Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,325)

Search Parameters:
Keywords = nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
2 pages, 1658 KiB  
Correction
Correction: Abd El-Fattah et al. Immobilization of ZnO-TiO2 Nanocomposite into Polyimidazolium Amphiphilic Chitosan Film, Targeting Improving Its Antimicrobial and Antibiofilm Applications. Antibiotics 2023, 12, 1110
by Wesam Abd El-Fattah, Mohammad Y. Alfaifi, Jafar Alkabli, Heba A. Ramadan, Ali A. Shati, Serag Eldin I. Elbehairi, Reda F. M. Elshaarawy, Islam Kamal and Moustafa M. Saleh
Antibiotics 2024, 13(9), 836; https://doi.org/10.3390/antibiotics13090836 (registering DOI) - 2 Sep 2024
Viewed by 110
Abstract
In the original publication [...] Full article
(This article belongs to the Section Antimicrobial Materials and Surfaces)
Show Figures

Figure 4

16 pages, 2554 KiB  
Article
Ball-Milling Enhanced UV Protection Performance of Ca2Fe-Sulisobenzone Layered Double Hydroxide Organic Clay
by Márton Szabados, Rebeka Mészáros, Dorina Gabriella Dobó, Zoltán Kónya, Ákos Kukovecz and Pál Sipos
Nanomaterials 2024, 14(17), 1436; https://doi.org/10.3390/nano14171436 - 2 Sep 2024
Viewed by 237
Abstract
Using a co-precipitation technique, the anionic form of sulisobenzone (benzophenone-4) sunscreen ingredient was incorporated into the interlayer space of CaFe-hydrocalumite for the first time. Using detailed post-synthetic millings of the photoprotective nanocomposite obtained, we aimed to study the mechanochemical effects on complex, hybridized [...] Read more.
Using a co-precipitation technique, the anionic form of sulisobenzone (benzophenone-4) sunscreen ingredient was incorporated into the interlayer space of CaFe-hydrocalumite for the first time. Using detailed post-synthetic millings of the photoprotective nanocomposite obtained, we aimed to study the mechanochemical effects on complex, hybridized layered double hydroxides (LDHs). Various physicochemical properties of the ground and the intact LDHs were compared by powder X-ray diffractometry, N2 adsorption-desorption, UV–Vis diffuse reflectance, infrared and Raman spectroscopy, scanning electron microscopy and thermogravimetric measurements. The data showed significant structural and morphological deformations, surface and textural changes and multifarious thermal behavior. The most interesting development was the change in the optical properties of organic LDHs; the milling significantly improved the UV light blocking ability, especially around 320 nm. Spectroscopic results verified that this could be explained by a modification in interaction between the LDH layers and the sulisobenzone anions, through modulated π–π conjugation and light absorption of benzene rings. In addition to the vibrating mill often used in the laboratory, the photoprotection reinforcement can also be induced by the drum mill grinding system commonly applied in industry. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

23 pages, 22899 KiB  
Article
Influence of Ag Doping on Wide-Emperature Tribological Properties of γ-Fe2O3@SiO2 Nanocomposite Coatings on Steel
by Qunfeng Zeng, Shichuan Sun and Qian Jia
Metals 2024, 14(9), 996; https://doi.org/10.3390/met14090996 (registering DOI) - 1 Sep 2024
Viewed by 209
Abstract
γ-Fe2O3@SiO2-Ag nanocomposite coatings were prepared to investigate the lubrication performances of the nanocomposite coatings under a wide range of temperatures. The effect of Ag doping on the tribological properties of γ-Fe2O3@SiO2-Ag [...] Read more.
γ-Fe2O3@SiO2-Ag nanocomposite coatings were prepared to investigate the lubrication performances of the nanocomposite coatings under a wide range of temperatures. The effect of Ag doping on the tribological properties of γ-Fe2O3@SiO2-Ag nanocomposite coatings was studied from room temperature to 600 °C, and the synergistic effect of Ag and oxides in the nanocomposite coatings was investigated. The coefficient of friction and the wear rate of γ-Fe2O3@SiO2-Ag nanocomposite coatings decrease with an increase in Ag content. The tribological properties of 24 wt.%Ag of the nanocomposite coatings are excellent. The stable coefficient of friction is 0.25 at 100 °C and the coefficient of friction is reduced to 0.05 at 500 °C. It was found that the synergistic effect of γ-Fe2O3 and Ag is helpful in improving the tribological properties of γ-Fe2O3@SiO2-Ag nanocomposite coatings over a wide temperature range. Ag plays a lubricating role at low and medium temperatures and oxides play a role in lubrication at high temperatures. Full article
Show Figures

