Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (275)

Search Parameters:
Keywords = monocyte/macrophage phenotype

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 16924 KiB  
Article
Landscape of Interactions between Stromal and Myeloid Cells in Ileal Crohn’s Disease; Indications of an Important Role for Fibroblast-Derived CCL-2
by Nikolas Dovrolis, Vassilis Valatas, Ioannis Drygiannakis, Eirini Filidou, Michail Spathakis, Leonidas Kandilogiannakis, Gesthimani Tarapatzi, Konstantinos Arvanitidis, Giorgos Bamias, Stergios Vradelis, Vangelis G. Manolopoulos, Vasilis Paspaliaris and George Kolios
Biomedicines 2024, 12(8), 1674; https://doi.org/10.3390/biomedicines12081674 - 26 Jul 2024
Viewed by 314
Abstract
Background and aims: Monocyte recruitment in the lamina propria and inflammatory phenotype driven by the mucosal microenvironment is critical for the pathogenesis of inflammatory bowel disease. However, the stimuli responsible remain largely unknown. Recent works have focused on stromal cells, the main steady-state [...] Read more.
Background and aims: Monocyte recruitment in the lamina propria and inflammatory phenotype driven by the mucosal microenvironment is critical for the pathogenesis of inflammatory bowel disease. However, the stimuli responsible remain largely unknown. Recent works have focused on stromal cells, the main steady-state cellular component in tissue, as they produce pro-inflammatory chemokines that contribute to the treatment-resistant nature of IBD. Methods: We studied the regulation of these processes by examining the communication patterns between stromal and myeloid cells in ileal Crohn’s disease (CD) using a complete single-cell whole tissue sequencing analysis pipeline and in vitro experimentation in mesenchymal cells. Results: We report expansion of S4 stromal cells and monocyte-like inflammatory macrophages in the inflamed mucosa and describe interactions that may establish sustained local inflammation. These include expression of CCL2 by S1 fibroblasts to recruit and retain monocytes and macrophages in the mucosa, where they receive signals for proliferation, survival, and differentiation to inflammatory macrophages from S4 stromal cells through molecules such as MIF, IFNγ, and FN1. The overexpression of CCL2 in ileal CD and its stromal origin was further demonstrated in vitro by cultured mesenchymal cells and intestinal organoids in the context of an inflammatory milieu. Conclusions: Our findings outline an extensive cross-talk between stromal and myeloid cells, which may contribute to the onset and progression of inflammation in ileal Crohn’s disease. Understanding the mechanisms underlying monocyte recruitment and polarization, as well as the role of stromal cells in sustaining inflammation, can provide new avenues for developing targeted therapies to treat IBD. Full article
(This article belongs to the Special Issue Fibroblasts: Insights from Molecular and Pathophysiology Perspectives)
Show Figures

Figure 1

25 pages, 5763 KiB  
Article
Candida tropicalis PMT2 Is a Dispensable Gene for Viability but Required for Proper Interaction with the Host
by Marco J. Hernández-Chávez, Iván Martínez-Duncker, Diana M. Clavijo-Giraldo, Luz A. López-Ramirez and Héctor M. Mora-Montes
J. Fungi 2024, 10(7), 502; https://doi.org/10.3390/jof10070502 - 20 Jul 2024
Viewed by 583
Abstract
Candidemia is an opportunistic mycosis with high morbidity and mortality rates. Even though Candida albicans is the main causative agent, other Candida species, such as Candida tropicalis, are relevant etiological agents of candidiasis and candidemia. Compared with C. albicans, there is currently [...] Read more.
Candidemia is an opportunistic mycosis with high morbidity and mortality rates. Even though Candida albicans is the main causative agent, other Candida species, such as Candida tropicalis, are relevant etiological agents of candidiasis and candidemia. Compared with C. albicans, there is currently limited information about C. tropicalis’ biological aspects, including those related to the cell wall and the interaction with the host. Currently, it is known that its cell wall contains O-linked mannans, and the contribution of these structures to cell fitness has previously been addressed using cells subjected to chemical treatments or in mutants where O-linked mannans and other wall components are affected. Here, we generated a C. tropicalis pmt2∆ null mutant, which was affected in the first step of the O-linked mannosylation pathway. The null mutant was viable, contrasting with C. albicans where this gene is essential. The phenotypical characterization showed that O-linked mannans were required for filamentation; proper cell wall integrity and organization; biofilm formation; protein secretion; and adhesion to extracellular matrix components, in particular to fibronectin; and type I and type II collagen. When interacting with human innate immune cells, it was found that this cell wall structure is dispensable for cytokine production, but mutant cells were more phagocytosed by monocyte-derived macrophages. Furthermore, the null mutant cells showed virulence attenuation in Galleria mellonella larvae. Thus, O-linked mannans are minor components of the cell wall that are involved in different aspects of C. tropicalis’ biology. Full article
(This article belongs to the Section Fungal Cell Biology, Metabolism and Physiology)
Show Figures

