the transcriptional responses to serious hypoxia in the pituitary gland among hypoxia-sensitive (HS) and hypoxia-tolerant (HT) M. amblycephala and a control group that received a normal oxygen supply (C0). The fish were categorized according to the time required to lose balance during a hypoxia treatment. A total of 129,251,170 raw reads were obtained. After raw sequence filtering, 43,461,745, 42,609,567, and 42,730,282 clean reads were obtained for the HS, HT, and C0 groups, respectively. A transcriptomic comparison revealed 1234 genes that were differentially expressed in C0 vs. HS, while 1646 differentially expressed genes were obtained for C0 vs. HT. In addition, the results for HS vs. HT showed that 367 upregulated and 41 downregulated differentially expressed genes were obtained for a total of 408 differentially expressed genes. A KEGG analysis of C0 vs. HS, C0 vs. HT, and HS vs. HT identified 315, 322, and 219 enriched pathways, respectively. Similar hypoxia-induced transcription patterns suggested that the downregulated DEGs and enriched pathways were related to pathways of neurodegeneration in multiple diseases, pathways in cancer, thermogenesis, microRNAs in cancer, diabetic cardiomyopathy, and renin secretion. However, in the upregulated DEGs, the PI3K-Akt signaling pathway (C0 vs. HS), microRNAs in cancer (C0 vs. HT), and HIF-1 signaling pathway (HS vs. HT) were significantly enriched. There is a lack of clarity regarding the role of the pituitary gland in hypoxic stress. These results not only provide new insights into the mechanism by which pituitary tissue copes with hypoxia stress in M. amblycephala but also offer a basis for breeding M. amblycephala with hypoxia-resistant traits. Full article
(This article belongs to the Collection Feature Papers in ‘Animal Genetics and Genomics’)
Show Figures

Figure 1

37 pages, 1011 KiB  
Review
miRNA-Mediated Mechanisms in the Generation of Effective and Safe Oncolytic Viruses
by Mariia Toropko, Sergey Chuvpilo and Alexander Karabelsky
Pharmaceutics 2024, 16(8), 986; https://doi.org/10.3390/pharmaceutics16080986 - 25 Jul 2024
Viewed by 140
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by inhibiting the translation of target transcripts. The expression profiles of miRNAs vary in different tissues and change with the development of diseases, including cancer. This feature has begun to be used for [...] Read more.
MicroRNAs (miRNAs) are short non-coding RNAs that regulate gene expression by inhibiting the translation of target transcripts. The expression profiles of miRNAs vary in different tissues and change with the development of diseases, including cancer. This feature has begun to be used for the modification of oncolytic viruses (OVs) in order to increase their selectivity and efficacy. OVs represent a relatively new class of anticancer drugs; they are designed to replicate in cancer tumors and destroy them. These can be natural viruses that can replicate within cancer tumor cells, or recombinant viruses created in laboratories. There are some concerns regarding OVs’ toxicity, due to their ability to partially replicate in healthy tissues. In addition, lytic and immunological responses upon OV therapy are not always sufficient, so various OV editing methods are used. This review discusses the latest results of preclinical and clinical studies of OVs, modifications of which are associated with the miRNA-mediated mechanism of gene silencing. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies, 3rd Edition)
Show Figures

