Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,894)

Search Parameters:
Keywords = modulation scheme

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5595 KiB  
Article
Microwave Photonic Frequency Multiplier with Low Phase Noise Based on an Optoelectronic Oscillator
by Hao Luo, Jinlong Yu, Ju Wang, Chuang Ma, Xu Han, Xuemin Su, Ye Gao and Shi Jia
Photonics 2024, 11(7), 588; https://doi.org/10.3390/photonics11070588 - 24 Jun 2024
Viewed by 206
Abstract
A microwave photonic frequency multiplier with low phase noise based on an optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. In this scheme, a dual-parallel Mach–Zehnder modulator (DPMZM) is employed to generate the third-harmonic frequency of the input radio frequency (RF) signal, while [...] Read more.
A microwave photonic frequency multiplier with low phase noise based on an optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. In this scheme, a dual-parallel Mach–Zehnder modulator (DPMZM) is employed to generate the third-harmonic frequency of the input radio frequency (RF) signal, while the oscillation frequency of the OEO is also three times the RF signal frequency. By adjusting the bias voltages of different arms in the DPMZM, a triple-frequency signal with a high side-mode suppression ratio of 64.8 dB can be obtained. The experimental results indicate that the output of the frequency-multiplier has a better single-sideband phase noise value, for instance, −126 dBc/Hz@10 kHz at 20.019 GHz. It has improvements of 34 dB and 43.5 dB compared with the input RF signal and the simulated electrical frequency tripler module, respectively. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

10 pages, 1697 KiB  
Article
Optical Frequency Transfer on the Order of 10−19 Fractional Frequency Instability over a 64 m Free-Space Link
by Guoyong Wang, Zhangjian Lu, Xinwen Liang, Keliang He, Yuling He and Xin Ji
Photonics 2024, 11(7), 587; https://doi.org/10.3390/photonics11070587 - 22 Jun 2024
Viewed by 188
Abstract
High-precision time–frequency is widely used in time measurement, satellite navigation, scientific research, and other fields. With the rapid development of optical clock technology, the fractional frequency instability and uncertainty of optical clock have reached 10−18 orders of magnitude, which is expected to [...] Read more.
High-precision time–frequency is widely used in time measurement, satellite navigation, scientific research, and other fields. With the rapid development of optical clock technology, the fractional frequency instability and uncertainty of optical clock have reached 10−18 orders of magnitude, which is expected to contribute to generating the International Atomic Time and may even be used to redefine the “second” in the future. Therefore, the long-distance transfer of time–frequency signals between optical atomic clocks is of great significance. Free-space optical frequency transfer technology is one of the important technologies for solving the space-based optical clock comparison because of its high transfer precision and easy networking characteristics. In order to solve the long-distance space-based optical clock comparison, this paper investigates a free-space active phase noise compensation method using an Acousto-Optic Modulator (AOM), based on the traditional optical fiber phase noise compensation scheme. This new method is more flexible and scalable than the optical fiber time–frequency transfer technology. The optical frequency transfer over a 64 m free-space link is demonstrated. The fractional frequency transfer instability during free running is 9.50 × 10−16 at 1 s, and 4.44 × 10−16 at 2000 s, and the fractional frequency instability after compensation is 7.10 × 10−17 at 1 s, 3.07 × 10−19 at 2000 s, which is about 1–3 orders of magnitude better than that in free running, and provides a feasible scheme for space-based optical clock comparison. Full article
(This article belongs to the Special Issue Coherent Transmission Systems in Optical Wireless Communication)
Show Figures