Figure 1

23 pages, 2046 KiB  
Article
Altered Monocyte and Lymphocyte Phenotypes Associated with Pathogenesis and Clinical Efficacy of Progestogen Therapy for Peritoneal Endometriosis in Adolescents
by Elena P. Khashchenko, Lyubov V. Krechetova, Polina A. Vishnyakova, Timur Kh. Fatkhudinov, Eugeniya V. Inviyaeva, Valentina V. Vtorushina, Elena A. Gantsova, Viktoriia V. Kiseleva, Anastasiya S. Poltavets, Andrey V. Elchaninov, Elena V. Uvarova, Vladimir D. Chuprynin and Gennady T. Sukhikh
Cells 2024, 13(14), 1187; https://doi.org/10.3390/cells13141187 - 12 Jul 2024
Viewed by 423
Abstract
Background: Immunological imbalances characteristic of endometriosis may develop as early as the primary manifestations of the disease in adolescence. Objective: To evaluate subpopulation dynamics of monocytes and lymphocytes in peripheral blood and peritoneal fluid of adolescents with peritoneal endometriosis at diagnosis [...] Read more.
Background: Immunological imbalances characteristic of endometriosis may develop as early as the primary manifestations of the disease in adolescence. Objective: To evaluate subpopulation dynamics of monocytes and lymphocytes in peripheral blood and peritoneal fluid of adolescents with peritoneal endometriosis at diagnosis and after 1-year progestogen therapy. Methods: This study included 70 girls, 13–17 years old, diagnosed laparoscopically with peritoneal endometriosis (n = 50, main group) or paramesonephric cysts (n = 20, comparison group). Phenotypes of monocytes and lymphocytes of the blood and macrophages of the peritoneal fluid were analyzed by flow cytometry at diagnosis and during progestogen therapy. Results: Differential blood counts of CD16+ (p < 0.001) and CD86+ (p = 0.017) monocytes were identified as independent risk factors for peritoneal endometriosis in adolescents. During the treatment, cytotoxic lymphocytes CD56dimCD16bright (p = 0.049) and CD206+ monocytes (p < 0.001) significantly increased while CD163+ monocytes decreased in number (p = 0.017). The CD56dimCD16bright blood counts before (p < 0.001) and during progestogen therapy (p = 0.006), as well as CD206+ blood counts during the treatment (p = 0.038), were associated with the efficacy of pain relief after 1-year progestogen therapy. Conclusions: Adolescents with peritoneal endometriosis have altered counts of pro- and anti-inflammatory monocytes and lymphocytes both before and after 1-year progestogen therapy, correlating with treatment efficacy and justifying long-term hormonal therapy. Full article
(This article belongs to the Special Issue Breakthroughs in Cell Signaling in Health and Disease)
Show Figures