Figure 1

16 pages, 994 KiB  
Review
Epigenetic Regulation of the Renin–Angiotensin–Aldosterone System in Hypertension
by Yoshimichi Takeda, Masashi Demura, Takashi Yoneda and Yoshiyu Takeda
Int. J. Mol. Sci. 2024, 25(15), 8099; https://doi.org/10.3390/ijms25158099 - 25 Jul 2024
Viewed by 179
Abstract
Activation of the renin–angiotensin–aldosterone system (RAAS) plays an important pathophysiological role in hypertension. Increased mRNA levels of the angiotensinogen angiotensin-converting enzyme, angiotensin type 1 receptor gene, Agtr1a, and the aldosterone synthase gene, CYP11B2, have been reported in the heart, blood vessels, [...] Read more.
Activation of the renin–angiotensin–aldosterone system (RAAS) plays an important pathophysiological role in hypertension. Increased mRNA levels of the angiotensinogen angiotensin-converting enzyme, angiotensin type 1 receptor gene, Agtr1a, and the aldosterone synthase gene, CYP11B2, have been reported in the heart, blood vessels, and kidneys in salt-sensitive hypertension. However, the mechanism of gene regulation in each component of the RAAS in cardiovascular and renal tissues is unclear. Epigenetic mechanisms, which are important for regulating gene expression, include DNA methylation, histone post-translational modifications, and microRNA (miRNA) regulation. A close association exists between low DNA methylation at CEBP-binding sites and increased AGT expression in visceral adipose tissue and the heart of salt-sensitive hypertensive rats. Several miRNAs influence AGT expression and are associated with cardiovascular diseases. Expression of both ACE and ACE2 genes is regulated by DNA methylation, histone modifications, and miRNAs. Expression of both angiotensinogen and CYP11B2 is reversibly regulated by epigenetic modifications and is related to salt-sensitive hypertension. The mineralocorticoid receptor (MR) exists in cardiovascular and renal tissues, in which many miRNAs influence expression and contribute to the pathogenesis of hypertension. Expression of the 11beta-hydroxysteroid dehydrogenase type 2 (HSD11B2) gene is also regulated by methylation and miRNAs. Epigenetic regulation of renal and vascular HSD11B2 is an important pathogenetic mechanism for salt-sensitive hypertension. Full article
(This article belongs to the Special Issue New Trends in Diabetes, Hypertension and Cardiovascular Diseases 2.0)
Show Figures

Figure 1

17 pages, 2194 KiB  
Article
DNA Sequence Variations Affecting Serotonin Transporter Transcriptional Regulation and Activity: Do They Impact Alcohol Addiction?
by Giampiero Ferraguti, Silvia Francati, Claudia Codazzo, Giovanna Blaconà, Giancarlo Testino, Antonio Angeloni, Marco Fiore, Mauro Ceccanti and Marco Lucarelli
Int. J. Mol. Sci. 2024, 25(15), 8089; https://doi.org/10.3390/ijms25158089 - 25 Jul 2024
Viewed by 205
Abstract
Genetic features of alcohol dependence have been extensively investigated in recent years. A large body of studies has underlined the important role of genetic variants not only in metabolic pathways but also in the neurobiology of alcohol dependence, mediated by the neuronal circuits [...] Read more.
Genetic features of alcohol dependence have been extensively investigated in recent years. A large body of studies has underlined the important role of genetic variants not only in metabolic pathways but also in the neurobiology of alcohol dependence, mediated by the neuronal circuits regulating reward and craving. Serotonin transporter (5-HTT), encoded by the SLC6A4 gene (Solute carrier family 6-neurotransmitter transporter-member 4), is targeted by antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs) and plays a pivotal role in serotoninergic transmission; it has been associated with psychiatric diseases and alcohol dependence. Transcriptional regulation and expression of 5-HTT depend not only on epigenetic modifications, among which DNA methylation (CpG and non-CpG) is primarily involved, but also on sequence variations occurring in intron/exon regions and in untranslated regions in 5′ and 3′, being the first sequences important for the splicing machinery and the last for the binding of transcription factors and micro RNAs. This work intends to shed light on the role of sequence variations known to affect the expression or function of 5-HTT in alcohol-dependent individuals. We found a statistically significant difference in the allelic (p = 0.0083) and genotypic (p = 0.0151) frequencies of the tri-allelic polymorphism, with higher function alleles and genotypes more represented in the control population. Furthermore, we identified three haplotypes more frequent in subjects with AUD (p < 0.0001) and one more frequent in the control population (p < 0.0001). The results obtained for the tri-allelic polymorphism in alcohol dependence confirm what is already present in part of the literature. The role of haplotypes requires further studies to be clarified. Full article
(This article belongs to the Special Issue Genetic and Epigenetic Control of Disease Occurrence)
Show Figures

