Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,181)

Search Parameters:
Keywords = microfluidics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 10677 KiB  
Article
Hot Embossing to Fabricate Parylene-Based Microstructures and Its Impact on the Material Properties
by Florian Glauche, Franz Selbmann, Markus Guttmann, Marc Schneider, Stefan Hengsbach, Yvonne Joseph and Harald Kuhn
Polymers 2024, 16(15), 2218; https://doi.org/10.3390/polym16152218 (registering DOI) - 3 Aug 2024
Viewed by 288
Abstract
This study aims to establish and optimize a process for the fabrication of 3D microstructures of the biocompatible polymer Parylene C using hot embossing techniques. The different process parameters such as embossing temperature, embossing force, demolding temperature and speed, and the usage of [...] Read more.
This study aims to establish and optimize a process for the fabrication of 3D microstructures of the biocompatible polymer Parylene C using hot embossing techniques. The different process parameters such as embossing temperature, embossing force, demolding temperature and speed, and the usage of a release agent were optimized, utilizing adhesive micropillars as a use case. To enhance compatibility with conventional semiconductor fabrication techniques, hot embossing of Parylene C was adapted from conventional stainless steel substrates to silicon chip platforms. Furthermore, this adaptation included an investigation of the effects of the hot embossing process on metal layers embedded in the Parylene C, ensuring compatibility with the ultra-thin Parylene printed circuit board (PCB) demonstrated previously. To evaluate the produced microstructures, a combination of characterization methods was employed, including light microscopy (LM) and scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). These methods provided comprehensive insights into the morphological, chemical, and structural properties of the embossed Parylene C. Considering the improved results compared to existing patterning techniques for Parylene C like plasma etching or laser ablation, the developed hot embossing approach yields a superior structural integrity, characterized by increased feature resolution and enhanced sidewall smoothness. These advancements render the method particularly suitable for diverse applications, including but not limited to, sensor optical components, adhesive interfaces for medical wearables, and microfluidic systems. Full article
(This article belongs to the Special Issue New Progress of Polymeric Materials in Advanced Manufacturing)
Show Figures

Figure 1

29 pages, 2806 KiB  
Review
Research Progress in the Construction and Application of In Vitro Vascular Models
by Zhenyu He, Pengpeng Cheng, Guoqing Ying and Zhimin Ou
Appl. Sci. 2024, 14(15), 6780; https://doi.org/10.3390/app14156780 (registering DOI) - 3 Aug 2024
Viewed by 257
Abstract
The vascular system maintains cellular homeostasis by transporting oxygen, nutrients, and metabolic waste products. The vascular system is involved in a variety of fundamental physiological phenomena and is closely associated with human vascular diseases. Additionally, the stability of drugs in the vasculature affects [...] Read more.
The vascular system maintains cellular homeostasis by transporting oxygen, nutrients, and metabolic waste products. The vascular system is involved in a variety of fundamental physiological phenomena and is closely associated with human vascular diseases. Additionally, the stability of drugs in the vasculature affects their efficacy. Therefore, researchers have used vascular models to study vascular diseases, assess drug stability, and screen drugs. However, there are many shortcomings in the animal models and in vitro two-dimensional vascular models that have been extensively developed. In this paper, we specifically review the construction methods of in vitro vascular models and classify the specific methods into photolithography, soft lithography, self-assembly, template, 3D bioprinting, and laser degradation/cavitation. The first two are microfluidics-based methods and the last three are non-microfluidics-based methods. The vascular model construction methods reviewed in this paper overcome the shortcomings of traditional models—which cannot accurately reproduce the human vascular microenvironment—and can assist in the construction of in vitro 3D vascular models and tissue engineering vascularization. These models can be reused by perfusion devices, and the cells within the channels reside on biocompatible materials that are used to simulate the microenvironment and 3D cellular organization of the vasculature in vivo. In addition, these models are reproducible in shape and length, allowing experiments to be repeated, which is difficult to do with natural vessels. In vitro vascular models are widely used in research and drug screening for diseases associated with endothelial dysfunction, cancer, and other vascular abnormalities. Full article
Show Figures