Figure 1

16 pages, 2113 KiB  
Review
Focal Adhesion Kinase and Colony Stimulating Factors: Intestinal Homeostasis and Innate Immunity Crosstalk
by Nicholas D. Brown and Emilie E. Vomhof-DeKrey
Cells 2024, 13(14), 1178; https://doi.org/10.3390/cells13141178 - 11 Jul 2024
Viewed by 750
Abstract
Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated [...] Read more.
Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated by FAK activation and proves to be a promising target for pharmaceutical intervention. While FAK is crucial for intestinal healing, new evidence connects FAK with innate immunity and the importance it plays in macrophage/monocyte chemotaxis, as well as other intracellular signaling cascades. These cascades play a part in macrophage/monocyte polarization, maturation, and inflammation that is associated with intestinal injury. Colony stimulating factors (CSFs) such as macrophage colony stimulating factor (M-CSF/CSF-1) and granulocyte macrophage colony stimulating factor (GM-CSF/CSF-2) play a critical role in maintaining homeostasis within intestinal mucosa by crosstalk capabilities between macrophages and epithelial cells. The communication between these cells is imperative in orchestrating healing upon injury. Diving deeper into these connections may allow us a greater insight into the role that our immune system plays in healing, as well as a better comprehension of inflammatory diseases of the gut. Full article
(This article belongs to the Special Issue Macrophage Activation and Regulation)
Show Figures

Figure 1

12 pages, 1884 KiB  
Article
Macrophage Phenotype Induced by Circulating Small Extracellular Vesicles from Women with Endometriosis
by María Angeles Martínez-Zamora, Olga Armengol-Badia, Lara Quintas-Marquès, Francisco Carmona and Daniel Closa
Biomolecules 2024, 14(7), 737; https://doi.org/10.3390/biom14070737 - 21 Jun 2024
Viewed by 524
Abstract
Evidence suggests that immune system dysfunction and macrophages are involved in the disease establishment and progression of endometriosis. Among the factors involved in this alteration in macrophage activity, Small Extracellular Vesicles (sEVs) have been described to play a role favoring the switch to [...] Read more.
Evidence suggests that immune system dysfunction and macrophages are involved in the disease establishment and progression of endometriosis. Among the factors involved in this alteration in macrophage activity, Small Extracellular Vesicles (sEVs) have been described to play a role favoring the switch to a specific phenotype with controversial results. This study aims to investigate the potential effect of circulating sEVs in the plasma of well-characterized patients with endometriosis on the polarization of macrophages. sEVs were isolated from the plasma of patients diagnosed with endometriosis confirmed by histopathological analysis. Two groups of patients were recruited: the endometriosis group consisted of patients diagnosed with endometriosis by imaging testing (gynecological ultrasonography and/or magnetic resonance imaging), confirmed by histopathologic study (n = 12), and the control group included patients who underwent laparoscopy for tubal sterilization without presurgical suspicion of endometriosis and without endometriosis or signs of any inflammatory pelvic condition during surgery (n = 12). Human THP1 monocytic cells were differentiated into macrophages, and the effect of sEVs on cell uptake and macrophage polarization was evaluated by fluorescent labeling and measurement of the IL1B, TNF, ARG1, and MRC1 expression, respectively. Although no changes in cell uptake were detected, sEVs from endometriosis induced a polarization of macrophages toward an M2 phenotype, characterized by lower IL1B and TNF expression and a tendency to increase MRC1 and ARG1 levels. When macrophages were stimulated with lipopolysaccharides, less activation was also detected after treatment with endometriosis sEVs. Finally, endometriosis sEVs also induced the expression of the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARG); however, treatment with rosiglitazone, a PPARG agonist, had no effect on the change in macrophage phenotype. We conclude that circulating sEVs in women with endometriosis have a certain capacity to shift the activation state of macrophages toward an M2 phenotype, but this does not modify the uptake level or the response to PPARG ligands. Full article
Show Figures