Figure 1

19 pages, 3536 KiB  
Article
Antibacterial Electrospun Membrane with Hierarchical Bead-on-String Structured Fibres for Wound Infections
by Yu Xuan Fong, Catherine Pakrath, Fathima Shana Pattar Kadavan, Tien Thanh Nguyen, Trong Quan Luu, Borislav Stoilov, Richard Bright, Manh Tuong Nguyen, Neethu Ninan, Youhong Tang, Krasimir Vasilev and Vi Khanh Truong
Nanomaterials 2024, 14(17), 1429; https://doi.org/10.3390/nano14171429 - 31 Aug 2024
Viewed by 353
Abstract
Chronic wounds often result in multiple infections with various kinds of bacteria and uncontrolled wound exudate, resulting in several healthcare issues. Advanced medicated nanofibres prepared by electrospinning have gained much attention for their topical application on infected chronic wounds. The objective of this [...] Read more.
Chronic wounds often result in multiple infections with various kinds of bacteria and uncontrolled wound exudate, resulting in several healthcare issues. Advanced medicated nanofibres prepared by electrospinning have gained much attention for their topical application on infected chronic wounds. The objective of this work is to enhance the critical variables of ciprofloxacin-loaded polycaprolactone-silk sericin (PCL/SS-PVA-CIP) nanofibre production via the process of electrospinning. To examine the antibacterial effectiveness of PCL/SS-PVA-CIP nanocomposites, the material was tested against P. aeruginosa and S. aureus. The combination of PCL/SS-PVA-CIP exhibited potent inhibitory properties, with the most effective concentrations of ciprofloxacin (CIP) being 3 μg/g and 7.0 μg/g for each bacterium, respectively. The biocompatibility was evaluated by conducting cell reduction and proliferation studies using the human epidermal keratinocyte (HaCaT) cells and human gingival fibroblasts (HGFs) in vitro cell lines. The PCL/SS-PVA-CIP showed good cell compatibility with HaCaT and HGF cells, with effective proliferation even at antibiotic doses of up to 7.0 μg/g. The drug release effectiveness of the nanocomposites was assessed at various concentrations of CIP, resulting in a maximum cumulative release of 76.5% and 74.4% after 72 h for CIP concentrations of 3 μg/g and 7 μg/g, respectively. In summary, our study emphasizes the possibility of combining silk sericin (SS) and polycaprolactone (PCL) loading with CIP nanocomposite for wound management. Full article
Show Figures

Figure 1

23 pages, 6147 KiB  
Review
Environmental and Energy Applications of Graphene-Based Nanocomposites: A Brief Review
by N. V. Krishna Prasad, K. Chandra Babu Naidu and D. Baba Basha
Crystals 2024, 14(9), 781; https://doi.org/10.3390/cryst14090781 (registering DOI) - 31 Aug 2024
Viewed by 497
Abstract
Chemically stable two-dimensional nanostructured graphene with huge surface area, high electrical conductivity and mechanical excellence has gained significant research attention in the past two decades. Its excellent characteristics make graphene one of the important materials in various applications such as environmental and energy [...] Read more.
Chemically stable two-dimensional nanostructured graphene with huge surface area, high electrical conductivity and mechanical excellence has gained significant research attention in the past two decades. Its excellent characteristics make graphene one of the important materials in various applications such as environmental and energy storage devices. Graphene no doubt has been a top priority among the carbon nanomaterials owing to its structure and properties. However, the functionalization of graphene leads to various nanocomposites where its properties are tailored to be suited for various applications with more performance, environmental friendliness, efficiency, durability and cost effectiveness. Graphene nanocomposites are said to exhibit more surface area, conductivity, power conversion efficiency and other characteristics in energy devices like supercapacitors. This review was aimed to present some of the applications of graphene-based nanocomposites in energy conversion devices like supercapacitors and Li-ion batteries and some of the environmental applications. It was observed that the performance of supercapacitors was obstructed due to restacking and agglomeration of graphene layers. This was addressed by combining MO (metal oxide) or CP (conducting polymer) with graphene as material for electrodes. Electrodes with CP or MO/graphene composites are summarized. Heterogeneous catalysts were of environmental concern in recent years. In this context, graphene-based nanocomposites gained significance due to expansion in structural diversity. A minimum overview is presented in this paper in terms of structural aspects and properties of GO/rGO-based materials used in supercapacitors and environmental applications like dye removal. Continuous efforts towards synthesis of productive graphene-based nanocomposites might lead to significant output in applications related to environment and energy sectors. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