Figure 1

13 pages, 2877 KiB  
Article
A Low-Cost Handheld Centrifugal Microfluidic System for Multiplexed Visual Detection Based on Isothermal Amplification
by Nan Wang, Xiaobin Dong, Yijie Zhou, Rui Zhu, Luyao Liu, Lulu Zhang and Xianbo Qiu
Sensors 2024, 24(15), 5028; https://doi.org/10.3390/s24155028 (registering DOI) - 3 Aug 2024
Viewed by 222
Abstract
A low-cost, handheld centrifugal microfluidic system for multiplexed visual detection based on recombinase polymerase amplification (RPA) was developed. A concise centrifugal microfluidic chip featuring four reaction units was developed to run multiplexed RPA amplification in parallel. Additionally, a significantly shrunk-size and cost-effective handheld [...] Read more.
A low-cost, handheld centrifugal microfluidic system for multiplexed visual detection based on recombinase polymerase amplification (RPA) was developed. A concise centrifugal microfluidic chip featuring four reaction units was developed to run multiplexed RPA amplification in parallel. Additionally, a significantly shrunk-size and cost-effective handheld companion device was developed, incorporating heating, optical, rotation, and sensing modules, to perform multiplexed amplification and visual detection. After one-time sample loading, the metered sample was equally distributed into four separate reactors with high-speed centrifugation. Non-contact heating was adopted for isothermal amplification. A tiny DC motor on top of the chip was used to drive steel beads inside reactors for active mixing. Another small DC motor, which was controlled by an elaborate locking strategy based on magnetic sensing, was adopted for centrifugation and positioning. Visual fluorescence detection was optimized from different sides, including material, surface properties, excitation light, and optical filters. With fluorescence intensity-based visual detection, the detection results could be directly observed through the eyes or with a smartphone. As a proof of concept, the handheld device could detect multiple targets, e.g., different genes of African swine fever virus (ASFV) with the comparable LOD (limit of detection) of 75 copies/test compared to the tube-based RPA. Full article
Show Figures

Figure 1

10 pages, 4545 KiB  
Article
Magnetic Stirring Device for Limiting the Sedimentation of Cells inside Microfluidic Devices
by Sebastian Cremaschini, Noemi Torriero, Chiara Maceri, Maria Poles, Sarah Cleve, Beatrice Crestani, Alessio Meggiolaro, Matteo Pierno, Giampaolo Mistura, Paola Brun and Davide Ferraro
Sensors 2024, 24(15), 5014; https://doi.org/10.3390/s24155014 - 2 Aug 2024
Viewed by 259
Abstract
In experiments considering cell handling in microchannels, cell sedimentation in the storage container is a key problem because it affects the reproducibility of the experiments. Here, a simple and low-cost cell mixing device (CMD) is presented; the device is designed to prevent the [...] Read more.
In experiments considering cell handling in microchannels, cell sedimentation in the storage container is a key problem because it affects the reproducibility of the experiments. Here, a simple and low-cost cell mixing device (CMD) is presented; the device is designed to prevent the sedimentation of cells in a syringe during their injection into a microfluidic channel. The CMD is based on a slider crank device made of 3D-printed parts that, combined with a permanent magnet, actuate a stir bar placed into the syringe containing the cells. By using A549 cell lines, the device is characterized in terms of cell viability (higher than 95%) in different mixing conditions, by varying the oscillation frequency and the overall mixing time. Then, a dedicated microfluidic experiment is designed to evaluate the injection frequency of the cells within a microfluidic chip. In the presence of the CMD, a higher number of cells are injected into the microfluidic chip with respect to the static conditions (2.5 times), proving that it contrasts cell sedimentation and allows accurate cell handling. For these reasons, the CMD can be useful in microfluidic experiments involving single-cell analysis. Full article
(This article belongs to the Special Issue Advancements in Microfluidic Technologies and BioMEMS)
Show Figures