Figure 1

13 pages, 3425 KiB  
Article
THP-1 Monocytic Cells Are Polarized to More Antitumorigenic Macrophages by Serial Treatment with Phorbol-12-Myristate-13-Acetate and PD98059
by Hantae Jo, Eun-Young Lee, Hyun Sang Cho, Md Abu Rayhan, Ahyoung Cho, Chang-Suk Chae and Hye Jin You
Medicina 2024, 60(6), 1009; https://doi.org/10.3390/medicina60061009 - 20 Jun 2024
Viewed by 1235
Abstract
Background and Objectives: As modulators of the tumor microenvironment, macrophages have been extensively studied for their potential in developing anticancer strategies, particularly in regulating macrophage polarization towards an antitumorigenic (M1) phenotype rather than a protumorigenic (M2) one in various experimental models. Here, [...] Read more.
Background and Objectives: As modulators of the tumor microenvironment, macrophages have been extensively studied for their potential in developing anticancer strategies, particularly in regulating macrophage polarization towards an antitumorigenic (M1) phenotype rather than a protumorigenic (M2) one in various experimental models. Here, we evaluated the effect of PD98059, a mitogen-activated protein kinase kinase MAPKK MEK1-linked pathway inhibitor, on the differentiation and polarization of THP-1 monocytes in response to phorbol-12-myristate-13-acetate (PMA) under various culture conditions for tumor microenvironmental application. Materials and Methods: Differentiation and polarization of THP-1 were analyzed by flow cytometry and RT-PCR. Polarized THP-1 subsets with different treatment were compared by motility, phagocytosis, and so on. Results: Clearly, PMA induced THP-1 differentiation occurs in adherent culture conditions more than nonadherent culture conditions by increasing CD11b expression up to 90%, which was not affected by PD98059 when cells were exposed to PMA first (post-PD) but inhibited when PD98059 was treated prior to PMA treatment (pre-PD). CD11bhigh THP-1 cells treated with PMA and PMA-post-PD were categorized into M0 (HLA-DRlow and CD206low), M1 (HLA-DRhigh and CD206low), and M2 (HLA-DRlow and CD206high), resulting in an increased population of M1 macrophages. The transcription levels of markers of macrophage differentiation and polarization confirmed the increased M1 polarization of THP-1 cells with post-PD treatment rather than with PMA-only treatment. The motility and cytotoxicity of THP-1 cells with post-PD treatment were higher than THP-1 cells with PMA, suggesting that post-PD treatment enhanced the anti-tumorigenicity of THP-1 cells. Confocal microscopy and flow cytometry showed the effect of post-PD treatment on phagocytosis by THP-1 cells. Conclusions: We have developed an experimental model of macrophage polarization with THP-1 cells which will be useful for further studies related to the tumor microenvironment. Full article
(This article belongs to the Section Hematology and Immunology)
Show Figures

Figure 1

16 pages, 3543 KiB  
Article
Multifunctional Cell Regulation Activities of the Mussel Lectin SeviL: Induction of Macrophage Polarization toward the M1 Functional Phenotype
by Yuki Fujii, Kenichi Kamata, Marco Gerdol, Imtiaj Hasan, Sultana Rajia, Sarkar M. A. Kawsar, Somrita Padma, Bishnu Pada Chatterjee, Mayuka Ohkawa, Ryuya Ishiwata, Suzuna Yoshimoto, Masao Yamada, Namiho Matsuzaki, Keita Yamamoto, Yuka Niimi, Nobumitsu Miyanishi, Masamitsu Konno, Alberto Pallavicini, Tatsuya Kawasaki, Yukiko Ogawa, Yasuhiro Ozeki and Hideaki Fujitaadd Show full author list remove Hide full author list
Mar. Drugs 2024, 22(6), 269; https://doi.org/10.3390/md22060269 - 11 Jun 2024
Viewed by 981
Abstract
SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low [...] Read more.
SeviL, a galactoside-binding lectin previously isolated from the mussel Mytilisepta virgata, was demonstrated to trigger apoptosis in HeLa ovarian cancer cells. Here, we show that this lectin can promote the polarization of macrophage cell lines toward an M1 functional phenotype at low concentrations. The administration of SeviL to monocyte and basophil cell lines reduced their growth in a dose-dependent manner. However, low lectin concentrations induced proliferation in the RAW264.7 macrophage cell line, which was supported by the significant up-regulation of TOM22, a component of the mitochondrial outer membrane. Furthermore, the morphology of lectin-treated macrophage cells markedly changed, shifting from a spherical to an elongated shape. The ability of SeviL to induce the polarization of RAW264.7 cells to M1 macrophages at low concentrations is supported by the secretion of proinflammatory cytokines and chemokines, as well as by the enhancement in the expression of IL-6- and TNF-α-encoding mRNAs, both of which encode inflammatory molecular markers. Moreover, we also observed a number of accessory molecular alterations, such as the activation of MAP kinases and the JAK/STAT pathway and the phosphorylation of platelet-derived growth factor receptor-α, which altogether support the functional reprogramming of RAW264.7 following SeviL treatment. These results indicate that this mussel β-trefoil lectin has a concentration-dependent multifunctional role in regulating cell proliferation, phenotype, and death in macrophages, suggesting its possible involvement in regulating hemocyte activity in vivo. Full article
(This article belongs to the Special Issue Marine Glycomics 2nd Edition)
Show Figures