Figure 1

13 pages, 4679 KiB  
Article
Combination of Evidence from Bibliometrics and Bioinformatics Analysis Identifies miR-21 as a Potential Therapeutical Target for Diabetes
by Yiqing Chen, Xuan Ye, Xiao Zhang, Zilin Guo, Wei Chen, Zihan Pan, Zengjie Zhang, Bing Li, Hongyun Wang and Jianhua Yao
Metabolites 2024, 14(8), 403; https://doi.org/10.3390/metabo14080403 - 25 Jul 2024
Viewed by 214
Abstract
Many microRNAs (miRNAs) have been identified as being involved in diabetes; however, the question of which ones may be the most promising therapeutical targets still needs more investigation. This study aims to understand the overall development tendency and identify a specific miRNA molecule [...] Read more.
Many microRNAs (miRNAs) have been identified as being involved in diabetes; however, the question of which ones may be the most promising therapeutical targets still needs more investigation. This study aims to understand the overall development tendency and identify a specific miRNA molecule to attenuate diabetes. We developed a combined analysis method based on bibliometrics and bioinformatics to visualize research institutions, authors, cited references, and keywords to identify a promising target for diabetes. Our data showed that diabetes-related miRNA is receiving continuously increasing attention, with a large number of publications, indicating that this is still a hot topic in diabetes research. Scientists from different institutions are collaborating closely in this field. miR-21, miR-146a, miR-155, and miR-34a are frequently mentioned as high-frequency keywords in the related references. Moreover, among all the above miRNAs, bioinformatics analysis further strengthens the argument that miR-21 is the top significantly upregulated molecule in diabetes patients and plays an important role in the pathogenesis of diabetes. Our study may provide a way to identify targets and promote the clinical translation of miRNA-related therapeutical strategies for diabetes, which could also indicate present and future directions for research in this area. Full article
Show Figures

Figure 1

15 pages, 5145 KiB  
Article
Selective Enrichment of Angiomirs in Extracellular Vesicles Released from Ischemic Skeletal Muscles: Potential Role in Angiogenesis and Neovascularization
by Sylvie Dussault, Michel Desjarlais, Nozha Raguema, Eric Boilard, Sylvain Chemtob and Alain Rivard
Cells 2024, 13(15), 1243; https://doi.org/10.3390/cells13151243 - 24 Jul 2024
Viewed by 217
Abstract
MicroRNAs (miRs) regulate physiological and pathological processes, including ischemia-induced angiogenesis and neovascularization. They can be transferred between cells by extracellular vesicles (EVs). However, the specific miRs that are packaged in EVs released from skeletal muscles, and how this process is modulated by ischemia, [...] Read more.
MicroRNAs (miRs) regulate physiological and pathological processes, including ischemia-induced angiogenesis and neovascularization. They can be transferred between cells by extracellular vesicles (EVs). However, the specific miRs that are packaged in EVs released from skeletal muscles, and how this process is modulated by ischemia, remain to be determined. We used a mouse model of hindlimb ischemia and next generation sequencing (NGS) to perform a complete profiling of miR expression and determine the effect of ischemia in skeletal muscles, and in EVs of different sizes (microvesicles (MVs) and exosomes) released from these muscles. Ischemia significantly modulated miR expression in whole muscles and EVs, increasing the levels of several miRs that can have pro-angiogenic effects (angiomiRs). We found that specific angiomiRs are selectively enriched in MVs and/or exosomes in response to ischemia. In silico approaches indicate that these miRs modulate pathways that play key roles in angiogenesis and neovascularization, including HIF1/VEGF signaling, regulation of actin cytoskeleton and focal adhesion, NOTCH, PI3K/AKT, RAS/MAPK, JAK/STAT, TGFb/SMAD signaling and the NO/cGMP/PKG pathway. Thus, we show for the first time that angiomiRs are selectively enriched in MVs and exosomes released from ischemic muscles. These angiomiRs could be targeted in order to improve the angiogenic function of EVs for potential novel therapeutic applications in patients with severe ischemic vascular diseases. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