Figure 1

13 pages, 2027 KiB  
Article
High-Speed Optical Chaotic Data Selection Logic Operations with the Performance of Error Detection and Correction
by Geliang Xu, Kun Wang, Liang Xu and Jiaqi Deng
Photonics 2024, 11(7), 586; https://doi.org/10.3390/photonics11070586 - 21 Jun 2024
Viewed by 229
Abstract
Based on the chaotic polarization system of optically injected cascaded vertical-cavity surface-emitting lasers (VCSELs), we propose a novel implementation scheme for high-speed optical chaotic data selection logic operations. Under the condition where the slave VCSEL (S-VCSEL) outputs a chaotic laser signal, we calculate [...] Read more.
Based on the chaotic polarization system of optically injected cascaded vertical-cavity surface-emitting lasers (VCSELs), we propose a novel implementation scheme for high-speed optical chaotic data selection logic operations. Under the condition where the slave VCSEL (S-VCSEL) outputs a chaotic laser signal, we calculate the range of the applied electric field and the optical injection amplitude. We also investigate the evolution of the correlation characteristics between the polarized light output from the periodic poled LiNbO3 (PPLN) and the S-VCSEL as a function of the optical injection amplitude under different applied electric fields. Furthermore, we analyze the polarization bistability of the polarized light from the PPLN and S-VCSEL. Based on these results, we modulate the optical injection amplitude as the logic input and the applied electric field as the control logic signal. Using a mean comparison mechanism, we demodulate the polarized light from the PPLN and S-VCSEL to obtain two identical logic outputs, achieving optical chaotic data selection logic operations with an operation speed of approximately 114 Gb/s. Finally, we investigate the influence of noise on the logic outputs and find that both logic outputs do not show any error symbols under the noise strength as high as 180 dBw. The anti-noise performance of logic output O1 is superior to that of optical chaotic logic output O2. For noise strengths up to 185 dBw, error symbols in O2 can be detected and corrected by comparison with O1. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

17 pages, 5806 KiB  
Article
Subset-Optimized Eight-Dimensional Trellis-Coded Modulation Scheme in High-Speed Optical Communication
by Jiexin Chen, Qi Zhang, Qihan Zhao, Xiangjun Xin, Ran Gao, Haipeng Yao, Feng Tian, Yongjun Wang, Qinghua Tian, Leijing Yang, Lan Rao, Fu Wang and Sitong Zhou
Photonics 2024, 11(7), 584; https://doi.org/10.3390/photonics11070584 - 21 Jun 2024
Viewed by 186
Abstract
In this paper, a subset-optimized eight-dimensional trellis-coded quadrature amplitude modulation (SO-8DTCM-16QAM) format for higher-order constellations in high-speed optical communications is proposed. This scheme increases the number of subsets of base 2D constellation divisions. On this basis, it is further optimized by using 2D [...] Read more.
In this paper, a subset-optimized eight-dimensional trellis-coded quadrature amplitude modulation (SO-8DTCM-16QAM) format for higher-order constellations in high-speed optical communications is proposed. This scheme increases the number of subsets of base 2D constellation divisions. On this basis, it is further optimized by using 2D subsets for Cartesian product combinations to obtain 4D subsets and eliminate the combinations with small Euclidean distances. Finally, the 4D subsets are utilized to construct interrelated 8D subsets for trellis coding modulation and signal transmission. The proposed scheme can effectively reduce the decoding complexity and outperforms the conventional scheme at a high signal-to-noise ratio (SNR). Simulation verification of the proposed scheme is carried out, and the results show that the SO-8DTCM-16QAM achieves signal-to-noise ratio (SNR) gains of 1.60 dB, 1.56 dB, 1.51 dB, and 1.33 dB, respectively, compared with the conventional 8D-16QAM signals when BTB and 5/20/30 km optical signal transmission are performed. The SO-8DTCM-16QAM also achieves an SNR gain of 1.86 dB, 1.75 dB, and 1.22 dB at a net transmission rate of 14/21/28 GBaud. In addition, the SO-8DTCM-16/32/64QAM achieves an SNR gain of 1.27 dB, 0.80 dB, and 1.24 dB, respectively, when compared with the unoptimized 8DTCM-16/32/64QAM. Meanwhile, the proposed eight-subset SO-8DTCM-QAM scheme reduces the complexity of the decoding computation in the subset selection part and the constellation point selection part by 93.75% and 50%, respectively, compared with the unoptimized eight-subset and four-subset 8DTCM-QAM schemes. It can be seen that the proposed scheme simultaneously optimizes the transmission performance and complexity of high-speed optical communication systems and has practical application value. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