22 pages, 6545 KiB  
Article
Preparation of Cu/Cu2O/BC and Its Performance in Adsorption–Photocatalytic Degradation of Methyl Orange in Water
by Gang Du, Yarong Ding, Canhua Li, Lanyue Zhang, Jiamao Li, Minghui Li, Weichang Zhu and Chuan He
Materials 2024, 17(17), 4306; https://doi.org/10.3390/ma17174306 - 30 Aug 2024
Viewed by 430
Abstract
In this study, we prepared a low-cost novel Cu/Cu2O/BC nanocomposite visible-light photocatalyst by the impregnation method using CuSO4·5H2O and rice husk biochar (BC) as raw materials and Na2S2O4 as a single reductant [...] Read more.
In this study, we prepared a low-cost novel Cu/Cu2O/BC nanocomposite visible-light photocatalyst by the impregnation method using CuSO4·5H2O and rice husk biochar (BC) as raw materials and Na2S2O4 as a single reductant to improve the stability and dispersion of the Cu/Cu2O nanoparticles, in order to solve their aggregation tendency during photocatalysis. The morphology and structure of the Cu/Cu2O/BC were characterized using various analytical and spectroscopic techniques. The photocatalytic effect and cyclic stability of the synthesized photocatalyst on methyl orange (MO) removal were investigated under visible light radiation and various parameter conditions, including the mass ratio of BC to Cu/Cu2O, initial MO concentration, pH, temperature, and catalyst dosage. The results show that the synthesized Cu/Cu2O/BC nanocomposite composed of Cu/Cu2O spherical particles was loaded on the BC carrier, which has better stability and dispersion. The best adsorption–photocatalytic effect of the Cu/Cu2O/BC is exhibited when the mass ratio of BC to Cu/Cu2O is 0.2. A total of 100 mg of Cu/Cu2O/BC can remove 95% of the MO and 88.26% of the COD in the aqueous solution at pH = 6, T = 25 °C, and an initial MO concentration of 100 mg/L. After five cycles of degradation, the MO degradation rate in the sample can still remain at 78.41%. Both the quasi-secondary kinetic model and the Langmuir isothermal adsorption model describe the adsorption process. Additionally, the thermodynamic analysis demonstrates that the photocatalytic process follows the quasi-primary kinetic model and that the removal process is of spontaneous heat absorption. The photocatalyst described in this paper offers a cost-effective, easily prepared, and visible-light-responsive solution for water pollution treatment. Full article
Show Figures

Figure 1

21 pages, 6605 KiB  
Article
Flow Dynamics through a High Swelling Nanofiber Membrane Processed at Different Relative Humidities: A Study on a FexOy/Polyvinyl Alcohol Composite
by Ayelen C. Santos, Alicia Vergara-Rubio, Angel J. Mazocca and Silvia Goyanes
Membranes 2024, 14(9), 189; https://doi.org/10.3390/membranes14090189 - 30 Aug 2024
Viewed by 308
Abstract
Addressing the global problem of polluted water requires sustainable, efficient, and scalable remediation solutions, such as electrospun polyvinyl alcohol (PVA) membranes incorporating specific nanoadsorbents. The retention of contaminants depends on membrane swelling, morphology, and the adsorbent within the nanofiber. This study investigated the [...] Read more.
Addressing the global problem of polluted water requires sustainable, efficient, and scalable remediation solutions, such as electrospun polyvinyl alcohol (PVA) membranes incorporating specific nanoadsorbents. The retention of contaminants depends on membrane swelling, morphology, and the adsorbent within the nanofiber. This study investigated the effect of relative humidity (RH) within the electrospinning chamber on the morphology of the resulting mats and how this affected the flow dynamics depending on whether or not the permeating liquid induced swelling in the membranes. An insolubilized PVA membrane was used as a hydrophilic filter model and a PVA membrane filled with iron oxide nanoparticles (IONPs) as a composite model (PVA + IONPs). The presence of IONPs increases the nanofiber diameter, which decreases when prepared under intermediate RH (IRH). Consequently, the nanofiber configuration, which is critical for filtration tortuosity, is influenced by RH. The initial swelling results in over 60% greater water flux through PVA + IONPs compared to PVA at an equivalent RH. This characterization helps to optimize membrane applications, highlighting that PVA + IONPs exhibit lower permeability values at IRH, indicating improved contaminant retention capabilities. Full article
Show Figures