15 pages, 15132 KiB  
Article
Ceramide Ehux-C22 Targets the miR-199a-3p/mTOR Signaling Pathway to Regulate Melanosomal Autophagy in Mouse B16 Cells
by Jiyue Wan, Shumiao Zhang, Guiling Li, Shiying Huang, Jian Li, Zhengxiao Zhang and Jingwen Liu
Int. J. Mol. Sci. 2024, 25(15), 8061; https://doi.org/10.3390/ijms25158061 - 24 Jul 2024
Viewed by 216
Abstract
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the [...] Read more.
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 μM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

21 pages, 6756 KiB  
Article
Plasma and Myocardial miRNomes Similarities and Differences during Cardiac Remodelling and Reverse Remodelling in a Murine Model of Heart Failure with Preserved Ejection Fraction
by Sara-Ève Thibodeau, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Marie Arsenault and Jacques Couet
Biomolecules 2024, 14(8), 892; https://doi.org/10.3390/biom14080892 - 24 Jul 2024
Viewed by 224
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterised by multiple risk factors touching various organs outside the heart. Using a murine HFpEF model, we studied cardiac reverse remodelling (RR) after stopping the causing metabolic-hypertensive stress (MHS; Angiotensin II [AngII] [...] Read more.
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome characterised by multiple risk factors touching various organs outside the heart. Using a murine HFpEF model, we studied cardiac reverse remodelling (RR) after stopping the causing metabolic-hypertensive stress (MHS; Angiotensin II [AngII] and a high-fat diet [HFD]) after 28 days and introducing voluntary exercise (VE) for four more weeks. We measured the effects of MHS and RR on the plasma and myocardial microRNA (miR) profile (miRNome) to characterise better cardiac and non-cardiac responses to HFpEF-inducing risk factors and their reversibility. AngII alone, the HFD or the MHS caused cardiac hypertrophy (CH), left ventricular (LV) concentric remodelling and left atrial enlargement in females. Only AngII and the MHS, but not HFD, did in males. After RR, CH, LV concentric remodelling and atrial enlargement were normalised. Among the 25 most abundant circulating miRs, 10 were modulated by MHS. Plasma miRNomes from AngII, HFD or MHS mice shared 31 common significantly modulated miRs (24 upregulated and 7 downregulated), suggesting that the response of organs producing the bulk of those circulating miRs was similar even for seemingly different stress. In the LV, 19 out of 25 most expressed miRs were modulated. RR restored normality for the plasma miRNome but not for the LV miRNome, which remained mostly unchanged. Our results suggest that abnormalities persist in the myocardium of the HFpEF mice and that the normalisation of circulatory markers may be falsely reassuring after recovery. Full article
(This article belongs to the Special Issue New Insights into Cardiometabolic Diseases)
Show Figures

