Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,319)

Search Parameters:
Keywords = natural waters

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2378 KiB  
Article
Analysis of the Role of Aquatic Gases in the Formation of Sea-Ice Porosity
by Vadim K. Goncharov and Natalia Yu. Klementieva
Water 2024, 16(15), 2213; https://doi.org/10.3390/w16152213 - 5 Aug 2024
Abstract
The porosity of freshwater ice and sea ice is one of the main parameters that determine their strength. The strength of ice varies over a wide range of values, and the differences in the intensity of the mechanisms of ice porosity formation in [...] Read more.
The porosity of freshwater ice and sea ice is one of the main parameters that determine their strength. The strength of ice varies over a wide range of values, and the differences in the intensity of the mechanisms of ice porosity formation in different water areas can be one of the possible reasons for these variations. The water mass contains gases in two forms: gases dissolved in the water mass, as well as gas bubbles that are formed when wind waves break up, and bubbles that float up from the seabed. This article presents the results of an analysis of the role of each of these forms in the formation of gas inclusions (pores) in the crystal structure of ice. The results showed that the main source of gas pores in ice crystals is the gas bubbles coming to the surface from the bottom, formed during the decomposition of bottom sediments or during gas leaks from near-bottom oil and gas fields. The possibility of gas bubbles occurring and rising to the ice–water boundary depends on the presence of bottom sources of the gases, the intensity of dissolution of the bubbles and the depth of the water area. Therefore, the variation in the porosity and the strength of ice over the space of the water areas can be associated with the changes in their depths, and the presence and location of the natural gas sources. Full article
Show Figures