18 pages, 6500 KiB  
Article
NSVDNet: Normalized Spatial-Variant Diffusion Network for Robust Image-Guided Depth Completion
by Jin Zeng and Qingpeng Zhu
Electronics 2024, 13(12), 2418; https://doi.org/10.3390/electronics13122418 - 20 Jun 2024
Viewed by 228
Abstract
Depth images captured by low-cost three-dimensional (3D) cameras are subject to low spatial density, requiring depth completion to improve 3D imaging quality. Image-guided depth completion aims at predicting dense depth images from extremely sparse depth measurements captured by depth sensors with the guidance [...] Read more.
Depth images captured by low-cost three-dimensional (3D) cameras are subject to low spatial density, requiring depth completion to improve 3D imaging quality. Image-guided depth completion aims at predicting dense depth images from extremely sparse depth measurements captured by depth sensors with the guidance of aligned Red–Green–Blue (RGB) images. Recent approaches have achieved a remarkable improvement, but the performance will degrade severely due to the corruption in input sparse depth. To enhance robustness to input corruption, we propose a novel depth completion scheme based on a normalized spatial-variant diffusion network incorporating measurement uncertainty, which introduces the following contributions. First, we design a normalized spatial-variant diffusion (NSVD) scheme to apply spatially varying filters iteratively on the sparse depth conditioned on its certainty measure for excluding depth corruption in the diffusion. In addition, we integrate the NSVD module into the network design to enable end-to-end training of filter kernels and depth reliability, which further improves the structural detail preservation via the guidance of RGB semantic features. Furthermore, we apply the NSVD module hierarchically at multiple scales, which ensures global smoothness while preserving visually salient details. The experimental results validate the advantages of the proposed network over existing approaches with enhanced performance and noise robustness for depth completion in real-use scenarios. Full article
(This article belongs to the Special Issue Image Sensors and Companion Chips)
Show Figures

Figure 1

23 pages, 2359 KiB  
Article
Design and Implementation of Extremum-Seeking Control Based on MPPT for Dual-Axis Solar Tracker
by Cesar Ulises Solís-Cervantes, Sergio Isai Palomino-Resendiz, Diego Alonso Flores-Hernández, Marco Antonio Peñaloza-López and Carlos Manuel Montelongo-Vazquez
Mathematics 2024, 12(12), 1913; https://doi.org/10.3390/math12121913 - 20 Jun 2024
Viewed by 256
Abstract
The increase in the production efficiency of photovoltaic technology depends on its alignment in relation to the solar position. Solar tracking systems perform the tracking action by implementing control algorithms that help the reduction of tracking errors. However, conventional algorithms can reduce the [...] Read more.
The increase in the production efficiency of photovoltaic technology depends on its alignment in relation to the solar position. Solar tracking systems perform the tracking action by implementing control algorithms that help the reduction of tracking errors. However, conventional algorithms can reduce the life of actuators and mechanisms due to control action, significantly reducing operation times and profitability. In this article, an unconventional control scheme is developed to address the mentioned challenges, presenting the design and implementation of an extremum-seeking control to perform maximum power point tracking for a two-axis solar tracker instrumented with a solar module. The proposed controller is governed by the dynamics of a classic proportional-integral scheme and assisted by sensorless feedback. Also, it has an anti-wind-up-type configuration for the integral component and counts with a variable amplitude for the dither signal. The proposal is validated experimentally by comparison between a fixed system and a two-axis system in azimuth-elevation configuration. In addition, two performance indices are defined and analyzed, system energy production and tracking error. The results show that the proposal allows producing up to 27.75% more than a fixed system, considering the tracker energy consumption due to the tracking action and a pointing accuracy with ±1.8° deviation. Finally, an analysis and discussion are provided based on the results, concluding that the proposed algorithm is a viable alternative to increase the performance of tracked photovoltaic systems. Full article
(This article belongs to the Section Computational and Applied Mathematics)
Show Figures