Figure 1

20 pages, 6889 KiB  
Article
Diagnostic Potential of miR-143-5p, miR-143-3p, miR-551b-5p, and miR-574-3p in Chemoresistance of Locally Advanced Gastric Cancer: A Preliminary Study
by Marlena Janiczek-Polewska, Tomasz Kolenda, Paulina Poter, Joanna Kozłowska-Masłoń, Inga Jagiełło, Katarzyna Regulska, Julian Malicki and Andrzej Marszałek
Int. J. Mol. Sci. 2024, 25(15), 8057; https://doi.org/10.3390/ijms25158057 - 24 Jul 2024
Viewed by 240
Abstract
Gastric cancer (GC) is one of the most frequently diagnosed cancers in the world. Although the incidence is decreasing in developed countries, the treatment results are still unsatisfactory. The standard treatment for locally advanced gastric cancer (LAGC) is gastrectomy with perioperative chemotherapy. The [...] Read more.
Gastric cancer (GC) is one of the most frequently diagnosed cancers in the world. Although the incidence is decreasing in developed countries, the treatment results are still unsatisfactory. The standard treatment for locally advanced gastric cancer (LAGC) is gastrectomy with perioperative chemotherapy. The association of selected microRNAs (miRNAs) with chemoresistance was assessed using archival material of patients with LAGC. Histological material was obtained from each patient via a biopsy performed during gastroscopy and then after surgery, which was preceded by four cycles of neoadjuvant chemotherapy (NAC) according to the FLOT or FLO regimen. The expression of selected miRNAs in the tissue material was assessed, including miRNA-21-3p, miRNA-21-5p, miRNA-106a-5p, miRNA-122-3p, miRNA-122-5p, miRNA-143-3p, miRNA-143-5p, miRNA-203a-3p, miRNA-203-5p, miRNA-551b-3p, miRNA-551b-5p, and miRNA-574-3p. miRNA expression was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR). The response to NAC was assessed using computed tomography of the abdomen and chest and histopathology after gastrectomy. The statistical analyses were performed using GraphPad Prism 9. The significance limit was set at p < 0.05. We showed that the expression of miR-143-3p, miR-143-5p, and miR-574-3p before surgery, and miR-143-5p and miR-574-3p after surgery, decreased in patients with GC. The expression of miR-143-3p, miR-143-5p, miR-203a-3p, and miR-551b-5p decreased in several patients who responded to NAC. The miRNA most commonly expressed in these cases was miRNA-551b-5p. Moreover, it showed expression in a patient whose response to chemotherapy was inconsistent between the histopathological results and computed tomography. The expression of miR-143-3p, miR-143-5p, miR-203a-3p, and miR-551b-5p in formalin-fixed paraffin-embedded tissue (FFPET) samples can help differentiate between the responders and non-responders to NAC in LAGC. miR-143-3p, miR-143-5p, and miR-574-3p expression may be used as a potential diagnostic tool in GC patients. The presence of miR-551b-5p may support the correct assessment of a response to NAC in GC via CT. Full article
(This article belongs to the Special Issue Recent Advances in Gastrointestinal Cancer 2.0)
Show Figures

Figure 1

20 pages, 5205 KiB  
Article
Unraveling the Impact of miR-146a in Pulmonary Arterial Hypertension Pathophysiology and Right Ventricular Function
by Joana Santos-Gomes, Pedro Mendes-Ferreira, Rui Adão, Carolina Maia-Rocha, Beatriz Rego, Manu Poels, Anaïs Saint-Martin Willer, Bastien Masson, Steeve Provencher, Sébastien Bonnet, David Montani, Frédéric Perros, Fabrice Antigny, Adelino F. Leite-Moreira and Carmen Brás-Silva
Int. J. Mol. Sci. 2024, 25(15), 8054; https://doi.org/10.3390/ijms25158054 - 24 Jul 2024
Viewed by 293
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. [...] Read more.
Pulmonary arterial hypertension (PAH) is a chronic disorder characterized by excessive pulmonary vascular remodeling, leading to elevated pulmonary vascular resistance and right ventricle (RV) overload and failure. MicroRNA-146a (miR-146a) promotes vascular smooth muscle cell proliferation and vascular neointimal hyperplasia, both hallmarks of PAH. This study aimed to investigate the effects of miR-146a through pharmacological or genetic inhibition on experimental PAH and RV pressure overload animal models. Additionally, we examined the overexpression of miR-146a on human pulmonary artery smooth muscle cells (hPASMCs). Here, we showed that miR-146a genic expression was increased in the lungs of patients with PAH and the plasma of monocrotaline (MCT) rats. Interestingly, genetic ablation of miR-146a improved RV hypertrophy and systolic pressures in Sugen 5415/hypoxia (SuHx) and pulmonary arterial banding (PAB) mice. Pharmacological inhibition of miR-146a improved RV remodeling in PAB-wild type mice and MCT rats, and enhanced exercise capacity in MCT rats. However, overexpression of miR-146a did not affect proliferation, migration, and apoptosis in control-hPASMCs. Our findings show that miR-146a may play a significant role in RV function and remodeling, representing a promising therapeutic target for RV hypertrophy and, consequently, PAH. Full article
(This article belongs to the Special Issue Molecular Research Landscape of Pulmonary Arterial Hypertension)
Show Figures