Figure 1

27 pages, 1398 KiB  
Article
Effect of Moringa oleifera Seeds Powder on Metallic Trace Elements Concentrations in a Wastewater Treatment Plant in Senegal
by Nini Sané, Malick Mbengue, Seyni Ndoye, Serge Stoll, John Poté and Philippe Le Coustumer
Int. J. Environ. Res. Public Health 2024, 21(8), 1031; https://doi.org/10.3390/ijerph21081031 - 5 Aug 2024
Abstract
A wastewater treatment plant (WWTP) prototype coupled with Moringa oleifera seeds (MOSs) was developed to evaluate its effectiveness to reduce metallic trace elements (MTEs) in domestic wastewater. The WWTP is composed of a septic tank (F0) where wastewater is treated by biological processes [...] Read more.
A wastewater treatment plant (WWTP) prototype coupled with Moringa oleifera seeds (MOSs) was developed to evaluate its effectiveness to reduce metallic trace elements (MTEs) in domestic wastewater. The WWTP is composed of a septic tank (F0) where wastewater is treated by biological processes under anaerobic conditions, followed by a bacterial filter (F1) where wastewater is filtered under aerobic conditions, followed by an infiltration well (F2), which provides additional filtration of wastewater before discharge into the soil. MTEs present in waters can bind with humic substances contained in colloid particles and then be eliminated by coagulation–flocculation with a cationic polyelectrolyte. MOSs contain positively charged cationic polymers that can neutralize the colloids contained in waters, which are negatively charged. Based on this observation, 300 mg·L−1 of MOS was added into F0, 50 mg·L−1 into F1, and 50 mg·L−1 into F2 mg·L−1. MOS activation in samples was performed by stirring rapidly for 1.5 min, followed by 5 min of gentle stirring and 3 h of settling. The data analysis shows that wastewater samples had significant concentrations of MTEs, particularly for Cu, Ni, Sr, and Ti, and sediment samples had high amounts of Cr, Cu, Ni, Sr, Ti, and V. The addition of MOS to F0, F1, and F2 samples resulted in reductions in MTE concentration of up to 36%, 71%, 71%, 29%, 93%, 81%, 13%, 52%, and 67% for Co, Cr, Cu, Ni, Pb, Se, Sr, Ti, and V, respectively. The quantified MTEs (As, Co, Cr, Cu, Ni, Pb, Se and V) in treated samples were reported to be lower than UN-EP standards for a safe reuse for irrigation and MOS proved to be as effective as chemical coagulants such as lime and ferric iron for the removal of MTEs contained in wastewater. These results highlight the potential of MOSs as natural coagulants for reducing MTE content in domestic wastewater. This study could be the first to evaluate the effectiveness of MOS in reducing 10 MTEs, including As, Co, Se, Sr, Ti, and V, which are currently understudied. It could also provide a better understanding of the origin of MTEs found in domestic wastewaters and how an effective treatment process can result in high-quality treated wastewaters that can be reused for irrigation without posing health or environmental risks. However, more research on MOSs is needed to determine the type and composition of the coagulant substance found in the seeds, as well as the many mechanisms involved in the decrease in MTEs by MOSs, which is currently understudied. A better understanding of MOS structure is required to determine the optimum alternative for ensuring the optimal effect of MOS paired with WWTP in removing MTEs from domestic wastewaters. Full article
21 pages, 14169 KiB  
Article
Vegetation’s Dynamic Changes, Spatial Trends, and Responses to Drought in the Yellow River Basin, China
by Fei Wang, Ruyi Men, Shaofeng Yan, Hexin Lai, Zipeng Wang, Kai Feng, Shikai Gao, Yanbin Li, Wenxian Guo and Yanping Qu
Agronomy 2024, 14(8), 1724; https://doi.org/10.3390/agronomy14081724 - 5 Aug 2024
Abstract
Drought is a complex and recurrent natural disaster that can have devastating impacts on economies, societies, and ecosystems around the world. In light of climate change, the frequency, duration, and severity of drought events worldwide have increased, and extreme drought events have caused [...] Read more.
Drought is a complex and recurrent natural disaster that can have devastating impacts on economies, societies, and ecosystems around the world. In light of climate change, the frequency, duration, and severity of drought events worldwide have increased, and extreme drought events have caused more severe and irreversible damage to terrestrial ecosystems. Therefore, estimating the resilience of different vegetation to drought events and vegetation’s response to damage is crucial to ensuring ecological security and guiding ecological restoration. Based on meteorological and remote-sensing datasets from 1982 to 2022, the spatial distribution characteristics and temporal variability of vegetation were identified in the Yellow River Basin (YRB), the dynamic changes and recurrence periods of typical drought events were clarified, and the driving effects of different drought types on vegetation were revealed. The results indicated that (1) during the research period, the standardized vegetation water-deficit index (SVWI) showed a downward trend in the YRB, with a 99.52% probability of abrupt seasonal changes in the SVWI occurring in January 2003; (2) the characteristic values of the grid trend Zs were −1.46 and 0.20 in winter and summer, respectively, indicating a significant downward trend in the winter SVWI; (3) the drought with the highest severity (6.48) occurred from September 1998 to February 1999, with a recurrence period of 8.54 years; and (4) the growth of vegetation was closely related to drought, and as the duration of drought increased, the sensitivity of vegetation to drought events gradually weakened. The research results provide a new perspective for identifying vegetation’s dynamic changes and responses to drought, which is of great significance in revealing the adaptability and potential influencing factors of vegetation in relation to climate. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

11 pages, 641 KiB  
Review
Reimagining Relationships with Resources as a Public Garden: Case Studies of Longwood Gardens’ Sustainability and Stewardship Practices
by Jessica B. Turner-Skoff, Lea R. Johnson, Erik Stefferud, Paul Stratman and Kate Santos
J. Zool. Bot. Gard. 2024, 5(3), 481-491; https://doi.org/10.3390/jzbg5030032 (registering DOI) - 5 Aug 2024
Abstract
Longwood Gardens (Kennett Square, PA, USA) is working toward a future where the beauty of nature can be enjoyed by all through its sustainability and stewardship efforts. Using case studies highlighting water quality and conservation, carbon footprint reduction, material circularity, and land stewardship, [...] Read more.
Longwood Gardens (Kennett Square, PA, USA) is working toward a future where the beauty of nature can be enjoyed by all through its sustainability and stewardship efforts. Using case studies highlighting water quality and conservation, carbon footprint reduction, material circularity, and land stewardship, this paper examines the multifaceted approach that Longwood takes to address its environmental impact. First, a description of Longwood’s innovative water quality and conservation strategies and their integration of green and gray infrastructure is described. Next, the paper explores the comprehensive measures adopted to curtail its carbon footprint, from energy-efficient infrastructure to renewable energy sources. Then, Longwood’s commitment to material circularity is investigated, showcasing initiatives that reuse organic materials and create necessary products for the Gardens onsite. Finally, the Gardens’ holistic land stewardship practices are detailed, including habitat preservation and biodiversity enhancement. The paper concludes with valuable findings learned from the organization’s sustainability and stewardship journey, offering insights applicable to other gardens or campuses seeking to improve their ecological impact while maintaining a commitment to esthetic and horticultural excellence. Full article
Show Figures