Figure 1

23 pages, 3477 KiB  
Article
Antibodies Targeting Human or Mouse VSIG4 Repolarize Tumor-Associated Macrophages Providing the Potential of Potent and Specific Clinical Anti-Tumor Response Induced across Multiple Cancer Types
by Stephen Sazinsky, Mohammad Zafari, Boris Klebanov, Jessica Ritter, Phuong A. Nguyen, Ryan T. Phennicie, Joe Wahle, Kevin J. Kauffman, Maja Razlog, Denise Manfra, Igor Feldman and Tatiana Novobrantseva
Int. J. Mol. Sci. 2024, 25(11), 6160; https://doi.org/10.3390/ijms25116160 - 3 Jun 2024
Viewed by 1260
Abstract
V-set immunoglobulin domain-containing 4 (VSIG4) is a B7 family protein with known roles as a C3 fragment complement receptor involved in pathogen clearance and a negative regulator of T cell activation by an undetermined mechanism. VSIG4 expression is specific for tumor-associated and select [...] Read more.
V-set immunoglobulin domain-containing 4 (VSIG4) is a B7 family protein with known roles as a C3 fragment complement receptor involved in pathogen clearance and a negative regulator of T cell activation by an undetermined mechanism. VSIG4 expression is specific for tumor-associated and select tissue-resident macrophages. Increased expression of VSIG4 has been associated with worse survival in multiple cancer indications. Based upon computational analysis of transcript data across thousands of tumor and normal tissue samples, we hypothesized that VSIG4 has an important role in promoting M2-like immune suppressive macrophages and that targeting VSIG4 could relieve VSIG4-mediated macrophage suppression by repolarizing tumor-associated macrophages (TAMs) to an inflammatory phenotype. We have also observed a cancer-specific pattern of VSIG4 isoform distribution, implying a change in the functional regulation in cancer. Through a series of in vitro, in vivo, and ex vivo assays we demonstrate that anti-VSIG4 antibodies repolarize M2 macrophages and induce an immune response culminating in T cell activation. Anti-VSIG4 antibodies induce pro-inflammatory cytokines in M-CSF plus IL-10-driven human monocyte-derived M2c macrophages. Across patient-derived tumor samples from multiple tumor types, anti-VSIG4 treatment resulted in the upregulation of cytokines associated with TAM repolarization and T cell activation and chemokines involved in immune cell recruitment. VSIG4 blockade is also efficacious in a syngeneic mouse model as monotherapy as it enhances efficacy in combination with anti-PD-1, and the effect is dependent on the systemic availability of CD8+ T cells. Thus, VSIG4 represents a promising new target capable of triggering an anti-cancer response via multiple key immune mechanisms. Full article
(This article belongs to the Special Issue Macrophage Polarization: Learning to Manage It 3.0)
Show Figures

Figure 1

22 pages, 7463 KiB  
Article
Ly6Chi Monocytes Are Metabolically Reprogrammed in the Blood during Inflammatory Stimulation and Require Intact OxPhos for Chemotaxis and Monocyte to Macrophage Differentiation
by Gareth S. D. Purvis, Eileen McNeill, Benjamin Wright, Keith M. Channon and David R. Greaves
Cells 2024, 13(11), 916; https://doi.org/10.3390/cells13110916 - 26 May 2024
Viewed by 919
Abstract
Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking [...] Read more.
Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6GLy6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair. Full article
(This article belongs to the Special Issue Macrophage Activation and Regulation)
Show Figures

