Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (795)

Search Parameters:
Keywords = myofibroblast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2337 KiB  
Article
Commercialization of the Xalkori Pediatric Multiparticulate Product Using Quality-by-Design Principles
by Jeremy Bartlett, Natalie Culver, Xiang Zhang, Brett Waybrant, Hannah Sullivan and Logan Howell
Pharmaceutics 2024, 16(8), 1027; https://doi.org/10.3390/pharmaceutics16081027 - 1 Aug 2024
Viewed by 197
Abstract
A pediatric dosage form for crizotinib (Xalkori) was commercialized using quality-by-design principles in a material-sparing fashion. The dosage form consists of spherical multiparticulates (microspheres or pellets) that are coated and encapsulated in capsules for opening. The crizotinib (Xalkori)-coated pellet product is approved in [...] Read more.
A pediatric dosage form for crizotinib (Xalkori) was commercialized using quality-by-design principles in a material-sparing fashion. The dosage form consists of spherical multiparticulates (microspheres or pellets) that are coated and encapsulated in capsules for opening. The crizotinib (Xalkori)-coated pellet product is approved in the US for pediatric patients 1 year of age and older and young adults with relapsed or refractory, systemic anaplastic large cell lymphoma (ALCL) and unresectable, recurrent, or refractory inflammatory myofibroblastic tumor (IMT) that is ALK-positive. The product is also approved in the US for adult patients with non-small cell lung cancer (NSCLC) who are unable to swallow intact capsules. The lipid multiparticulate is composed of a lipid matrix, a dissolution enhancer, and an active pharmaceutical ingredient (API). The API, which remains crystalline, is embedded within the microsphere at a 60% drug loading in the uncoated lipid multiparticulate to enable dose flexibility. The melt spray congealing technique using a rotary atomizer is used to manufacture the lipid multiparticulate. Following melt spray congealing, a barrier coating is applied via fluid bed coating. Due to their particle size and content uniformity, this dosage form provides the dosing flexibility and swallowability needed for the pediatric population. The required pediatric dose is achieved by opening the capsules and combining doses of different encapsulated dose strengths, followed by administration of the multiparticulates directly to the mouth. The encapsulation process was optimized through equipment modifications and by using a design of experiments approach to understand the operating space. A limited number of development batches produced using commercial-scale equipment were leveraged to design, understand, and verify the manufacturing process space. The quality by design and material-sparing approach taken to design the melt spray congeal and encapsulation manufacturing processes resulted in a pediatric product with exceptional content uniformity (a 95% confidence and 99% probability of passing USP <905> content uniformity testing for future batches). Full article
(This article belongs to the Special Issue Advanced Pediatric Drug Formulation Strategies)
18 pages, 2892 KiB  
Article
Pericardial Fluid Accumulates microRNAs That Regulate Heart Fibrosis after Myocardial Infarction
by Elsa D. Silva, Daniel Pereira-Sousa, Francisco Ribeiro-Costa, Rui Cerqueira, Francisco J. Enguita, Rita N. Gomes, João Dias-Ferreira, Cassilda Pereira, Ana Castanheira, Perpétua Pinto-do-Ó, Adelino F. Leite-Moreira and Diana S. Nascimento
Int. J. Mol. Sci. 2024, 25(15), 8329; https://doi.org/10.3390/ijms25158329 - 30 Jul 2024
Viewed by 367
Abstract
Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that [...] Read more.
Pericardial fluid (PF) has been suggested as a reservoir of molecular targets that can be modulated for efficient repair after myocardial infarction (MI). Here, we set out to address the content of this biofluid after MI, namely in terms of microRNAs (miRs) that are important modulators of the cardiac pathological response. PF was collected during coronary artery bypass grafting (CABG) from two MI cohorts, patients with non-ST-segment elevation MI (NSTEMI) and patients with ST-segment elevation MI (STEMI), and a control group composed of patients with stable angina and without previous history of MI. The PF miR content was analyzed by small RNA sequencing, and its biological effect was assessed on human cardiac fibroblasts. PF accumulates fibrotic and inflammatory molecules in STEMI patients, namely causing the soluble suppression of tumorigenicity 2 (ST-2), which inversely correlates with the left ventricle ejection fraction. Although the PF of the three patient groups induce similar levels of fibroblast-to-myofibroblast activation in vitro, RNA sequencing revealed that PF from STEMI patients is particularly enriched not only in pro-fibrotic miRs but also anti-fibrotic miRs. Among those, miR-22-3p was herein found to inhibit TGF-β-induced human cardiac fibroblast activation in vitro. PF constitutes an attractive source for screening diagnostic/prognostic miRs and for unveiling novel therapeutic targets in cardiac fibrosis. Full article
(This article belongs to the Special Issue Cardiovascular Diseases: Molecular Mechanisms and Potential Therapy)
Show Figures