Figure 1

13 pages, 1773 KiB  
Article
First Data on Anthropogenic Microparticles in the Gastrointestinal Tract of Juvenile Scalloped Hammerhead Sharks (Sphyrna lewini) in the Gulf of California
by Leony Malthaner, Ximena Garcia, Lorena Margarita Rios-Mendoza, José R. Rivera-Hernández, Roberto Cruz and Felipe Amezcua
Fishes 2024, 9(8), 310; https://doi.org/10.3390/fishes9080310 - 5 Aug 2024
Viewed by 147
Abstract
Scalloped hammerhead sharks (Sphyrna lewini) are critically endangered, according to the International Union for Conservation of Nature Red List, likely due to anthropogenic activities such as intense fishing and pollution. Nowadays, plastic debris contamination is a subject of concern due to [...] Read more.
Scalloped hammerhead sharks (Sphyrna lewini) are critically endangered, according to the International Union for Conservation of Nature Red List, likely due to anthropogenic activities such as intense fishing and pollution. Nowadays, plastic debris contamination is a subject of concern due to its extensive presence in the sea and the digestive tracts of many fish species. The possible effects of plastic debris as a vector of other pollutants are still unknown. We analyzed the digestive tract of 58 hammerhead sharks to investigate the correlation between plastic and other anthropogenic microparticle contamination and their feeding habits in the eastern region of the Gulf of California, revealing a debris contamination occurrence of 79.3%. Out of these, 91.4% corresponded to fibers, and the remaining 8.6% to fragments. The main component of the debris was cellulose (64.4%). According to their diet, these organisms exhibit benthopelagic habits, feeding both in the water column and on the seabed. These results indicate a high level of contamination of anthropogenic cellulosic microfibers in the area. Although cellulosic microfibers are recognized as a biomaterial, they can be harmful to marine species, posing an additional threat to this iconic shark. This changed according to the year, indicating that the anthropogenic microparticle ingestion is related to the discharges of human activities and their seasonality rather than to a selection process by the sharks. Full article
(This article belongs to the Section Welfare, Health and Disease)
Show Figures

Graphical abstract

21 pages, 1921 KiB  
Article
Enhancing Solanum lycopersicum Resilience: Bacterial Cellulose Alleviates Low Irrigation Stress and Boosts Nutrient Uptake
by Noelia De la Cruz Gómez, César Poza-Carrión, Lucía Del Castillo-González, Ángel Isidro Martínez Sánchez, Ana Moliner, Inmaculada Aranaz and Marta Berrocal-Lobo
Plants 2024, 13(15), 2158; https://doi.org/10.3390/plants13152158 - 4 Aug 2024
Viewed by 229
Abstract
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous [...] Read more.
The use of natural-origin biomaterials in bioengineering has led to innovative approaches in agroforestry. Bacterial cellulose (BC), sharing the same chemical formula as plant-origin cellulose (PC), exhibits significantly different biochemical properties, including a high degree of crystallinity and superior water retention capacity. Previous research showed that natural-origin glucose-based chitin enhanced plant growth in both herbaceous and non-herbaceous plants. In this study, we produced BC in the laboratory and investigated its effects on the substrate and on Solanum lycopersicum seedlings. Soil amended with BC increased root growth compared with untreated seedlings. Additionally, under limited irrigation conditions, BC increased global developmental parameters including fresh and dry weight, as well as total carbon and nitrogen content. Under non-irrigation conditions, BC contributed substantially to plant survival. RNA sequencing (Illumina®) on BC-treated seedlings revealed that BC, despite its bacterial origin, did not stress the plants, confirming its innocuous nature, and it lightly induced genes related to root development and cell division as well as inhibition of stress responses and defense. The presence of BC in the organic substrate increased soil availability of phosphorus (P), iron (Fe), and potassium (K), correlating with enhanced nutrient uptake in plants. Our results demonstrate the potential of BC for improving soil nutrient availability and plant tolerance to low irrigation, making it valuable for agricultural and forestry purposes in the context of global warming. Full article
(This article belongs to the Topic Plant Responses to Environmental Stress)
Show Figures