Figure 1

26 pages, 33281 KiB  
Article
Underwater Fish Object Detection with Degraded Prior Knowledge
by Shijian Zheng, Rujing Wang and Liusan Wang
Electronics 2024, 13(12), 2346; https://doi.org/10.3390/electronics13122346 - 15 Jun 2024
Viewed by 231
Abstract
Understanding fish distribution, behavior, and abundance is crucial for marine ecological research, fishery management, and environmental monitoring. However, the distinctive features of the underwater environment, including low visibility, light attenuation, water turbidity, and strong currents, significantly impact the quality of data gathered by [...] Read more.
Understanding fish distribution, behavior, and abundance is crucial for marine ecological research, fishery management, and environmental monitoring. However, the distinctive features of the underwater environment, including low visibility, light attenuation, water turbidity, and strong currents, significantly impact the quality of data gathered by underwater imaging systems, posing considerable challenges in accurately detecting fish objects. To address this challenge, our study proposes an innovative fish detection network based on prior knowledge of image degradation. In our research process, we first delved into the intrinsic relationship between visual image quality restoration and detection outcomes, elucidating the obstacles the underwater environment poses to object detection. Subsequently, we constructed a dataset optimized for object detection using image quality evaluation metrics. Building upon this foundation, we designed a fish object detection network that integrates a prompt-based degradation feature learning module and a two-stage training scheme, effectively incorporating prior knowledge of image degradation. To validate the efficacy of our approach, we develop a multi-scene Underwater Fish image Dataset (UFD2022). The experimental results demonstrate significant improvements of 2.4% and 2.5%, respectively, in the mAP index compared to the baseline methods ResNet50 and ResNetXT101. This outcome robustly confirms the effectiveness and superiority of our process in addressing the challenge of fish object detection in underwater environments. Full article
Show Figures

Figure 1

36 pages, 8255 KiB  
Article
Feasible Actuator Range Modifier (FARM), a Tool Aiding the Solution of Unit Dispatch Problems for Advanced Energy Systems
by Haoyu Wang, Roberto Ponciroli, Andrea Alfonsi, Paul W. Talbot, Thomas W. Elmer, Aaron S. Epiney and Richard B. Vilim
Energies 2024, 17(12), 2945; https://doi.org/10.3390/en17122945 - 14 Jun 2024
Viewed by 451
Abstract
Integrated energy systems (IESs) seek to minimize power generating costs in future power grids through the coupling of different energy technologies. To accommodate fluctuations in load demand due to the penetration of renewable energy sources, flexible operation capabilities must be fully exploited, and [...] Read more.
Integrated energy systems (IESs) seek to minimize power generating costs in future power grids through the coupling of different energy technologies. To accommodate fluctuations in load demand due to the penetration of renewable energy sources, flexible operation capabilities must be fully exploited, and even power plants that are traditionally considered as base-load units need to be operated according to unconventional paradigms. Thermomechanical loads induced by frequent power adjustments can accelerate the wear and tear. If a unit is flexibly operated without respecting limits on materials, the risk of failures of expensive components will eventually increase, nullifying the additional profits ensured by flexible operation. In addition to the bounds on power variations (explicit constraints),the solution of the unit dispatch problem needs to meet the limits on the variation of key process variables, including temperature, pressure and flow rate (implicit constraints).The FARM (Feasible Actuator Range Modifier) module was developed to enable existing optimization algorithms to identify solutions to the unit dispatch problem that are both economically favorable and technologically sustainable. Thanks to the iterative dispatcher–validator scheme, FARM permits addressing all the imposed constraints without excessively increasing the computational costs. In this work, the algorithms constituting the module are described, and the performance was assessed by solving the unit dispatch problem for an IES composed of three units, i.e., balance of plant, gas turbine, and high-temperature steam electrolysis. Finally, the FARM module provides dedicated tools for visualizing the response of the constrained variables of interest during operational transients and a tool aiding the operator at making decisions. These techniques might represent the first step towards the deployment of an ecological interface design (EID) for IES units. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