Figure 1

19 pages, 4900 KiB  
Article
Discrepant Phenotyping of Monocytes Based on CX3CR1 and CCR2 Using Fluorescent Reporters and Antibodies
by Katrin Sommer, Hilal Garibagaoglu, Eva-Maria Paap, Maximilian Wiendl, Tanja M. Müller, Imke Atreya, Gerhard Krönke, Markus F. Neurath and Sebastian Zundler
Cells 2024, 13(10), 819; https://doi.org/10.3390/cells13100819 - 10 May 2024
Viewed by 789
Abstract
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a [...] Read more.
Monocytes, as well as downstream macrophages and dendritic cells, are essential players in the immune system, fulfilling key roles in homeostasis as well as in inflammatory conditions. Conventionally, driven by studies on reporter models, mouse monocytes are categorized into a classical and a non-classical subset based on their inversely correlated surface expression of Ly6C/CCR2 and CX3CR1. Here, we aimed to challenge this concept by antibody staining and reporter mouse models. Therefore, we took advantage of Cx3cr1GFP and Ccr2RFP reporter mice, in which the respective gene was replaced by a fluorescent reporter protein gene. We analyzed the expression of CX3CR1 and CCR2 by flow cytometry using several validated fluorochrome-coupled antibodies and compared them with the reporter gene signal in these reporter mouse strains. Although we were able to validate the specificity of the fluorochrome-coupled flow cytometry antibodies, mouse Ly6Chigh classical and Ly6Clow non-classical monocytes showed no differences in CX3CR1 expression levels in the peripheral blood and spleen when stained with these antibodies. On the contrary, in Cx3cr1GFP reporter mice, we were able to reproduce the inverse correlation of the CX3CR1 reporter gene signal and Ly6C surface expression. Furthermore, differential CCR2 surface expression correlating with the expression of Ly6C was observed by antibody staining, but not in Ccr2RFP reporter mice. In conclusion, our data suggest that phenotyping strategies for mouse monocyte subsets should be carefully selected. In accordance with the literature, the suitability of CX3CR1 antibody staining is limited, whereas for CCR2, caution should be applied when using reporter mice. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

21 pages, 3563 KiB  
Article
Senotherapeutic Peptide 14 Suppresses Th1 and M1 Human T Cell and Monocyte Subsets In Vitro
by Thuany Alencar-Silva, Stefhani Martins de Barcelos, Amandda Silva-Carvalho, Mauricio Gonçalves da Costa Sousa, Taia Maria Berto Rezende, Robert Pogue, Felipe Saldanha-Araújo, Octávio Luiz Franco, Mariana Boroni, Alessandra Zonari and Juliana Lott Carvalho
Cells 2024, 13(10), 813; https://doi.org/10.3390/cells13100813 - 10 May 2024
Viewed by 990
Abstract
Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the [...] Read more.
Inflammation contributes to the onset and exacerbation of numerous age-related diseases, often manifesting as a chronic condition during aging. Given that cellular senescence fosters local and systemic inflammation, senotherapeutic interventions could potentially aid in managing or even reducing inflammation. Here, we investigated the immunomodulatory effects of the senotherapeutic Peptide 14 (Pep 14) in human peripheral blood mononuclear cells (PBMCs), monocytes, and macrophages. We found that, despite failing to significantly influence T cell activation and proliferation, the peptide promoted a Th2/Treg gene expression and cytokine signature in PBMCs, characterized by increased expression of the transcription factors GATA3 and FOXP3, as well as the cytokines IL-4 and IL-10. These observations were partially confirmed through ELISA, in which we observed increased IL-10 release by resting and PHA-stimulated PBMCs. In monocytes from the U-937 cell line, Pep 14 induced apoptosis in lipopolysaccharide (LPS)-stimulated cells and upregulated IL-10 expression. Furthermore, Pep 14 prevented LPS-induced activation and promoted an M2-like polarization in U-937-derived macrophages, evidenced by decreased expression of M1 markers and increased expression of M2 markers. We also showed that the conditioned media from Pep 14-treated macrophages enhanced fibroblast migration, indicative of a functional M2 phenotype. Taken together, our findings suggest that Pep 14 modulates immune cell function towards an anti-inflammatory and regenerative phenotype, highlighting its potential as a therapeutic intervention to alleviate immunosenescence-associated dysregulation. Full article
Show Figures