Figure 1

10 pages, 1919 KiB  
Article
Role of ATG4 Autophagy-Related Protein Family in the Lower Airways of Patients with Stable COPD
by Francesco Nucera, Antonino Di Stefano, Fabio Luigi Massimo Ricciardolo, Isabella Gnemmi, Cristina Pizzimenti, Francesco Monaco, Giovanni Tuccari, Gaetano Caramori and Antonio Ieni
Int. J. Mol. Sci. 2024, 25(15), 8182; https://doi.org/10.3390/ijms25158182 - 26 Jul 2024
Viewed by 323
Abstract
Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in [...] Read more.
Autophagy is a complex physiological pathway mediating homeostasis and survival of cells degrading damaged organelles and regulating their recycling. Physiologic autophagy can maintain normal lung function, decrease lung cellular senescence, and inhibit myofibroblast differentiation. It is well known that autophagy is activated in several chronic inflammatory diseases; however, its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) and the expression of autophagy-related genes (ATGs) in lower airways of COPD patients is still controversial. The expression and localization of all ATG proteins that represented key components of the autophagic machinery modulating elongation, closure, and maturation of autophagosome membranes were retrospectively measured in peripheral lungs of patients with stable COPD (n = 10), control smokers with normal lung function (n = 10), and control nonsmoking subjects (n = 8) using immunohistochemical analysis. These results show an increased expression of ATG4 protein in alveolar septa and bronchiolar epithelium of stable COPD patients compared to smokers with normal lung function and non-smoker subjects. In particular, the genes in the ATG4 protein family (including ATG4A, ATG4B, ATG4C, and ATG4D) that have a key role in the modulation of the physiological autophagic machinery are the most important ATGs increased in the compartment of lower airways of stable COPD patients, suggesting that the alteration shown in COPD patients can be also correlated to impaired modulation of autophagic machinery modulating elongation, closure, and maturation of autophagosomes membranes. Statistical analysis was performed by the Kruskal–Wallis test and the Mann–Whitney U test for comparison between groups. A statistically significant increased expression of ATG4A (p = 0.0047), ATG4D (p = 0.018), and ATG5 (p = 0.019) was documented in the bronchiolar epithelium as well in alveolar lining for ATG4A (p = 0.0036), ATG4B (p = 0.0054), ATG4C (p = 0.0064), ATG4D (p = 0.0084), ATG5 (p = 0.0088), and ATG7 (p = 0.018) in patients with stable COPD compared to control groups. The ATG4 isoforms may be considered as additional potential targets for the development of new drugs in COPD. Full article
(This article belongs to the Special Issue The Role of Autophagy in Disease and Cancer)
Show Figures