Figure 1

14 pages, 3178 KiB  
Article
Separation of Microplastics from Blood Samples Using Traveling Surface Acoustic Waves
by Pedro Mesquita, Yang Lin, Liyuan Gong and Daniel Schwartz
Microplastics 2024, 3(3), 449-462; https://doi.org/10.3390/microplastics3030028 - 2 Aug 2024
Viewed by 322
Abstract
Microplastics have emerged as ubiquitous contaminants, attracting increasing global attention. Recent evidence confirms the presence of microplastics in human blood, suggesting their potential to interact with cells and induce adverse physiological reactions in various organs as blood circulates. To quantify the distribution of [...] Read more.
Microplastics have emerged as ubiquitous contaminants, attracting increasing global attention. Recent evidence confirms the presence of microplastics in human blood, suggesting their potential to interact with cells and induce adverse physiological reactions in various organs as blood circulates. To quantify the distribution of microplastics and assess their potential effects on human health, the effective separation of microplastics from blood is crucial. However, current methods for separating microplastics from blood are limited in effectiveness and simplicity. This study proposes a microfluidic device that utilizes traveling surface acoustic waves to separate microplastics from blood. While traveling surface acoustic waves have been employed to separate various particles, a systematic study on the separation of microplastics from blood samples has not been previously reported. Specifically, the theoretical values of the acoustic radiation factor for various types of microplastics and blood cells were investigated. The significant differences in resonant frequencies indicated the feasibility of separating microplastics of different sizes and types from blood cells. Experimental validation was performed using a polydimethylsiloxane microfluidic device on a piezoelectric lithium niobate substrate. The device successfully separated 5- and 10-micrometer polystyrene microplastics from blood samples. The effects of power and flow rate on separation efficiency were also systematically investigated. This study provides a novel approach for the effective separation of microplastics from blood, contributing to the assessment of their distribution and potential health impacts. Full article
Show Figures

Figure 1

29 pages, 23317 KiB  
Article
Microfluidic Wound-Healing Assay for Comparative Study on Fluid Dynamic, Chemical and Mechanical Wounding on Microglia BV2 Migration
by Ehsan Yazdanpanah Moghadam, Nahum Sonenberg and Muthukumaran Packirisamy
Micromachines 2024, 15(8), 1004; https://doi.org/10.3390/mi15081004 - 2 Aug 2024
Viewed by 304
Abstract
Microglial cells, or brain immune cells, are highly dynamic and continuously migrate in pathophysiological conditions. Their adhesion, as a physical characteristic, plays a key role in migration. In this study, we presented a microfluidic chip combination of two assays: a microglial BV2 adhesion [...] Read more.
Microglial cells, or brain immune cells, are highly dynamic and continuously migrate in pathophysiological conditions. Their adhesion, as a physical characteristic, plays a key role in migration. In this study, we presented a microfluidic chip combination of two assays: a microglial BV2 adhesion assay and a wound-healing migration assay. The chip could create the cell-free area (wound) under chemical stimuli with trypsin (chemical assay) and also mechanical stimuli with the PBS flow (mechanical assay). The microfluidic chip functioned as the cell adhesion assay during wounding, when the cell adhesion of microglia BV2 cells was characterized by the cell removal time under various shear stress ranges. The cell detachment pattern on the glass substrate was found under physiological conditions. After wounding, the chip operated as a migration assay; it was shown that cell migration in the cell-free area generated chemically with trypsin was highly improved compared to mechanical cell-free area creations with PBS flow and the scratch assay. Our findings indicated that the increase in inlet flow rate in the mechanical assay led to a reduced experiment time and mechanical force on the cells, which could improve cell migration. Furthermore, the study on the effect of the device geometry showed that the increased channel width had an inhibitory effect on cell migration. The bi-functional chip offers an opportunity for the development of new models for a better understanding of cellular adhesion and migration in in vitro microenvironments. Full article
(This article belongs to the Special Issue Lab on Chips and Optical Detection Methods)
Show Figures