13 pages, 756 KiB  
Article
Underwater Wavelength Attack on Discrete Modulated Continuous-Variable Quantum Key Distribution
by Kangyi Feng, Yijun Wang, Yin Li, Yuang Wang, Zhiyue Zuo and Ying Guo
Entropy 2024, 26(6), 515; https://doi.org/10.3390/e26060515 - 14 Jun 2024
Viewed by 265
Abstract
The wavelength attack utilizes the dependence of beam splitters (BSs) on wavelength to cause legitimate users Alice and Bob to underestimate their excess noise so that Eve can steal more secret keys without being detected. Recently, the wavelength attack on Gaussian-modulated continuous-variable quantum [...] Read more.
The wavelength attack utilizes the dependence of beam splitters (BSs) on wavelength to cause legitimate users Alice and Bob to underestimate their excess noise so that Eve can steal more secret keys without being detected. Recently, the wavelength attack on Gaussian-modulated continuous-variable quantum key distribution (CV-QKD) has been researched in both fiber and atmospheric channels. However, the wavelength attack may also pose a threat to the case of ocean turbulent channels, which are vital for the secure communication of both ocean sensor networks and submarines. In this work, we propose two wavelength attack schemes on underwater discrete modulated (DM) CV-QKD protocol, which is effective for the case with and without local oscillator (LO) intensity monitor, respectively. In terms of the transmittance properties of the fused biconical taper (FBT) BS, two sets of wavelengths are determined for Eve’s pulse manipulation, which are all located in the so-called blue–green band. The derived successful criterion shows that both attack schemes can control the estimated excess noise of Alice and Bob close to zero by selecting the corresponding condition parameters based on channel transmittance. Additionally, our numerical analysis shows that Eve can steal more bits when the wavelength attack controls the value of the estimated excess noise closer to zero. Full article
(This article belongs to the Special Issue Quantum Communications Networks: Trends and Challenges)
Show Figures

Figure 1

26 pages, 3131 KiB  
Article
Study on Conventional Island Retrofit Strategies for Converting Coal-Fired Power Plants to Nuclear Power Stations in China
by Bixiong Luo, Li Zhang, Wei Li, Xinwei Zhu, Yongjian Ye and Yanlin Su
Energies 2024, 17(12), 2912; https://doi.org/10.3390/en17122912 - 13 Jun 2024
Viewed by 268
Abstract
The conversion of coal-fired power plants to nuclear power stations is a potential method for decarbonizing coal power and offers a pathway for low-carbon development in China’s power industry. This paper focuses on retrofitting China’s coastal coal-fired power stations and compares the potential [...] Read more.
The conversion of coal-fired power plants to nuclear power stations is a potential method for decarbonizing coal power and offers a pathway for low-carbon development in China’s power industry. This paper focuses on retrofitting China’s coastal coal-fired power stations and compares the potential nuclear reactor technologies for the retrofit: China’s mainstream pressurized water reactor and the commercially operated fourth-generation high-temperature gas-cooled reactor (HTGR). The analysis compares the degree of matching between the two technologies and coal-fired power stations in terms of unit capacity, thermal system parameters, unit speed, structural dimensions, and weight, which significantly impact the retrofit scheme. The results indicate that HTGR is more compatible with coal-fired power plants and is recommended as the type of nuclear reactor technology to be retrofitted. The study selected the 210 MWe High-Temperature Gas-Cooled Reactor Pebble-Bed Module (HTR-PM) as the reactor technology for retrofitting a typical 300 MW class subcritical coal-fired unit. Based on the concept of subcritical parameters upgrading, the potential analysis and strategy study of retrofit is carried out in terms of the turbine, the main heat exchange equipment, the main pumps, and the main thermal system pipelines in the conventional island. The results indicate that the conventional island of the HTR-PM nuclear power plant has significant potential for retrofitting, which can be a crucial research direction for nuclear retrofitting of coal-fired power plants. Full article
(This article belongs to the Special Issue Repurposing Coal Power Plants with Nuclear Power Plants)
Show Figures

Figure 1

16 pages, 2291 KiB  
Article
Preparation and Modeling of Graphene Bubbles to Obtain Strain-Induced Pseudomagnetic Fields
by Chuanli Yu, Jiacong Cao, Shuze Zhu and Zhaohe Dai
Materials 2024, 17(12), 2889; https://doi.org/10.3390/ma17122889 - 13 Jun 2024
Viewed by 314
Abstract
It has been both theoretically predicted and experimentally demonstrated that strain can effectively modulate the electronic states of graphene sheets through the creation of a pseudomagnetic field (PMF). Pressurizing graphene sheets into bubble-like structures has been considered a viable approach for the strain [...] Read more.
It has been both theoretically predicted and experimentally demonstrated that strain can effectively modulate the electronic states of graphene sheets through the creation of a pseudomagnetic field (PMF). Pressurizing graphene sheets into bubble-like structures has been considered a viable approach for the strain engineering of PMFs. However, the bubbling technique currently faces limitations such as long manufacturing time, low durability, and challenges in precise control over the size and shape of the pressurized bubble. Here, we propose a rapid bubbling method based on an oxygen plasma chemical reaction to achieve rapid induction of out-of-plane deflections and in-plane strains in graphene sheets. We introduce a numerical scheme capable of accurately resolving the strain field and resulting PMFs within the pressurized graphene bubbles, even in cases where the bubble shape deviates from perfect spherical symmetry. The results provide not only insights into the strain engineering of PMFs in graphene but also a platform that may facilitate the exploration of the strain-mediated electronic behaviors of a variety of other 2D materials. Full article
(This article belongs to the Special Issue Nanodevices in 2D Materials: Theory and Simulations)
Show Figures