Figure 1

33 pages, 2382 KiB  
Review
Liver Fibrosis: From Basic Science towards Clinical Progress, Focusing on the Central Role of Hepatic Stellate Cells
by Hikmet Akkız, Robert K. Gieseler and Ali Canbay
Int. J. Mol. Sci. 2024, 25(14), 7873; https://doi.org/10.3390/ijms25147873 - 18 Jul 2024
Viewed by 558
Abstract
The burden of chronic liver disease is globally increasing at an alarming rate. Chronic liver injury leads to liver inflammation and fibrosis (LF) as critical determinants of long-term outcomes such as cirrhosis, liver cancer, and mortality. LF is a wound-healing process characterized by [...] Read more.
The burden of chronic liver disease is globally increasing at an alarming rate. Chronic liver injury leads to liver inflammation and fibrosis (LF) as critical determinants of long-term outcomes such as cirrhosis, liver cancer, and mortality. LF is a wound-healing process characterized by excessive deposition of extracellular matrix (ECM) proteins due to the activation of hepatic stellate cells (HSCs). In the healthy liver, quiescent HSCs metabolize and store retinoids. Upon fibrogenic activation, quiescent HSCs transdifferentiate into myofibroblasts; lose their vitamin A; upregulate α-smooth muscle actin; and produce proinflammatory soluble mediators, collagens, and inhibitors of ECM degradation. Activated HSCs are the main effector cells during hepatic fibrogenesis. In addition, the accumulation and activation of profibrogenic macrophages in response to hepatocyte death play a critical role in the initiation of HSC activation and survival. The main source of myofibroblasts is resident HSCs. Activated HSCs migrate to the site of active fibrogenesis to initiate the formation of a fibrous scar. Single-cell technologies revealed that quiescent HSCs are highly homogenous, while activated HSCs/myofibroblasts are much more heterogeneous. The complex process of inflammation results from the response of various hepatic cells to hepatocellular death and inflammatory signals related to intrahepatic injury pathways or extrahepatic mediators. Inflammatory processes modulate fibrogenesis by activating HSCs and, in turn, drive immune mechanisms via cytokines and chemokines. Increasing evidence also suggests that cellular stress responses contribute to fibrogenesis. Recent data demonstrated that LF can revert even at advanced stages of cirrhosis if the underlying cause is eliminated, which inhibits the inflammatory and profibrogenic cells. However, despite numerous clinical studies on plausible drug candidates, an approved antifibrotic therapy still remains elusive. This state-of-the-art review presents cellular and molecular mechanisms involved in hepatic fibrogenesis and its resolution, as well as comprehensively discusses the drivers linking liver injury to chronic liver inflammation and LF. Full article
(This article belongs to the Special Issue Molecular Advances in Liver Fibrosis)
Show Figures

Figure 1

7 pages, 945 KiB  
Brief Report
The Novel Cytokine Interleukin-41/Meteorin-like Is Reduced in Diffuse Systemic Sclerosis
by Paul Freedman, Bettina Schock and Steven O’Reilly
Cells 2024, 13(14), 1205; https://doi.org/10.3390/cells13141205 - 17 Jul 2024
Viewed by 348
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease with a triad of features that include vascular abnormalities, inflammation and skin and lung fibrosis. At the core of the disease is the activation of myofibroblasts from quiescent fibroblasts and this can be modified [...] Read more.
Systemic sclerosis (SSc) is an autoimmune connective tissue disease with a triad of features that include vascular abnormalities, inflammation and skin and lung fibrosis. At the core of the disease is the activation of myofibroblasts from quiescent fibroblasts and this can be modified by various cytokines. IL-41 is a recently described cytokine that was initially characterised as an adipokine as it was highly expressed in adipocytes and adipose tissue. However, it has recently been identified as being widely expressed and has immunomodulatory functions. This study examined the circulating levels of IL-41 and its expression in skin biopsies. We demonstrated significantly reduced levels of IL-41 in diffuse SSc that was also mirrored in the skin of SSc patients. AMPK has been proposed as a downstream target of IL-41, so we also measure mammalian target of rapamycin in skin and found that this is elevated in SSc patients. We speculate that IL-41 maybe an antifibrotic cytokine and its reduction may facilitate the activation of fibroblasts. Full article
(This article belongs to the Special Issue Fibrosis in Chronic Inflammatory Diseases)
Show Figures

Figure 1

13 pages, 2899 KiB  
Article
The Influence of Sulfation Degree of Glycosaminoglycan-Functionalized 3D Collagen I Networks on Cytokine Profiles of In Vitro Macrophage–Fibroblast Cocultures
by Franziska Ullm, Alexander Renner, Uwe Freudenberg, Carsten Werner and Tilo Pompe
Gels 2024, 10(7), 450; https://doi.org/10.3390/gels10070450 - 9 Jul 2024
Viewed by 498
Abstract
Cell–cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed [...] Read more.
Cell–cell interactions between fibroblasts and immune cells, like macrophages, are influenced by interaction with the surrounding extracellular matrix during wound healing. In vitro hydrogel models that mimic and modulate these interactions, especially of soluble mediators like cytokines, may allow for a more detailed investigation of immunomodulatory processes. In the present study, a biomimetic extracellular matrix model based on fibrillar 3D collagen I networks with a functionalization with heparin or 6-ON-desulfated heparin, as mimics of naturally occurring heparan sulfate, was developed to modulate cytokine binding effects with the hydrogel matrix. The constitution and microstructure of the collagen I network were found to be stable throughout the 7-day culture period. A coculture study of primary human fibroblasts/myofibroblasts and M-CSF-stimulated macrophages was used to show its applicability to simulate processes of progressed wound healing. The quantification of secreted cytokines (IL-8, IL-10, IL-6, FGF-2) in the cell culture supernatant demonstrated the differential impact of glycosaminoglycan functionalization of the collagen I network. Most prominently, IL-6 and FGF-2 were shown to be regulated by the cell culture condition and network constitution, indicating changes in paracrine and autocrine cell–cell communication of the fibroblast–macrophage coculture. From this perspective, we consider our newly established in vitro hydrogel model suitable for mechanistic coculture analyses of primary human cells to unravel the role of extracellular matrix factors in key events of tissue regeneration and beyond. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