Figure 1

30 pages, 3367 KiB  
Review
Nanogels: Recent Advances in Synthesis and Biomedical Applications
by Pasquale Mastella, Biagio Todaro and Stefano Luin
Nanomaterials 2024, 14(15), 1300; https://doi.org/10.3390/nano14151300 - 1 Aug 2024
Viewed by 667
Abstract
In the context of advanced nanomaterials research, nanogels (NGs) have recently gained broad attention for their versatility and promising biomedical applications. To date, a significant number of NGs have been developed to meet the growing demands in various fields of biomedical research. Summarizing [...] Read more.
In the context of advanced nanomaterials research, nanogels (NGs) have recently gained broad attention for their versatility and promising biomedical applications. To date, a significant number of NGs have been developed to meet the growing demands in various fields of biomedical research. Summarizing preparation methods, physicochemical and biological properties, and recent applications of NGs may be useful to help explore new directions for their development. This article presents a comprehensive overview of the latest NG synthesis methodologies, highlighting advances in formulation with different types of hydrophilic or amphiphilic polymers. It also underlines recent biomedical applications of NGs in drug delivery and imaging, with a short section dedicated to biosafety considerations of these innovative nanomaterials. In conclusion, this article summarizes recent innovations in NG synthesis and their numerous applications, highlighting their considerable potential in the biomedical field. Full article
Show Figures

Figure 1

31 pages, 7374 KiB  
Review
Kinetic Aspects of Esterification and Transesterification in Microstructured Reactors
by Xingjun Yao, Zhenxue Wang, Ming Qian, Qiulin Deng and Peiyong Sun
Molecules 2024, 29(15), 3651; https://doi.org/10.3390/molecules29153651 - 1 Aug 2024
Viewed by 422
Abstract
Microstructured reactors offer fast chemical engineering transfer and precise microfluidic control, enabling the determination of reactions’ kinetic parameters. This review examines recent advancements in measuring microreaction kinetics. It explores kinetic modeling, reaction mechanisms, and intrinsic kinetic equations pertaining to two types of microreaction: [...] Read more.
Microstructured reactors offer fast chemical engineering transfer and precise microfluidic control, enabling the determination of reactions’ kinetic parameters. This review examines recent advancements in measuring microreaction kinetics. It explores kinetic modeling, reaction mechanisms, and intrinsic kinetic equations pertaining to two types of microreaction: esterification and transesterification reactions involving acids, bases, or biocatalysts. The utilization of a micro packed-bed reactor successfully achieves a harmonious combination of the micro-dispersion state and the reaction kinetic characteristics. Additionally, this review presents micro-process simulation software and explores the advanced integration of microreactors with spectroscopic analyses for reaction monitoring and data acquisition. Furthermore, it elaborates on the control principles of the micro platform. The superiority of online measurement, automation, and the digitalization of the microreaction process for kinetic measurements is highlighted, showcasing the vast prospects of artificial intelligence applications. Full article
Show Figures

Figure 1

14 pages, 3412 KiB  
Article
Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems
by Crystal E. Rapier, Srikanth Jagadeesan, Gad D. Vatine and Hadar Ben-Yoav
Biosensors 2024, 14(8), 374; https://doi.org/10.3390/bios14080374 - 1 Aug 2024
Viewed by 244
Abstract
Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth [...] Read more.
Microfluidics have revolutionized cell culture by allowing for precise physical and chemical environmental control. Coupled with electrodes, microfluidic cell culture can be activated or have its changes sensed in real-time. We used our previously developed reliable and stable microfluidic device for cell growth and monitoring to design, fabricate, and characterize a whole-channel impedance-based sensor and used it to systematically assess the electrical and electrochemical influences of microfluidic channel boundaries coupled with varying electrode sizes, distances, coatings, and cell coverage. Our investigation includes both theoretical and experimental approaches to investigate how design parameters and insulating boundary conditions change impedance characteristics. We examined the system with various solutions using a frequency range of 0.5 Hz to 1 MHz and a modulation voltage of 50 mV. The results show that impedance is directly proportional to electrode distance and inversely proportional to electrode coating, area, and channel size. We also demonstrate that electrode spacing is a dominant factor contributing to impedance. In the end, we summarize all the relationships found and comment on the appropriateness of using this system to investigate barrier cells in blood vessel models and organ-on-a-chip devices. This fundamental study can help in the careful design of microfluidic culture constructs and models that require channel geometries and impedance-based biosensing. Full article
(This article belongs to the Special Issue Biosensors for Organ-on-Chip Devices)
Show Figures