Figure 1

15 pages, 2776 KiB  
Article
The Effect of Different Beverages on the Color Stability of Nanocomposite 3D-Printed Denture Base Resins
by Sara H. Almansour, Juhana A. Alkhawaja, Abdulrahman Khattar, Ali M. Alsalem, Ahmed M. Alessa, Soban Q. Khan, Passent Ellakany, Mohammed M. Gad and Shaimaa M. Fouda
Prosthesis 2024, 6(5), 1002-1016; https://doi.org/10.3390/prosthesis6050073 - 30 Aug 2024
Viewed by 336
Abstract
Background: Nanocomposite resins have been widely used in modern denture manufacturing. However, their long-term color stability is a concern for both dental professionals and patients. Purpose: to evaluate the effect of different beverages on the color stability of 3D-printed denture base resins modified [...] Read more.
Background: Nanocomposite resins have been widely used in modern denture manufacturing. However, their long-term color stability is a concern for both dental professionals and patients. Purpose: to evaluate the effect of different beverages on the color stability of 3D-printed denture base resins modified with zirconium dioxide nanoparticles (ZrO2NPs). Methods: A total of 440 specimens were fabricated and distributed into 11 groups (n = 40/group). The control group of heat polymerized (PMMA) and five groups of two different 3D-printed resins (NextDent and ASIGA) as experimental groups with various concentrations of ZrO2NPs added to the 3D-printed resins (0.5 wt%, 1 wt%, 3 wt%, 5 wt%) in addition to one unmodified group per resin. Specimens per group are sorted into four subgroups (n = 10) according to tested beverages, as follows: coffee, tea, cola, and mineral water. Before immersion, all the specimens were exposed to 5000 thermal cycles. Color changes (ΔE00) were assessed prior (T0) and following immersion for 6 days (T1) and 12 days (T2) using a spectrophotometer. Color difference values were calculated by using CIEDE2000 color difference. Data was analyzed by ANOVA and post hoc Tukey test with a significant level of less than 0.05. Results: Tea produced the highest color change for both NextDent and ASIGA materials, whereas water caused the least color change on PMMA at T2. Increasing the immersion time resulted in more color changes, with tea and coffee showing significant differences. PMMA had considerably less color change than 3D-printed resins. The color change of 3D-printed increased after adding ZrO2NPs. Conclusions: Beverage type and immersion time have an impact on the color stability of unmodified and ZrO2NP-modified denture base resins with significant change after immersion in tea and coffee. Full article
Show Figures

Figure 1

19 pages, 5359 KiB  
Article
Cellulose Nanofibrils Dewatered with Poly(Lactic Acid) for Improved Bio-Polymer Nanocomposite Processing
by Alexander Collins and Mehdi Tajvidi
Nanomaterials 2024, 14(17), 1419; https://doi.org/10.3390/nano14171419 - 30 Aug 2024
Viewed by 496
Abstract
Cellulose nanofibrils (CNFs) have theoretically ideal properties for bio-based composite applications; however, the incorporation of these materials into polymers is made challenging by the strong binding of water to CNFs and the irreversible agglomeration of CNFs during drying. Previous methods used “contact dewatering”, [...] Read more.
Cellulose nanofibrils (CNFs) have theoretically ideal properties for bio-based composite applications; however, the incorporation of these materials into polymers is made challenging by the strong binding of water to CNFs and the irreversible agglomeration of CNFs during drying. Previous methods used “contact dewatering”, wherein the addition of wood flour (WF) to CNFs facilitated the mechanical removal of water from the system via cold pressing, which showed potential in producing dried CNF fibrils attached to wood fibers for biocomposite applications. In this work, the viability of contact dewatering with poly(lactic) acid (PLA) powder for PLA/CNF composites was evaluated. The energy efficiency of dewatering, preservation of nanoscale CNF morphology, and mechanical properties were examined by mixing wet CNFs with pulverized PLA at various loading levels, pressing water out of the system, and compression molding and shear mixing composites for testing. The most impressive results from this dewatering method were the preservation of micron-to-nanoscale fibers with high aspect ratios in PLA-CNF composites; increased strength and modulus of 1.7% and 4.2%, respectively, compared to neat PLA; equivalent or better properties than spray-dried nanocellulose at similar loading levels; and an 11-194x reduction in drying energy compared to spray-drying CNFs. Full article
Show Figures