Figure 1

19 pages, 2731 KiB  
Article
Krüppel-like Factor-4-Mediated Macrophage Polarization and Phenotypic Transitions Drive Intestinal Fibrosis in THP-1 Monocyte Models In Vitro
by Takuya Kanno, Takahito Katano, Takaya Shimura, Mamoru Tanaka, Hirotada Nishie, Shigeki Fukusada, Keiji Ozeki, Isamu Ogawa, Takahiro Iwao, Tamihide Matsunaga and Hiromi Kataoka
Medicina 2024, 60(5), 713; https://doi.org/10.3390/medicina60050713 - 26 Apr 2024
Viewed by 1006
Abstract
Background and Objectives: Despite the fact that biologic drugs have transformed inflammatory bowel disease (IBD) treatment, addressing fibrosis-related strictures remains a research gap. This study explored the roles of cytokines, macrophages, and Krüppel-like factors (KLFs), specifically KLF4, in intestinal fibrosis, as well [...] Read more.
Background and Objectives: Despite the fact that biologic drugs have transformed inflammatory bowel disease (IBD) treatment, addressing fibrosis-related strictures remains a research gap. This study explored the roles of cytokines, macrophages, and Krüppel-like factors (KLFs), specifically KLF4, in intestinal fibrosis, as well as the interplay of KLF4 with various gut components. Materials and Methods: This study examined macrophage subtypes, their KLF4 expression, and the effects of KLF4 knockdown on macrophage polarization and cytokine expression using THP-1 monocyte models. Co-culture experiments with stromal myofibroblasts and a conditioned medium from macrophage subtype cultures were conducted to study the role of these cells in intestinal fibrosis. Human-induced pluripotent stem cell-derived small intestinal organoids were used to confirm inflammatory and fibrotic responses in the human small intestinal epithelium. Results: Each macrophage subtype exhibited distinct phenotypes and KLF4 expression. Knockdown of KLF4 induced inflammatory cytokine expression in M0, M2a, and M2c cells. M2b exerted anti-fibrotic effects via interleukin (IL)-10. M0 and M2b cells showed a high migratory capacity toward activated stromal myofibroblasts. M0 cells interacting with activated stromal myofibroblasts transformed into inflammatory macrophages, thereby increasing pro-inflammatory cytokine expression. The expression of IL-36α, linked to fibrosis, was upregulated. Conclusions: This study elucidated the role of KLF4 in macrophage polarization and the intricate interactions between macrophages, stromal myofibroblasts, and cytokines in experimental in vitro models of intestinal fibrosis. The obtained results may suggest the mechanism of fibrosis formation in clinical IBD. Full article
(This article belongs to the Section Gastroenterology & Hepatology)
Show Figures