Figure 1

16 pages, 3977 KiB  
Article
Lysosomal Activation Mediated by Endocytosis in J774 Cell Culture Treated with N-Trimethyl Chitosan Nanoparticles
by Brenda I. Magaña-Trejo, Aldo Y. Tenorio-Barajas, Bulmaro Cisneros, Victor Altuzar, Sergio Tomas-Velázquez, Claudia Mendoza-Barrera and Efrain Garrido
Molecules 2024, 29(15), 3621; https://doi.org/10.3390/molecules29153621 - 31 Jul 2024
Viewed by 303
Abstract
Safety and effectiveness are the cornerstone objectives of nanomedicine in developing nanotherapies. It is crucial to understand the biological interactions between nanoparticles and immune cells. This study focuses on the manufacture by the microfluidic technique of N-trimethyl chitosan/protein nanocarriers and their interaction with [...] Read more.
Safety and effectiveness are the cornerstone objectives of nanomedicine in developing nanotherapies. It is crucial to understand the biological interactions between nanoparticles and immune cells. This study focuses on the manufacture by the microfluidic technique of N-trimethyl chitosan/protein nanocarriers and their interaction with J774 cells to elucidate the cellular processes involved in absorption and their impact on the immune system, mainly through endocytosis, activation of lysosomes and intracellular degradation. TEM of the manufactured nanoparticles showed spherical morphology with an average diameter ranging from 36 ± 16 nm to 179 ± 92 nm, depending on the concentration of the cargo protein (0, 12, 55 μg/mL). FTIR showed the crosslinking between N-trimethyl chitosan and the sodium tripolyphosphate and the α-helix binding loss of BSA. TGA revealed an increase in the thermal stability of N-trimethyl chitosan/protein nanoparticles compared with the powder. The encapsulation of the cargo protein used was demonstrated using XPS. Their potential to improve cell permeability and use as nanocarriers in future vaccine formulations was demonstrated. The toxicity of the nanoparticles in HaCaT and J774 cells was studied, as well as the importance of evaluating the differentiation status of J774 cells. Thus, possible endocytosis pathways and their impact on the immune response were discussed. This allowed us to conclude that N-trimethyl chitosan nanoparticles show potential as carriers for the immune system. Still, more studies are required to understand their effectiveness and possible use in therapies. Full article
Show Figures

Figure 1

13 pages, 1924 KiB  
Article
Synthesis of Gelatin Methacryloyl Analogs and Their Use in the Fabrication of pH-Responsive Microspheres
by Karolina Valente, Geneviève N. Boice, Cameron Polglase, Roman G. Belli, Elaina Bourque, Afzal Suleman and Alexandre Brolo
Pharmaceutics 2024, 16(8), 1016; https://doi.org/10.3390/pharmaceutics16081016 - 31 Jul 2024
Viewed by 269
Abstract
pH-responsive hydrogels have numerous applications in tissue engineering, drug delivery systems, and diagnostics. Gelatin methacryloyl (GelMA) is a biocompatible, semi-synthetic polymer prepared from gelatin. When combined with aqueous solvents, GelMA forms hydrogels that have extensive applications in biomedical engineering. GelMA can be produced [...] Read more.
pH-responsive hydrogels have numerous applications in tissue engineering, drug delivery systems, and diagnostics. Gelatin methacryloyl (GelMA) is a biocompatible, semi-synthetic polymer prepared from gelatin. When combined with aqueous solvents, GelMA forms hydrogels that have extensive applications in biomedical engineering. GelMA can be produced with different degrees of methacryloyl substitution; however, the synthesis of this polymer has not been tuned towards producing selectively modified materials for single-component pH-responsive hydrogels. In this work, we have explored two different synthetic routes targeting different gelatin functional groups (amine, hydroxyl, and/or carboxyl) to produce two GelMA analogs: gelatin A methacryloyl glycerylester (polymer A) and gelatin B methacrylamide (polymer B). Polymers A and B were used to fabricate pH-responsive hydrogel microspheres in a flow-focusing microfluidic device. At neutral pH, polymer A and B microspheres displayed an average diameter of ~40 µm. At pH 6, microspheres from polymer A showed a swelling ratio of 159.1 ± 11.5%, while at pH 10, a 288.6 ± 11.6% swelling ratio was recorded for polymer B particles. Full article
Show Figures