Figure 1

14 pages, 10170 KiB  
Article
AgNP Composite Silicone-Based Polymer Self-Healing Antifouling Coatings
by Xingda Liu, Jiawen Sun, Jizhou Duan, Kunyan Sui, Xiaofan Zhai and Xia Zhao
Materials 2024, 17(17), 4289; https://doi.org/10.3390/ma17174289 - 30 Aug 2024
Viewed by 247
Abstract
Biofouling poses a significant challenge to the marine industry, and silicone anti-biofouling coatings have garnered extensive attention owing to their environmental friendliness and low surface energy. However, their widespread application is hindered by their low substrate adhesion and weak static antifouling capabilities. In [...] Read more.
Biofouling poses a significant challenge to the marine industry, and silicone anti-biofouling coatings have garnered extensive attention owing to their environmental friendliness and low surface energy. However, their widespread application is hindered by their low substrate adhesion and weak static antifouling capabilities. In this study, a novel silicone polymer polydimethylsiloxane (PDMS)-based poly(urea-thiourea-imine) (PDMS-PUTI) was synthesized via stepwise reactions of aminopropyl-terminated polydimethylsiloxane (APT-PDMS) with isophorone diisocyanate (IPDI), isophthalaldehyde (IPAL), and carbon disulfide (CS2). Subsequently, a nanocomposite coating (AgNPs-x/PDMS-PUTI) was prepared by adding silver nanoparticles (AgNPs) to the polymer PDMS-PUTI. The dynamic multiple hydrogen bonds formed between urea and thiourea linkages, along with dynamic imine bonds in the polymer network, endowed the coating with outstanding self-healing properties, enabling complete scratch healing within 10 min at room temperature. Moreover, uniformly dispersed AgNPs not only reduced the surface energy of the coating but also significantly enhanced its antifouling performance. The antibacterial efficiency against common marine bacteria Pseudomonas aeruginosa (P.sp) and Staphylococcus aureus (S.sp) was reduced by 97.08% and 96.71%, respectively, whilst the diatom settlement density on the coating surface was as low as approximately 59 ± 3 diatom cells/mm2. This study presents a novel approach to developing high-performance silicone antifouling coatings. Full article
Show Figures

Figure 1

16 pages, 4215 KiB  
Article
Optimizing DMF Utilization for Improved MXene Dispersions in Epoxy Nanocomposites
by Ayyaz Ali Janjua, Muhammad Younas, Rushdan Ahmad Ilyas, Islam Shyha, Nadimul Haque Faisal, Fawad Inam and Mohd Shahneel Saharudin
J. Compos. Sci. 2024, 8(9), 340; https://doi.org/10.3390/jcs8090340 - 29 Aug 2024
Viewed by 478
Abstract
Dimethylformamide (DMF), a polar solvent, is commonly used for preparing graphene/epoxy nanocomposites. While previous research has commonly predominantly highlighted the improvement in physio-mechanical properties of these nanocomposites, the effect of DMF on processing and its direct influence on the final characteristics of MXene/epoxy [...] Read more.
Dimethylformamide (DMF), a polar solvent, is commonly used for preparing graphene/epoxy nanocomposites. While previous research has commonly predominantly highlighted the improvement in physio-mechanical properties of these nanocomposites, the effect of DMF on processing and its direct influence on the final characteristics of MXene/epoxy nanocomposites have not been investigated. This unexplored link between DMF dosage, MXene concentrations, and the final composite properties presents an exciting direction for future research. In this study, a fixed dosage of DMF was used with varying MXene concentrations to fabricate the nanocomposites. To assess the reliability of DMF dosage on the characteristics of the fabricated nanocomposites, various evaluation techniques were employed, including dispersion evaluation, mechanical tests, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), electromagnetic interference (EMI) shielding, and surface roughness measurements. The research outcomes revealed that as MXene concentration increased, the characteristics of the MXene/epoxy nanocomposites, improved across the board, indicating their potential for use in energy storage applications. Full article
(This article belongs to the Special Issue Advancements in Composite Materials for Energy Storage Applications)
Show Figures