15 pages, 1345 KiB  
Review
Overcoming Chemoresistance in Cancer: The Promise of Crizotinib
by Sanaa Musa, Noor Amara, Adan Selawi, Junbiao Wang, Cristina Marchini, Abed Agbarya and Jamal Mahajna
Cancers 2024, 16(13), 2479; https://doi.org/10.3390/cancers16132479 - 7 Jul 2024
Viewed by 1114
Abstract
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to [...] Read more.
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to survive despite chemotherapy, underscoring the need for new strategies to overcome resistance and improve treatment efficacy. Crizotinib, a first-generation multi-target kinase inhibitor, is approved by the FDA for the treatment of ALK-positive or ROS1-positive non-small cell lung cancer (NSCLC), refractory inflammatory (ALK)-positive myofibroblastic tumors (IMTs) and relapsed/refractory ALK-positive anaplastic large cell lymphoma (ALCL). Crizotinib exists in two enantiomeric forms: (R)-crizotinib and its mirror image, (S)-crizotinib. It is assumed that the R-isomer is responsible for the carrying out various processes reviewed here The S-isomer, on the other hand, shows a strong inhibition of MTH1, an enzyme important for DNA repair mechanisms. Studies have shown that crizotinib is an effective multi-kinase inhibitor targeting various kinases such as c-Met, native/T315I Bcr/Abl, and JAK2. Its mechanism of action involves the competitive inhibition of ATP binding and allosteric inhibition, particularly at Bcr/Abl. Crizotinib showed synergistic effects when combined with the poly ADP ribose polymerase inhibitor (PARP), especially in ovarian cancer harboring BRCA gene mutations. In addition, crizotinib targets a critical vulnerability in many p53-mutated cancers. Unlike its wild-type counterpart, the p53 mutant promotes cancer cell survival. Crizotinib can cause the degradation of the p53 mutant, sensitizing these cancer cells to DNA-damaging substances and triggering apoptosis. Interestingly, other reports demonstrated that crizotinib exhibits anti-bacterial activity, targeting Gram-positive bacteria. Also, it is active against drug-resistant strains. In summary, crizotinib exerts anti-tumor effects through several mechanisms, including the inhibition of kinases and the restoration of drug sensitivity. The potential of crizotinib in combination therapies is emphasized, particularly in cancers with a high prevalence of the p53 mutant, such as triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC). Full article
(This article belongs to the Collection Innovations in Cancer Drug Development Research)
Show Figures

Figure 1

11 pages, 2117 KiB  
Article
Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment
by Falguni Mishra, Yi Yuan, Jenny J. Yang, Bin Li, Payton Chan and Zhiren Liu
Int. J. Mol. Sci. 2024, 25(13), 7447; https://doi.org/10.3390/ijms25137447 - 6 Jul 2024
Viewed by 857
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, [...] Read more.
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment. Full article
(This article belongs to the Special Issue Chronic Liver Disease and Hepatocellular Carcinoma)
Show Figures

Figure 1

1 pages, 622 KiB  
Correction
Correction: Petroll et al. Experimental Models for Investigating Intra-Stromal Migration of Corneal Keratocytes, Fibroblasts and Myofibroblasts. J. Funct. Biomater. 2012, 3, 183–198
by Walter Matthew Petroll, Neema Lakshman and Lisha Ma
J. Funct. Biomater. 2024, 15(7), 182; https://doi.org/10.3390/jfb15070182 - 2 Jul 2024
Viewed by 402
Abstract
In the original publication [...] Full article
Show Figures