Figure 1

29 pages, 443 KiB  
Review
Molecular Morbidity Score–Can MicroRNAs Assess the Burden of Disease?
by Thomas Butler, Matthew G. Davey and Michael J. Kerin
Int. J. Mol. Sci. 2024, 25(15), 8042; https://doi.org/10.3390/ijms25158042 - 24 Jul 2024
Viewed by 231
Abstract
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. [...] Read more.
Multimorbidity refers to the presence of two or more chronic diseases and is associated with adverse outcomes for patients. Factors such as an ageing population have contributed to a rise in prevalence of multimorbidity globally; however, multimorbidity is often neglected in clinical guidelines. This is largely because patients with multimorbidity are systematically excluded from clinical trials. Accordingly, there is an urgent need to develop novel biomarkers and methods of prognostication for this cohort of patients. The hallmarks of ageing are now thought to potentiate the pathogenesis of multimorbidity. MicroRNAs are small, regulatory, noncoding RNAs which have been implicated in the pathogenesis and prognostication of numerous chronic diseases; there is a substantial body of evidence now implicating microRNA dysregulation with the different hallmarks of ageing in the aetiology of chronic diseases. This article proposes using the hallmarks of ageing as a framework to develop a panel of microRNAs to assess the prognostic burden of multimorbidity. This putative molecular morbidity score would have many potential applications, including assessing the efficacy of clinical interventions, informing clinical decision making and facilitating wider inclusion of patients with multimorbidity in clinical trials. Full article
(This article belongs to the Special Issue The MicroRNAs in the Pathophysiology of Chronic Diseases)
11 pages, 800 KiB  
Review
Impact of Human Papillomavirus on microRNA-21 Expression in Oral and Oropharyngeal Cancer—A Systematic Review
by Mario Kordic, Dinko Martinovic, Ema Puizina, Josko Bozic, Zeljko Zubcic and Emil Dediol
Int. J. Mol. Sci. 2024, 25(15), 8038; https://doi.org/10.3390/ijms25158038 - 23 Jul 2024
Viewed by 286
Abstract
Recently, microRNAs (miR) were identified to have potential links with oral squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma (OPSCC) oncogenesis, specifically miR-21. Since HPV is a major risk factor for the development of these diseases, we aimed to search the literature [...] Read more.
Recently, microRNAs (miR) were identified to have potential links with oral squamous cell carcinoma (OSCC) and oropharyngeal squamous cell carcinoma (OPSCC) oncogenesis, specifically miR-21. Since HPV is a major risk factor for the development of these diseases, we aimed to search the literature regarding miR-21 expression in both HPV-positive and HPV-negative OSCC/OPSCC. The search was performed in the PubMed (MEDLINE), Scopus, Web of Science, and Cochrane electronic databases. The research question was as follows: Is there a difference in the tissue expression of miR-21 between patients with HPV-positive and those with HPV-negative OSCC/OPSCC? After conducting a meticulous search strategy, four studies were included, and they had a pooled sample size of 621 subjects with OSCC and/or OPSCC. Three studies did not find any significant difference in miR-21 expression between HPV-positive and HPV-negative OSCC/OPSCC. The findings of this systematic review showed that there are no differences in miR-21 expression between HPV-positive and HPV-negative OSCC/OPSCC. Nevertheless, it is worth noting that there are still insufficient studies regarding this important subject, because understanding how HPV influences miR-21 expression and its downstream effects can provide insights into the molecular mechanisms underlying OSCC/OPSCC development and progression. Full article
(This article belongs to the Special Issue Insights into Oral Squamous Cell Carcinoma)
Show Figures