Figure 1

24 pages, 4097 KiB  
Review
Application Progress of Multi-Functional Polymer Composite Nanofibers Based on Electrospinning: A Brief Review
by Shuai Ma, An Li and Ligang Pan
Polymers 2024, 16(17), 2459; https://doi.org/10.3390/polym16172459 (registering DOI) - 29 Aug 2024
Viewed by 291
Abstract
Nanomaterials are known as the most promising materials of the 21st century, among which nanofibers have become a hot research and development topic in academia and industry due to their high aspect ratio, high specific surface area, high molecular orientation, high crystallinity, excellent [...] Read more.
Nanomaterials are known as the most promising materials of the 21st century, among which nanofibers have become a hot research and development topic in academia and industry due to their high aspect ratio, high specific surface area, high molecular orientation, high crystallinity, excellent mechanical properties, and many other advantages. Electrospinning is the most important preparation method for nanofibers and their thin membranes due to its controllability, versatility, low cost, and simplicity. Adding nanofillers such as ceramics, metals, and carbon materials to the electrospinning polymer solutions to prepare composites can further improve the mechanical strength and multi-functionality of nanofibers and their thin membranes and also provide possibilities for their widespread applications. Based on the rapid development in the field of polymer composite nanofibers, this review focuses on polyurethane (PU)-based composite nanofibers as the main representative and reviews their latest practical applications in many fields such as sound-absorbing materials, biomedical materials (including tissue engineering implants, drug delivery systems, wound dressings and other anti-bacterial materials, health materials, etc.), wearable sensing devices and energy harvesters, adsorbent materials, electromagnetic shielding materials, and reinforcement materials. Finally, a summary of their performance–application relationship and prospects for further development are given. This review is expected to provide some practical experience and theoretical guidance for further developments in related fields. Full article
(This article belongs to the Special Issue Advanced Electrospinning Fibers II)
Show Figures

Figure 1

18 pages, 12472 KiB  
Article
Persistent Luminescent Nanoparticle-Loaded Filaments for Identification of Fabrics in the Visible and Infrared
by Brian G. Yust, Abdur Rahaman Sk, Antonios Kontsos and Brian George
Nanomaterials 2024, 14(17), 1414; https://doi.org/10.3390/nano14171414 - 29 Aug 2024
Viewed by 294
Abstract
Persistent luminescent materials are those which can store an amount of energy locally and release it slowly in the form of light. In this work, persistent luminescent nanoparticles (PLNPs) were synthesized and incorporated into polypropylene (PP) filaments at various loading percentages. We investigated [...] Read more.
Persistent luminescent materials are those which can store an amount of energy locally and release it slowly in the form of light. In this work, persistent luminescent nanoparticles (PLNPs) were synthesized and incorporated into polypropylene (PP) filaments at various loading percentages. We investigated the optical properties of both the as-prepared PLNPs and the PLNP-loaded filaments, focusing on any changes resulting from the integration into the filaments. Specifically, visible and near-infrared spectroscopy were used to analyze the emission, excitation, and persistent luminescence of the PLNPs and PLNP-loaded filaments. The tensile properties of the extruded filaments were also investigated through breaking tenacity, elongation at break, Young’s modulus, and secant modulus. All PLNP-loaded filaments were shown to exhibit persistent luminescence when exposed to ultraviolet light. While there were no significant changes in the elongation at break or Young’s modulus for the loading percentages tested, there was a slight increase in breaking tenacity and a decrease in the secant modulus. Finally, the filaments were shown to maintain their optical properties and persistent luminescence even after abrasion testing used to simulate the normal wear and tear that fabric experiences during use. These results show that PLNPs can be successfully incorporated into filaments which can be used in fabrics and will maintain the persistent luminescent properties. Full article
(This article belongs to the Special Issue Nanomaterials and Textiles)
Show Figures