Figure 1

12 pages, 4809 KiB  
Article
Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network
by Merav Belenkovich, Ruth Veksler, Yevgeniy Kreinin, Tirosh Mekler, Mariane Flores, Josué Sznitman, Michael Holinstat and Netanel Korin
Micromachines 2024, 15(8), 988; https://doi.org/10.3390/mi15080988 - 31 Jul 2024
Viewed by 303
Abstract
The microvasculature, which makes up the majority of the cardiovascular system, plays a crucial role in the process of thrombosis, with the pathological formation of blood clots inside blood vessels. Since blood microflow conditions significantly influence platelet activation and thrombosis, accurately mimicking the [...] Read more.
The microvasculature, which makes up the majority of the cardiovascular system, plays a crucial role in the process of thrombosis, with the pathological formation of blood clots inside blood vessels. Since blood microflow conditions significantly influence platelet activation and thrombosis, accurately mimicking the structure of bifurcating microvascular networks and emulating local physiological blood flow conditions are valuable for understanding blood clot formation. In this work, we present an in vitro model for blood clotting in microvessels, focusing on 3D bifurcations that align with Murray’s law, which guides vascular networks by maintaining a constant wall shear rate throughout. Using these models, we demonstrate that microvascular bifurcations act as sites facilitating thrombus formation compared to straight models. Additionally, by culturing endothelial cells on the luminal surfaces of the models, we show the potential of using our in vitro platforms to recapitulate the initial clotting in diseases involving endothelial dysfunction, such as Thrombotic Thrombocytopenic Purpura. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

12 pages, 4208 KiB  
Article
Research on the Method of Detecting TPN-Labeled Tumor Cells in Pleural Effusion Based on the Microfluidic Chip
by Xiaoyi Xun, Shuang Song, Yiran Luan, Xiaoyue Long, Peilan Zhang, Yuqun Zheng and Xuguo Sun
Micromachines 2024, 15(8), 981; https://doi.org/10.3390/mi15080981 - 30 Jul 2024
Viewed by 279
Abstract
The clinical diagnosis of a malignant pleural effusion (MPE) is still based on the detection of tumor cells in the pleural effusion. The question of how to improve the efficiency and accuracy of detecting an MPE still remains. This study explores the use [...] Read more.
The clinical diagnosis of a malignant pleural effusion (MPE) is still based on the detection of tumor cells in the pleural effusion. The question of how to improve the efficiency and accuracy of detecting an MPE still remains. This study explores the use of microfluidic technology to concentrate cells in an MPE and achieved the detection of the cell marker TPN in the microarray capture area. TPN is a mitochondria-specific bio-probe that can identify tumor cells on the basis of differences in the mitochondrial potential. First, we designed a microfluidic chip to analyze its performance. The results show that when the total flow rate of the injected chip was 12 mL/h and the volume ratio of cell separation liquid to cell suspension was 1:1, the target cells (A549, MCF-7, and Hela) were enriched and the purity was improved to 98.7–99.3%. Finally, an MPE from cancer patients was used to detect the chip’s ability to isolate and enrich tumor cells. Furthermore, the fluorescent identification of the TPN within the tumor cells was simultaneously achieved on the microfluidic chip. In conclusion, the potential to improve the efficiency of the clinical diagnosis of MPEs is provided by the chip structure and analysis conditions explored in this study. Full article
Show Figures