Figure 1

20 pages, 3091 KiB  
Article
Using Zeolite Materials to Remove Pharmaceuticals from Water
by Tomasz Bajda, Agnieszka Grela, Justyna Pamuła, Joanna Kuc, Agnieszka Klimek, Jakub Matusik, Wojciech Franus, Santhana Krishna Kumar Alagarsamy, Tomasz Danek and Paweł Gara
Materials 2024, 17(15), 3848; https://doi.org/10.3390/ma17153848 - 3 Aug 2024
Viewed by 204
Abstract
Pharmaceutical drugs, including antibiotics and hormonal agents, pose a significant threat to environmental and public health due to their persistent presence in aquatic environments. Colistin (KOL), fluoxetine (FLUO), amoxicillin (AMO), and 17-alpha-ethinylestradiol (EST) are pharmaceuticals (PhCs) that frequently exceed regulatory limits in water [...] Read more.
Pharmaceutical drugs, including antibiotics and hormonal agents, pose a significant threat to environmental and public health due to their persistent presence in aquatic environments. Colistin (KOL), fluoxetine (FLUO), amoxicillin (AMO), and 17-alpha-ethinylestradiol (EST) are pharmaceuticals (PhCs) that frequently exceed regulatory limits in water and wastewater. Current removal methods are mainly ineffective, necessitating the development of more efficient techniques. This study investigates the use of synthetic zeolite (NaP1_FA) and zeolite-carbon composites (NaP1_C), both derived from fly ash (FA), for the removal of KOL, FLUO, AMO, and EST from aquatic environments. Batch adsorption experiments assessed the effects of contact time, adsorbent dosage, initial concentration, and pH on the removal efficiency of the pharmaceuticals. The results demonstrated that NaP1_FA and NaP1_C exhibited high removal efficiencies for all tested pharmaceuticals, achieving over 90% removal within 2 min of contact time. The Behnajady-Modirshahla-Ghanbary (BMG) kinetic model best described the adsorption processes. The most effective sorption was observed with a sorbent dose of 1–2 g L−1. Regarding removal efficiency, the substances ranked in this order: EST was the highest, followed by AMO, KOL, and FLUO. Sorption efficiency was influenced by the initial pH of the solutions, with optimal performance observed at pH 2–2.5 for KOL and FLUO. The zeolite-carbon composite NaP1_C, due to its hydrophobic nature, showed superior sorption efficiency for hydrophobic pharmaceuticals like FLUO and EST. The spectral analysis reveals that the primary mechanism for immobilizing the tested PhCs on zeolite sorbents is mainly due to physical sorption. This study underscores the potential of utilizing inexpensive, fly ash-derived zeolites and zeolite-carbon composites to remove pharmaceuticals from water effectively. These findings contribute to developing advanced materials for decentralized wastewater treatment systems, directly addressing pollution sources in various facilities. Full article
(This article belongs to the Special Issue Adsorption Materials and Their Applications)
Show Figures