Figure 1

16 pages, 5846 KiB  
Article
Activated Iron-Porous Carbon Nanomaterials as Adsorbents for Methylene Blue and Congo Red
by Daniel Sibera, Iwona Pełech, Piotr Staciwa, Robert Pełech, Ewa Ekiert, Gulsen Yagmur Kayalar and Urszula Narkiewicz
Molecules 2024, 29(17), 4090; https://doi.org/10.3390/molecules29174090 - 29 Aug 2024
Viewed by 378
Abstract
The adsorption properties of microporous carbon materials modified with iron citrate were investigated. The carbon materials were produced based on resorcinol-formaldehyde resin, treated in a microwave assisted solvothermal reactor, and next carbonized in the tube furnace at a temperature of 700 °C under [...] Read more.
The adsorption properties of microporous carbon materials modified with iron citrate were investigated. The carbon materials were produced based on resorcinol-formaldehyde resin, treated in a microwave assisted solvothermal reactor, and next carbonized in the tube furnace at a temperature of 700 °C under argon atmosphere. Iron citrate was applied as a modifier, added to the material precursor before the synthesis in the reactor, in the quantity enabling to obtain the nanocomposites with C:Fe mass ratio equal to 10:1. Some samples were additionally activated using potassium oxalate or potassium hydroxide. The phase composition of the produced nanocomposites was determined using the X-ray diffraction method. Scanning and transmission electron microscopy was applied to characterize the changes in samples’ morphology resulting from the activation process and/or the introduction of iron into the carbon matrix. The adsorption of nitrogen from gas phase and dyes (methylene blue and congo red) from water solution on the obtained materials was investigated. In the case of methylene blue, the adsorption equilibrium isotherms followed the Langmuir isotherm model. However, in the case of congo red, a linear dependency of adsorption and concentration in a broad equilibrium concentration range was found and well-described using the Henry equation. The most efficient adsorption of methylene blue was noticed for the sample activated with potassium hydroxide and modified with iron citrate, and a maximum adsorption capacity of 696 mg/g was achieved. The highest congo red adsorption was noticed for the non-activated sample modified with iron citrate, and the partition coefficient for this material equaled 171 dm3/g. Full article
Show Figures

Figure 1

14 pages, 3070 KiB  
Article
One-Step Synthesis of Heterostructured Mo@MoO2 Nanosheets for High-Performance Supercapacitors with Long Cycling Life and High Rate Capability
by Ao Cheng, Yan Shen, Tao Cui, Zhe Liu, Yu Lin, Runze Zhan, Shuai Tang, Yu Zhang, Huanjun Chen and Shaozhi Deng
Nanomaterials 2024, 14(17), 1404; https://doi.org/10.3390/nano14171404 - 28 Aug 2024
Viewed by 591
Abstract
Supercapacitors have gained increased attention in recent years due to their significant role in energy storage devices; their impact largely depends on the electrode material. The diversity of energy storage mechanisms means that various electrode materials can provide unique benefits for specific applications, [...] Read more.
Supercapacitors have gained increased attention in recent years due to their significant role in energy storage devices; their impact largely depends on the electrode material. The diversity of energy storage mechanisms means that various electrode materials can provide unique benefits for specific applications, highlighting the growing trend towards nanocomposite electrodes. Typically, these nanocomposite electrodes combine pseudocapacitive materials with carbon-based materials to form heterogeneous structural composites, often requiring complex multi-step preparation processes. This study introduces a straightforward approach to fabricate a non-carbon-based Mo@MoO2 nanosheet composite electrode using a one-step thermal evaporating vapor deposition (TEVD) method. This novel electrode features Mo at the core and MoO2 as the shell and demonstrates exceptional electrochemical performance. Specifically, at a current density of 1 A g−1, it achieves a storage capacity of 205.1 F g−1, maintaining virtually unchanged capacity after 10,000 charge–discharge cycles at 2 A g−1. The outstanding long-cycle stability is ascribed to the vertical two-dimensional geometry, the superior conductivity, and pseudocapacitance of the Mo@MoO2 core-shell nanosheets. These attributes significantly improve the electrode’s charge storage capacity, charge transfer speed, and structural integrity during the cycling process. The development of the one-step grown Mo@MoO2 nanosheets offers a promising way for the advancement of high-performance, non-carbon-based supercapacitor nanocomposite electrodes. Full article
Show Figures

Figure 1

Back to TopTop