Figure 1

14 pages, 5178 KiB  
Article
Development of Non-Invasive miRNA Markers for Assessing the Quality of Human Induced Pluripotent Stem Cell-Derived Retinal Organoids
by Hyo Song Park, Ji-Hong Bang, Wook Hyun Jung, Jin Young Yang, Hee Jeong Shin, Ji-Hye Son, Jung Woo Han, Si Hyung Lee, Kyung Hwun Chung, Kyunggon Kim, Hun Soo Chang and Tae Kwann Park
Int. J. Mol. Sci. 2024, 25(15), 8011; https://doi.org/10.3390/ijms25158011 - 23 Jul 2024
Viewed by 223
Abstract
Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for [...] Read more.
Human retinal organoids (ROs) have emerged as valuable tools for studying retinal development, modeling human retinal diseases, and screening drugs. However, their application is limited primarily due to time-intensive generation, high costs, and low reproducibility. Quality assessment of RO differentiation is crucial for their application in research. However, traditional methods such as morphological evaluation and immunohistochemical analysis have limitations due to their lack of precision and invasiveness, respectively. This study aims to identify non-invasive biomarkers for RO differentiation quality using exosomal microRNAs (miRNAs), which are known to reflect cell-specific functions and development in the retina. We differentiated ROs from human induced pluripotent stem cells (hiPSCs) and classified them into ‘superior’ and ‘inferior’ groups based on morphological and immunohistochemical criteria. Exosomes from the conditioned media were isolated and analyzed for miRNA content. Our findings revealed distinct miRNA profiles between superior and inferior ROs, with superior ROs exhibiting higher miRNA diversity and specifically up- or down-regulated miRNAs. Gene ontology and pathway enrichment analyses indicated that the target genes of these miRNAs are involved in neuron proliferation and differentiation. The study suggests the potential of exosomal hsa-miR-654-3p and hsa-miR-451a as non-invasive biomarkers for real-time monitoring of RO quality, facilitating the development of standardized, efficient, and cost-effective culture methods. Full article
(This article belongs to the Special Issue Organoids and Organs-on-Chip for Medical Research)
Show Figures

Figure 1

15 pages, 2757 KiB  
Article
Identification and Comprehensive Analysis of circRNA-miRNA-mRNA Regulatory Networks in A2780 Cells Treated with Resveratrol
by Weihua Zhu, Yuanting Zhang, Qianqian Zhou, Cheng Zhen, Herong Huang and Xiaoying Liu
Genes 2024, 15(7), 965; https://doi.org/10.3390/genes15070965 - 22 Jul 2024
Viewed by 273
Abstract
Ovarian cancer (OC) is one of the most commonplace gynecological malignancies. This study explored the effects of resveratrol (RES) on OC cell proliferation and apoptosis. Proliferation activity was measured for A2780 cells treated with RES for 24 h and 48 h at concentrations [...] Read more.
Ovarian cancer (OC) is one of the most commonplace gynecological malignancies. This study explored the effects of resveratrol (RES) on OC cell proliferation and apoptosis. Proliferation activity was measured for A2780 cells treated with RES for 24 h and 48 h at concentrations of 0, 10, 25, 50, 75, 100, 150, 200, and 300 μM. RNA sequencing (RNA-seq) was performed to analyze the circular RNA (circRNA), microRNA (miRNA), and messenger RNA (mRNA) expression spectrum. The differentially expressed genes included 460 circRNAs, 1988 miRNAs, and 1671 mRNAs, and they were subjected to analyses including Gene Ontology, the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome enrichment. We selected signaling pathways enriched in the cell processes by mRNA KEGG, comprehensively analyzed the circRNA-miRNA-mRNA regulatory network, and verified several miRNAs expressed in the regulatory network diagram using the quantitative real-time polymerase chain reaction. The data showed that the cell proliferation of A2780 cells treated with RES for 24 h or 48 h decreased with increasing concentrations of RES. The circRNA-miRNA-mRNA regulatory network that we constructed provides new insights into the ability of RES to inhibit cell proliferation and promote apoptosis in A2780 cells. Full article
(This article belongs to the Section RNA)
Show Figures

Graphical abstract

Back to TopTop