Figure 1

22 pages, 9734 KiB  
Article
Implications of Water Quality Index and Multivariate Statistics for Improved Environmental Regulation in the Irtysh River Basin (Kazakhstan)
by Ultuar Zhalmagambetova, Daulet Assanov, Alexandr Neftissov, Andrii Biloshchytskyi and Ivan Radelyuk
Water 2024, 16(15), 2203; https://doi.org/10.3390/w16152203 - 2 Aug 2024
Viewed by 401
Abstract
The selection of sites for permanent environmental monitoring of natural water bodies should rely on corresponding source apportionment studies. Tools like the water quality index (WQI) assessment may support this objective. This study aims to analyze a decade-long dataset of measurements of 26 [...] Read more.
The selection of sites for permanent environmental monitoring of natural water bodies should rely on corresponding source apportionment studies. Tools like the water quality index (WQI) assessment may support this objective. This study aims to analyze a decade-long dataset of measurements of 26 chemical components at 26 observation points within the Irtysh River Basin, aiming to identify priority zones for stricter environmental regulations. It was achieved through the WQI tool integrated with geoinformation systems (GISs) and multivariate statistical techniques. The findings highlighted that both upstream sections of tributaries (Oba and Bukhtarma rivers) and the mainstream of the basin are generally in good condition, with slight fluctuations observed during flooding periods. Areas in the basin experiencing significant impacts from mining and domestic wastewater treatment activities were identified. The rivers Glubochanka (GL) and Krasnoyarka (KR) consistently experienced marginal water quality throughout the observation period. Various contaminant sources were found to influence water quality. The impact of domestic wastewater treatment facilities was represented by twofold elevated concentrations of chemical oxygen demand, reaching 22.6 and 27.1 mg/L for the KR and GL rivers, respectively. Natural factors were indicated by consistent slight exceedings of recommended calcium levels at the KR and GL rivers. These exceedances were most pronounced during the cold seasons, with an average value equal to 96 mg/L. Mining operations introduced extremal concentrations of trace elements like copper, reaching 0.046–0.051 mg/L, which is higher than the threshold by 12–13 times; zinc, which peaked at 1.57–2.96 mg/L, exceeding the set limit by almost 50–100 times; and cadmium, peaking at levels surpassing 1000 times the safe limit, reaching 0.8 mg/L. The adverse impact of mining activities was evident in the Tikhaya, Ulba, and Breksa rivers, showing similar trends in trace element concentrations. Seasonal effects were also investigated. Ice cover formation during cold seasons led to oxygen depletion and the exclusion of pollutants into the stream when ice melted, worsening water quality. Conversely, flooding events led to contaminant dilution, partially improving the WQI during flood seasons. Principal component analysis and hierarchical cluster analysis indicated that local natural processes, mining activities, and domestic wastewater discharge were the predominant influences on water quality within the study area. These findings can serve as a basis for enhanced environmental regulation in light of updated ecological legislation in Kazakhstan, advocating for the establishment of a comprehensive monitoring network and the reinforcement of requirements governing contaminating activities. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

15 pages, 2194 KiB  
Article
Effects of Low-Phosphorus Stress on Use of Leaf Intracellular Water and Nutrients, Photosynthesis, and Growth of Brassica napus L.
by Qian Zhang, Deke Xing, Yanyou Wu, Kuan Zhao, Jing Wang and Renlong Mao
Horticulturae 2024, 10(8), 821; https://doi.org/10.3390/horticulturae10080821 - 2 Aug 2024
Viewed by 231
Abstract
Phosphorus (P) deficiency is one of the main reasons limiting plant production of Brassica napus L. Exploring the dynamics of leaf intracellular substances and the correlations with photosynthesis and growth helps to understand the response mechanisms of B. napus L. to P deficiency. [...] Read more.
Phosphorus (P) deficiency is one of the main reasons limiting plant production of Brassica napus L. Exploring the dynamics of leaf intracellular substances and the correlations with photosynthesis and growth helps to understand the response mechanisms of B. napus L. to P deficiency. This study conducted experiments on B. napus L. plants by measuring the leaf electrophysiological parameters, leaf structure, elastic modulus (Em), photosynthesis, and growth indices under different P treatment conditions. The dynamics of leaf intracellular water and nutrients of B. napus L. were calculated and analyzed by using the electrophysiological parameters, and the plant tolerance threshold to low-P stress was discovered. The results indicated that the status of the leaf intracellular water and nutrients remained stable when the P concentration was not lower than 0.250 mmol·L−1, but maximized the photosynthesis and growth at a P level of 0.250 mmol·L−1. The 0.125 mmol·L−1 P concentration significantly decreased the mesophyll cell volume, and the palisade–sponge ratio and tightness degree of leaf tissue structure were remarkably increased. This led to an increase in cell elastic modulus, and significantly improved the water retention capacity of leaf cells. At the same time, the intracellular water use efficiency and total nutrient transport capacity of leaves remained stable. As a result, the photosynthesis and growth of plants were maintained at the same level as that of the control group. However, photosynthesis and growth were clearly inhibited with a further decrease in P concentration. Therefore, 0.125 mmol·L−1 was the tolerance threshold of B. napus L. to low P. With the help of electrophysiological information, the effects of the dynamics of intracellular substances on photosynthesis and growth of B. napus L. under low-P stress can be investigated, and the plant’s adaptive response can be revealed. However, the findings of the current hydroponic study are not directly applicable to field conditions with naturally P-deficient soils. Full article
(This article belongs to the Special Issue Advances in Ecophysiology of Horticultural Crops)
Show Figures