Figure 1

21 pages, 4249 KiB  
Article
Design and Development of a Flexible Manufacturing Cell Controller Using an Open-Source Communication Protocol for Interoperability
by Evangelos Tzimas, George Papazetis, Panorios Benardos and George-Christopher Vosniakos
Machines 2024, 12(8), 519; https://doi.org/10.3390/machines12080519 - 30 Jul 2024
Viewed by 268
Abstract
Flexible manufacturing cells provide significant advantages in low-volume mass-customization production but also induce added complexity and technical challenges in terms of integration, control, and extensibility. The variety of closed-source industrial protocols, the heterogeneous equipment, and the product’s manufacturing specifications are main points of [...] Read more.
Flexible manufacturing cells provide significant advantages in low-volume mass-customization production but also induce added complexity and technical challenges in terms of integration, control, and extensibility. The variety of closed-source industrial protocols, the heterogeneous equipment, and the product’s manufacturing specifications are main points of consideration in the development of such a system. This study aims to describe the approach, from concept to implementation, for the development of the controller for a flexible manufacturing cell consisting of heterogeneous equipment in terms of functions and communication interfaces. Emphasis is put on the considerations and challenges for effective integration, extensibility, and interoperability. Scheduling and monitoring performed by the developed controller are demonstrated for a manufacturing cell producing microfluidic devices (bioMEMS) that consists of six workstations and a robot-based handling system. Communication between the system controller and the workstations was based on open-source technologies instead of proprietary software and protocols, to support interoperability and, to a considerable extent, code reusability. Full article
(This article belongs to the Special Issue Recent Developments in Machine Design, Automation and Robotics)
Show Figures

Figure 1

11 pages, 2766 KiB  
Article
Optical Nanomotion Detection to Rapidly Discriminate between Fungicidal and Fungistatic Effects of Antifungals on Single-Cell Candida albicans
by Vjera Radonicic, Aleksandar Kalauzi, Maria Ines Villalba, Ksenija Radotić, Bart Devreese, Sandor Kasas and Ronnie G. Willaert
Antibiotics 2024, 13(8), 712; https://doi.org/10.3390/antibiotics13080712 - 29 Jul 2024
Viewed by 326
Abstract
Candida albicans is an emerging pathogen that poses a significant challenge due to its multidrug-resistant nature. There are two types of antifungal agents, fungicidal and fungistatic, with distinct mechanisms of action against fungal pathogens. Fungicidal agents kill fungal pathogens, whereas fungistatic agents inhibit [...] Read more.
Candida albicans is an emerging pathogen that poses a significant challenge due to its multidrug-resistant nature. There are two types of antifungal agents, fungicidal and fungistatic, with distinct mechanisms of action against fungal pathogens. Fungicidal agents kill fungal pathogens, whereas fungistatic agents inhibit their growth. The growth can be restored once the agent is removed and favorable conditions are established. Recognizing this difference is crucial as it influences treatment selection and infection prognosis. We present a technique based on optical nanomotion detection (ONMD) (i.e., observing the movement of the cells using an optical microscope) to discriminate rapidly between fungicidal (caspofungin) and fungistatic (fluconazole) drugs. The technique is based on the change in a yeast cell’s nanomotion as a function of time during a two-hour treatment with the antifungal of interest followed by a one-hour growth period. The cells are entrapped in microwells in a microfluidic chip, which allows a quick exchange of growth medium and antifungal agent, enabling ONMD measurements on the same individual cells before and after treatment. This procedure permits to discriminate between fungicidal and fungistatic antifungals in less than 3 h, with single-cell resolution by observing if the nanomotion recovers after removing the treatment and reintroducing growth medium (YPD), or continues to drop. The simplicity of the approach holds promise for further development into a user-friendly device for rapid antifungal susceptibility testing (AFST), potentially being implemented in hospitals and medical centers worldwide in developed and developing countries. Full article
Show Figures

Figure 1

Back to TopTop