Figure 6

18 pages, 2758 KiB  
Review
The Influence of Metabolic Risk Factors on the Inflammatory Response Triggered by Myocardial Infarction: Bridging Pathophysiology to Treatment
by Lisaidy Ramos-Regalado, Sebastià Alcover, Lina Badimon and Gemma Vilahur
Cells 2024, 13(13), 1125; https://doi.org/10.3390/cells13131125 - 29 Jun 2024
Viewed by 664
Abstract
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the [...] Read more.
Myocardial infarction (MI) sets off a complex inflammatory cascade that is crucial for effective cardiac healing and scar formation. Yet, if this response becomes excessive or uncontrolled, it can lead to cardiovascular complications. This review aims to provide a comprehensive overview of the tightly regulated local inflammatory response triggered in the early post-MI phase involving cardiomyocytes, (myo)fibroblasts, endothelial cells, and infiltrating immune cells. Next, we explore how the bone marrow and extramedullary hematopoiesis (such as in the spleen) contribute to sustaining immune cell supply at a cardiac level. Lastly, we discuss recent findings on how metabolic cardiovascular risk factors, including hypercholesterolemia, hypertriglyceridemia, diabetes, and hypertension, disrupt this immunological response and explore the potential modulatory effects of lifestyle habits and pharmacological interventions. Understanding how different metabolic risk factors influence the inflammatory response triggered by MI and unraveling the underlying molecular and cellular mechanisms may pave the way for developing personalized therapeutic approaches based on the patient’s metabolic profile. Similarly, delving deeper into the impact of lifestyle modifications on the inflammatory response post-MI is crucial. These insights may enable the adoption of more effective strategies to manage post-MI inflammation and improve cardiovascular health outcomes in a holistic manner. Full article
Show Figures

Figure 1

14 pages, 7521 KiB  
Article
Evaluation of Immunological Response to TLR2 and α-SMA in Crohn’s Disease and Ulcerative Colitis
by Anthea Miller, Giorgia Pia Lombardo, Giuseppina Rizzo, Magdalena Kotanska, Giuseppinella Melita, Socrate Pallio, Alba Migliorato, Giuseppina Cutroneo and Simona Pergolizzi
Gastroenterol. Insights 2024, 15(3), 541-554; https://doi.org/10.3390/gastroent15030040 - 28 Jun 2024
Viewed by 469
Abstract
Inflammatory bowel diseases (IBDs) represent multifactorial chronic inflammatory conditions of the gastrointestinal tract. The main IBDs are Crohn’s disease (CD) and ulcerative colitis (UC). CD may cause perforation, stricture or transmural inflammation, which can occur discontinuously in the entire gastrointestinal tract (GIT). UC [...] Read more.
Inflammatory bowel diseases (IBDs) represent multifactorial chronic inflammatory conditions of the gastrointestinal tract. The main IBDs are Crohn’s disease (CD) and ulcerative colitis (UC). CD may cause perforation, stricture or transmural inflammation, which can occur discontinuously in the entire gastrointestinal tract (GIT). UC leads to mucosal inflammation as well as mucosal atrophy in the rectum and the colon. Innate immunity is considered the first line of defense against microbial invasion; among Toll-like receptors, TLR2 is the most important for defense against mycobacterial infection. TLR2 has been reported to have a lot of functions in infectious diseases and in other pathologies, such as chronic and acute inflammatory diseases. Alfa-Smooth Muscle Actin (α-SMA) is an important biomarker in IBDs. All myofibroblasts express α-SMA, which has been found to be upregulated in CD and UC. Paraformaldehyde-fixed intestinal tissues, from patients with CD and patients with UC, were analyzed by immunostaining for TLR2 and α-SMA. Our results showed that, in the samples obtained from UC patients with inflamed mucosa, TLR2-positive epithelial cells concentrated on the mucosal surface and scattered immune cells in the connective tissue; furthermore, numerous α-SMA-positive cells (subepithelial myofibroblasts) were detected in the lamina propria and around glands, while some myofibroblasts co-localizing with α-SMA and TLR2 could be inflammatory macrophages. In CD patients, TLR2-positive enterocytes and α-SMA-positive myofibroblasts in the lamina propria of the villus have been observed. In control samples, a low positivity to α-SMA and TLR2 was observed in subepithelial myofibroblasts and scattered immune cells of the lamina propria. These data showed the recall of α-SMA-positive myofibroblasts during the inflammatory state; in addition, TLR2 expression has been observed to change in the intestinal epithelium in IBDs, demonstrating that alterations in the innate system response may contribute to the pathogenesis of these diseases. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Figure 1