Figure 1

14 pages, 3735 KiB  
Article
Learning Effective Geometry Representation from Videos for Self-Supervised Monocular Depth Estimation
by Hailiang Zhao, Yongyi Kong, Chonghao Zhang, Haoji Zhang and Jiansen Zhao
ISPRS Int. J. Geo-Inf. 2024, 13(6), 193; https://doi.org/10.3390/ijgi13060193 - 11 Jun 2024
Viewed by 396
Abstract
Recent studies on self-supervised monocular depth estimation have achieved promising results, which are mainly based on the joint optimization of depth and pose estimation via high-level photometric loss. However, how to learn the latent and beneficial task-specific geometry representation from videos is still [...] Read more.
Recent studies on self-supervised monocular depth estimation have achieved promising results, which are mainly based on the joint optimization of depth and pose estimation via high-level photometric loss. However, how to learn the latent and beneficial task-specific geometry representation from videos is still far from being explored. To tackle this issue, we propose two novel schemes to learn more effective representation from monocular videos: (i) an Inter-task Attention Model (IAM) to learn the geometric correlation representation between the depth and pose learning networks to make structure and motion information mutually beneficial; (ii) a Spatial-Temporal Memory Module (STMM) to exploit long-range geometric context representation among consecutive frames both spatially and temporally. Systematic ablation studies are conducted to demonstrate the effectiveness of each component. Evaluations on KITTI show that our method outperforms current state-of-the-art techniques. Full article
Show Figures

Figure 1

18 pages, 5313 KiB  
Article
Optimizing Method for Photovoltaic Water-Pumping Systems under Partial Shading and Changing Pump Head
by Perla Yazmín Sevilla-Camacho, José Billerman Robles-Ocampo, Sergio De la Cruz-Arreola, Marco Antonio Zúñiga-Reyes, Andrés López-López, Juvenal Rodríguez-Reséndiz, Marcos Avilés and Horacio Irán Solís-Cisneros
Clean Technol. 2024, 6(2), 732-749; https://doi.org/10.3390/cleantechnol6020037 - 11 Jun 2024
Viewed by 312
Abstract
Photovoltaic systems for pumping water, based on direct current powered motor pumps, have great application in small rural regions without electrical networks. In addition, these systems provide environmental benefits by replacing fossil fuels. However, these systems reduce their performance due to partial shading, [...] Read more.
Photovoltaic systems for pumping water, based on direct current powered motor pumps, have great application in small rural regions without electrical networks. In addition, these systems provide environmental benefits by replacing fossil fuels. However, these systems reduce their performance due to partial shading, which is magnified by the internal mismatch of the PV modules. This work proposes an intelligent, low-cost, and automatic method to mitigate these effects through the electrical reconfiguration of the PV array. Unlike other reported techniques, this method considers the pump head variations. For that, the global voltage and current supplied by the PV array to the motor pump subsystem are introduced to an artificial neural network and to a third-order equation, which locates the shaded PV module and detects the pump head, respectively. A connection control implements the optimal electrical rearrangement. The selection is based on the identified partial shading pattern and pump head. Finally, the switching matrix modifies the electrical connections between the PV modules on the PV array without changing the interconnection scheme, PV array dimension, or physical location of the PVMs. The proposed approach was implemented in a real PV water pumping system. Low-cost and commercial electronic devices were used. The experimental results show that the output power of the PV array increased by 8.43%, which maintains a more stable level of water extraction and, therefore, a constant flow level. Full article
(This article belongs to the Topic Smart Solar Energy Systems)
Show Figures