Figure 1

15 pages, 4470 KiB  
Article
Enhanced Performance of a Hydrokinetic Turbine through a Biomimetic Design
by María Isabel Lamas Galdo, Juan de Dios Rodríguez García, Antonio Couce Casanova, Javier Blanco Damota, Claudio Giovanni Caccia, José Manuel Rebollido Lorenzo and Javier Telmo Miranda
J. Mar. Sci. Eng. 2024, 12(8), 1312; https://doi.org/10.3390/jmse12081312 - 2 Aug 2024
Viewed by 257
Abstract
Hydrokinetic energy constitutes a source of renewable energy. However, many regions have flow velocities that are too low for effective energy extraction, and conventional turbines are not suitable for these sites. In order to address this challenge, the present work proposes a novel [...] Read more.
Hydrokinetic energy constitutes a source of renewable energy. However, many regions have flow velocities that are too low for effective energy extraction, and conventional turbines are not suitable for these sites. In order to address this challenge, the present work proposes a novel vertical axis hydrokinetic turbine designed for environments where conventional turbines are not feasible due to a low water velocity. The turbine’s design is inspired by biological principles, enhancing the traditional Savonius turbine by incorporating a Fibonacci spiral-inspired blade configuration. The turbine’s performance was subjected to a rigorous analysis through Computational Fluid Dynamics (CFD). The results demonstrate a notable improvement, with a 15.1% increase in the power coefficient compared to the traditional Savonius turbine. This innovative approach not only extends the applicability of hydrokinetic turbines to low-flow regions but also underscores the potential of biomimicry in optimizing renewable energy technologies. The findings of this study indicate that integrating natural design principles can result in more efficient and sustainable energy solutions, thereby paving the way for the broader adoption of hydrokinetic power in diverse geographical settings. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 3913 KiB  
Article
Flood Extent Delineation and Exposure Assessment in Senegal Using the Google Earth Engine: The 2022 Event
by Bocar Sy, Fatoumata Bintou Bah and Hy Dao
Water 2024, 16(15), 2201; https://doi.org/10.3390/w16152201 - 2 Aug 2024
Viewed by 414
Abstract
This study addresses the pressing need for flood extent and exposure information in data-scarce and vulnerable regions, with a specific focus on West Africa, particularly Senegal. Leveraging the Google Earth Engine (GEE) platform and integrating data from the Sentinel-1 SAR, Global Surface Water, [...] Read more.
This study addresses the pressing need for flood extent and exposure information in data-scarce and vulnerable regions, with a specific focus on West Africa, particularly Senegal. Leveraging the Google Earth Engine (GEE) platform and integrating data from the Sentinel-1 SAR, Global Surface Water, HydroSHEDS, the Global Human Settlement Layer, and MODIS land cover type, our primary objective is to delineate the extent of flooding and compare this with flooding for a one-in-a-hundred-year flood event, offering a comprehensive assessment of exposure during the period from July to October 2022 across Senegal’s 14 regions. The findings underscore a total inundation area of 2951 square kilometers, impacting 782,681 people, 238 square kilometers of urbanized area, and 21 square kilometers of farmland. Notably, August witnessed the largest flood extent, reaching 780 square kilometers, accounting for 0.40% of the country’s land area. Other regions, including Saint-Louis, Ziguinchor, Fatick, and Matam, experienced varying extents of flooding, with the data for August showing a 1.34% overlap with flooding for a one-in-a-hundred-year flood event derived from hydrological and hydraulic modeling. This low percentage reveals the distinct purpose and nature of the two approaches (remote sensing and modeling), as well as their complementarity. In terms of flood exposure, October emerges as the most critical month, affecting 281,406 people (1.56% of the population). The Dakar, Diourbel, Thiès, and Saint-Louis regions bore substantial impacts, affecting 437,025; 171,537; 115,552; and 77,501 people, respectively. These findings emphasize the imperative for comprehensive disaster preparation and mitigation efforts. This study provides a crucial national-scale perspective to guide Senegal’s authorities in formulating effective flood management, intervention, and adaptation strategies. Full article
Show Figures