22 pages, 9362 KiB  
Article
Reversed Corneal Fibroblasts Therapy Restores Transparency of Mouse Cornea after Injury
by Maria A. Surovtseva, Kristina Yu. Krasner, Irina I. Kim, Nikolay V. Surovtsev, Elena V. Chepeleva, Natalia A. Bondarenko, Alexander P. Lykov, Nataliya P. Bgatova, Alina A. Alshevskaya, Alexander N. Trunov, Valery V. Chernykh and Olga V. Poveshchenko
Int. J. Mol. Sci. 2024, 25(13), 7053; https://doi.org/10.3390/ijms25137053 - 27 Jun 2024
Viewed by 743
Abstract
Cell-based therapies using corneal stromal stem cells (CSSC), corneal keratocytes, or a combination of both suppress corneal scarring. The number of quiescent keratocytes in the cornea is small; it is difficult to expand them in vitro in quantities suitable for transplantation. This study [...] Read more.
Cell-based therapies using corneal stromal stem cells (CSSC), corneal keratocytes, or a combination of both suppress corneal scarring. The number of quiescent keratocytes in the cornea is small; it is difficult to expand them in vitro in quantities suitable for transplantation. This study examined the therapeutic effect of corneal fibroblasts reversed into keratocytes (rCF) in a mouse model of mechanical corneal injury. The therapeutic effect of rCF was studied in vivo (slit lamp, optical coherence tomography) and ex vivo (transmission electron microscopy and immunofluorescence staining). Injection of rCF into the injured cornea was accompanied by recovery of corneal thickness, improvement of corneal transparency, reduction of type III collagen in the stroma, absence of myofibroblasts, and the improvement in the structural organization of collagen fibers. TEM results showed that 2 months after intrastromal injection of cells, there was a decrease in the fibril density and an increase in the fibril diameter and the average distance between collagen fibrils. The fibrils were well ordered and maintained the short-range order and the number of nearest-neighbor fibrils, although the averaged distance between them increased. Our results demonstrated that the cell therapy of rCF from ReLEx SMILe lenticules promotes the recovery of transparent corneal stroma after injury. Full article
Show Figures

Figure 1

21 pages, 625 KiB  
Review
TGF-β-Based Therapies for Treating Ocular Surface Disorders
by Fernando T. Ogata, Sudhir Verma, Vivien J. Coulson-Thomas and Tarsis F. Gesteira
Cells 2024, 13(13), 1105; https://doi.org/10.3390/cells13131105 - 26 Jun 2024
Viewed by 952
Abstract
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that [...] Read more.
The cornea is continuously exposed to injuries, ranging from minor scratches to deep traumas. An effective healing mechanism is crucial for the cornea to restore its structure and function following major and minor insults. Transforming Growth Factor-Beta (TGF-β), a versatile signaling molecule that coordinates various cell responses, has a central role in corneal wound healing. Upon corneal injury, TGF-β is rapidly released into the extracellular environment, triggering cell migration and proliferation, the differentiation of keratocytes into myofibroblasts, and the initiation of the repair process. TGF-β-mediated processes are essential for wound closure; however, excessive levels of TGF-β can lead to fibrosis and scarring, causing impaired vision. Three primary isoforms of TGF-β exist—TGF-β1, TGF-β2, and TGF-β3. Although TGF-β isoforms share many structural and functional similarities, they present distinct roles in corneal regeneration, which adds an additional layer of complexity to understand the role of TGF-β in corneal wound healing. Further, aberrant TGF-β activity has been linked to various corneal pathologies, such as scarring and Peter’s Anomaly. Thus, understanding the molecular and cellular mechanisms by which TGF-β1-3 regulate corneal wound healing will enable the development of potential therapeutic interventions targeting the key molecule in this process. Herein, we summarize the multifaceted roles of TGF-β in corneal wound healing, dissecting its mechanisms of action and interactions with other molecules, and outline its role in corneal pathogenesis. Full article
(This article belongs to the Special Issue Mechanism of Cell Signaling during Eye Development and Diseases)
Show Figures