Figure 1

20 pages, 636 KiB  
Review
Target Role of Monocytes as Key Cells of Innate Immunity in Rheumatoid Arthritis
by Diana I. Salnikova, Nikita G. Nikiforov, Anton Y. Postnov and Alexander N. Orekhov
Diseases 2024, 12(5), 81; https://doi.org/10.3390/diseases12050081 - 25 Apr 2024
Cited by 2 | Viewed by 1642
Abstract
Rheumatoid arthritis (RA) is a chronic, systemic, and inflammatory autoimmune condition characterized by synovitis, pannus formation (with adjacent bone erosion), and joint destruction. In the perpetuation of RA, fibroblast-like synoviocytes (FLSs), macrophages, B cells, and CD4+ T-cells—specifically Th1 and Th17 cells—play crucial [...] Read more.
Rheumatoid arthritis (RA) is a chronic, systemic, and inflammatory autoimmune condition characterized by synovitis, pannus formation (with adjacent bone erosion), and joint destruction. In the perpetuation of RA, fibroblast-like synoviocytes (FLSs), macrophages, B cells, and CD4+ T-cells—specifically Th1 and Th17 cells—play crucial roles. Additionally, dendritic cells, neutrophils, mast cells, and monocytes contribute to the disease progression. Monocytes, circulating cells primarily derived from the bone marrow, participate in RA pathogenesis. Notably, CCR2 interacts with CCL2, and CX3CR1 (expressed by monocytes) cooperates with CX3CL1 (produced by FLSs), facilitating the migration involved in RA. Canonical “classical” monocytes predominantly acquire the phenotype of an “intermediate” subset, which differentially expresses proinflammatory cytokines (IL-1β, IL-6, and TNF) and surface markers (CD14, CD16, HLA-DR, TLRs, and β1- and β2-integrins). However, classical monocytes have greater potential to differentiate into osteoclasts, which contribute to bone resorption in the inflammatory milieu; in RA, Th17 cells stimulate FLSs to produce RANKL, triggering osteoclastogenesis. This review aims to explore the monocyte heterogeneity, plasticity, antigenic expression, and their differentiation into macrophages and osteoclasts. Additionally, we investigate the monocyte migration into the synovium and the role of their cytokines in RA. Full article
(This article belongs to the Topic Inflammation: The Cause of all Diseases 2.0)
Show Figures

Figure 1

18 pages, 1563 KiB  
Article
Novel Fermentates Can Enhance Key Immune Responses Associated with Viral Immunity
by Dearbhla Finnegan, Monica A. Mechoud, Jamie A. FitzGerald, Tom Beresford, Harsh Mathur, Paul D. Cotter and Christine Loscher
Nutrients 2024, 16(8), 1212; https://doi.org/10.3390/nu16081212 - 19 Apr 2024
Viewed by 1747
Abstract
Fermented foods have long been known to have immunomodulatory capabilities, and fermentates derived from the lactic acid bacteria of dairy products can modulate the immune system. We have used skimmed milk powder to generate novel fermentates using Lb. helveticus strains SC234 and SC232 [...] Read more.
Fermented foods have long been known to have immunomodulatory capabilities, and fermentates derived from the lactic acid bacteria of dairy products can modulate the immune system. We have used skimmed milk powder to generate novel fermentates using Lb. helveticus strains SC234 and SC232 and we demonstrate here that these fermentates can enhance key immune mechanisms that are critical to the immune response to viruses. We show that our novel fermentates, SC234 and SC232, can positively impact on cytokine and chemokine secretion, nitric oxide (NO) production, cell surface marker expression, and phagocytosis in macrophage models. We demonstrate that the fermentates SC234 and SC232 increase the secretion of cytokines IL-1β, IL-6, TNF-α, IL-27, and IL-10; promote an M1 pro-inflammatory phenotype for viral immunity via NO induction; decrease chemokine expression of Monocyte Chemoattractant Protein (MCP); increase cell surface marker expression; and enhance phagocytosis in comparison to their starting material. These data suggest that these novel fermentates have potential as novel functional food ingredients for the treatment, management, and control of viral infection. Full article
(This article belongs to the Special Issue Dietary Components and Immune Function)
Show Figures

Graphical abstract

21 pages, 6069 KiB  
Article
Regulation of Mertk Surface Expression via ADAM17 and γ-Secretase Proteolytic Processing
by Kevin C. Lahey, Christopher Varsanyi, Ziren Wang, Ahmed Aquib, Varsha Gadiyar, Alcina A. Rodrigues, Rachael Pulica, Samuel Desind, Viralkumar Davra, David C. Calianese, Dongfang Liu, Jong-Hyun Cho, Sergei V. Kotenko, Mariana S. De Lorenzo and Raymond B. Birge
Int. J. Mol. Sci. 2024, 25(8), 4404; https://doi.org/10.3390/ijms25084404 - 17 Apr 2024
Viewed by 1408
Abstract
Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several [...] Read more.
Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk. Full article
Show Figures

Figure 1

Back to TopTop