Figure 1

20 pages, 7645 KiB  
Article
A Modular Robotic Arm Configuration Design Method Based on Double DQN with Prioritized Experience Replay
by Ziyan Ding, Haijun Tang, Haiying Wan, Chengxi Zhang and Ran Sun
Symmetry 2024, 16(6), 714; https://doi.org/10.3390/sym16060714 - 8 Jun 2024
Viewed by 267
Abstract
Abstract: The modular robotic arms can achieve desired performances in different scenarios through the combination of various modules, and concurrently hold the potential to exhibit geometric symmetry and uniform mass symmetry. Therefore, selecting the appropriate combination of modules is crucial for realizing the [...] Read more.
Abstract: The modular robotic arms can achieve desired performances in different scenarios through the combination of various modules, and concurrently hold the potential to exhibit geometric symmetry and uniform mass symmetry. Therefore, selecting the appropriate combination of modules is crucial for realizing the functions of the robotic arm and ensuring the elegance of the system. To this end, this paper proposes a double deep Q-network (DDQN)-based configuration design algorithm for modular robotic arms, which aims to find the optimal configuration under different tasks. First, a library of small modules of collaborative robotic arms consisting of multiple tandem robotic arms is constructed. These modules are described in a standard format that can be directly imported into the software for simulation, providing greater convenience and flexibility in the development of modular robotic arms. Subsequently, the DDQN design framework for module selection is established to obtain the optimal robotic arm configuration. The proposed method could deal with the overestimation problem in the traditional deep Q-network (DQN) method and improve the estimation accuracy of the value function for each module. In addition, the experience replay mechanism is improved based on the SumTree technique, which enables the algorithm to make effective use of historical experience and prevents the algorithm from falling into local optimal solutions. Finally, comparative experiments are carried out on the PyBullet simulation platform to verify the effectiveness and superiority of the configuration design method developed in the paper. The simulation results show that the proposed DDQN-based method with experience replay mechanism has higher search efficiency and accuracy compared to the traditional DQN scheme. Full article
22 pages, 8725 KiB  
Article
Adaptive CAPTCHA: A CRNN-Based Text CAPTCHA Solver with Adaptive Fusion Filter Networks
by Xing Wan, Juliana Johari and Fazlina Ahmat Ruslan
Appl. Sci. 2024, 14(12), 5016; https://doi.org/10.3390/app14125016 - 8 Jun 2024
Viewed by 572
Abstract
Text-based CAPTCHAs remain the most widely adopted security scheme, which is the first barrier to securing websites. Deep learning methods, especially Convolutional Neural Networks (CNNs), are the mainstream approach for text CAPTCHA recognition and are widely used in CAPTCHA vulnerability assessment and data [...] Read more.
Text-based CAPTCHAs remain the most widely adopted security scheme, which is the first barrier to securing websites. Deep learning methods, especially Convolutional Neural Networks (CNNs), are the mainstream approach for text CAPTCHA recognition and are widely used in CAPTCHA vulnerability assessment and data collection. However, verification code recognizers are mostly deployed on the CPU platform as part of a web crawler and security assessment; they are required to have both low complexity and high recognition accuracy. Due to the specifically designed anti-attack mechanisms like noise, interference, geometric deformation, twisting, rotation, and character adhesion in text CAPTCHAs, some characters are difficult to efficiently identify with high accuracy in these complex CAPTCHA images. This paper proposed a recognition model named Adaptive CAPTCHA with a CNN combined with an RNN (CRNN) module and trainable Adaptive Fusion Filtering Networks (AFFN), which effectively handle the interference and learn the correlation between characters in CAPTCHAs to enhance recognition accuracy. Experimental results on two datasets of different complexities show that, compared with the baseline model Deep CAPTCHA, the number of parameters of our proposed model is reduced by about 70%, and the recognition accuracy is improved by more than 10 percentage points in the two datasets. In addition, the proposed model has a faster training convergence speed. Compared with several of the latest models, the model proposed by the study also has better comprehensive performance. Full article
(This article belongs to the Special Issue Advanced Technologies in Data and Information Security III)
Show Figures

Figure 1

Back to TopTop