Figure 1

20 pages, 5257 KiB  
Article
The Role of Vimentin in Human Corneal Fibroblast Spreading and Myofibroblast Transformation
by Miguel Miron-Mendoza, Kara Poole, Sophie DiCesare, Emi Nakahara, Meet Paresh Bhatt, John D. Hulleman and Walter Matthew Petroll
Cells 2024, 13(13), 1094; https://doi.org/10.3390/cells13131094 - 25 Jun 2024
Viewed by 563
Abstract
Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell–matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did [...] Read more.
Vimentin has been reported to play diverse roles in cell processes such as spreading, migration, cell–matrix adhesion, and fibrotic transformation. Here, we assess how vimentin impacts cell spreading, morphology, and myofibroblast transformation of human corneal fibroblasts. Overall, although knockout (KO) of vimentin did not dramatically impact corneal fibroblast spreading and mechanical activity (traction force), cell elongation in response to PDGF was reduced in vimentin KO cells as compared to controls. Blocking vimentin polymerization using Withaferin had even more pronounced effects on cell spreading and also inhibited cell-induced matrix contraction. Furthermore, although absence of vimentin did not completely block TGFβ-induced myofibroblast transformation, the degree of transformation and amount of αSMA protein expression was reduced. Proteomics showed that vimentin KO cells cultured in TGFβ had a similar pattern of protein expression as controls. One exception included periostin, an ECM protein associated with wound healing and fibrosis in other cell types, which was highly expressed only in Vim KO cells. We also demonstrate for the first time that LRRC15, a protein previously associated with myofibroblast transformation of cancer-associated fibroblasts, is also expressed by corneal myofibroblasts. Interestingly, proteins associated with LRRC15 in other cell types, such as collagen, fibronectin, β1 integrin and α11 integrin, were also upregulated. Overall, our data show that vimentin impacts both corneal fibroblast spreading and myofibroblast transformation. We also identified novel proteins that may regulate corneal myofibroblast transformation in the presence and/or absence of vimentin. Full article
(This article belongs to the Special Issue Cell Biology of the Cornea and Ocular Surface)
Show Figures

Figure 1

17 pages, 4197 KiB  
Article
Differential Contributions of Fibroblast Subpopulations to Intercellular Communication in Eosinophilic Esophagitis
by Tao Li, Matthew Salomon, Ling Shao, Atousa Khalatbari, Joshua D. Castle and Anisa Shaker
Biology 2024, 13(7), 461; https://doi.org/10.3390/biology13070461 - 21 Jun 2024
Viewed by 597
Abstract
Fibroblast heterogeneity remains undefined in eosinophilic esophagitis (EoE), an allergic inflammatory disorder complicated by fibrosis. We utilized publicly available single-cell RNA sequencing data (GSE201153) of EoE esophageal biopsies to identify fibroblast sub-populations, related transcriptomes, disease status-specific pathways and cell–cell interactions. IL13-treated fibroblast cultures [...] Read more.
Fibroblast heterogeneity remains undefined in eosinophilic esophagitis (EoE), an allergic inflammatory disorder complicated by fibrosis. We utilized publicly available single-cell RNA sequencing data (GSE201153) of EoE esophageal biopsies to identify fibroblast sub-populations, related transcriptomes, disease status-specific pathways and cell–cell interactions. IL13-treated fibroblast cultures were used to model active disease. At least 2 fibroblast populations were identified, F_A and F_B. Several genes including ACTA2 were more enriched in F_A. F_B percentage was greater than F_A and epithelial–mesenchymal transition upregulated in F_B vs. F_A in active and remission EoE. Epithelial–mesenchymal transition was also upregulated in F_B in active vs. remission EoE and TNF-α signaling via NFKB was downregulated in F_A. IL-13 treatment upregulated ECM-related genes more profoundly in ACTA2− fibroblasts than ACTA2+ myofibroblasts. After proliferating epithelial cells, F_B and F_A contributed most to cell–cell communication networks. ECM–Receptor interaction strength was stronger than secreted or cell–cell contact signaling in active vs. remission EoE and significant ligand–receptor pairs were driven mostly by F_B. This unbiased analysis identifies at least 2 fibroblast sub-populations in EoE in vivo, distinguished in part by ACTA2. Fibroblasts play a critical role in cell–cell interactions in EoE, most profoundly via ECM–receptor signaling via the F_B sub-group. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Graphical abstract

Back to TopTop