Graphical abstract

16 pages, 7125 KiB  
Article
Change Characteristics of Soil Erodibility during Natural Restoration in an Earthquake Landslide of Southwestern China
by Jiangkun Zheng, Junxia Yan, Qiyang Chen, Wangyang Hu, Peng Zhao, Guirong Hou and Yong Wang
Forests 2024, 15(8), 1352; https://doi.org/10.3390/f15081352 - 2 Aug 2024
Viewed by 279
Abstract
Landslides caused by earthquakes bring about dramatic changes in soil erodibility. In order to understand the change characteristics of soil erodibility during a vegetation restoration period after the 5.12 Wenchuan earthquake, a non-landslide area, landslide area, and transition area in Leigu Town, Beichuan [...] Read more.
Landslides caused by earthquakes bring about dramatic changes in soil erodibility. In order to understand the change characteristics of soil erodibility during a vegetation restoration period after the 5.12 Wenchuan earthquake, a non-landslide area, landslide area, and transition area in Leigu Town, Beichuan County were selected as research areas. Field soil sampling, geostatistics, and spatial interpolation were used to explore the spatiotemporal changes in soil physicochemical properties and soil erodibility during a natural restoration in 2013 (5 years after the earthquake) and in 2022 (14 years after the earthquake). The results showed that the comprehensive soil erodibility index (CSEI) was mainly composed of five soil factors, which were soil pH, soil total nitrogen (TN), mean weight diameter of soil aggregates (MWD), fractal dimension of soil water stable aggregates (D), and soil erodibility (Kepic). The CSEI of the landslide area was slightly lower than that of the non-landslide area. The CSEI was gradually increasing during the process of natural restoration after earthquake. From 2013 to 2022, the increase rates of the CSEI were 6.9%, 10.0%, and 41.5% for the landslide area, non-landslide area, and transition area, respectively. Along attitude segments, the spatial distribution of soil erodibility in 2022 is more uniform than that in 2013. The higher value of CSEI was located in the upper part of research areas. The spatial distribution of the CSEI in 2013 and 2022 appeared as a moderate autocorrelation. The variable ranges of CSEI in 2013 and 2022 were about 20 m. In the early stage of vegetation restoration, soil and water conservation engineering was recommended in the landslide area. Full article
Show Figures

Figure 1

24 pages, 9702 KiB  
Article
Integrated Use of Furnace Bottom Ash as Fine Aggregate and Cement Replacement for Sustainable Mortar Production
by Waiching Tang, Ali M. Onaizi, Sagheer A. Onaizi, Umer Sajjad and Yanju Liu
Materials 2024, 17(15), 3834; https://doi.org/10.3390/ma17153834 - 2 Aug 2024
Viewed by 361
Abstract
Recycling fly ash (FA) and furnace bottom ash (FBA) help with reducing greenhouse gas emissions, conserving natural resources, and minimizing waste accumulation. However, research on recycling FBA is progressing more slowly compared to FA. This research aims to investigate the combined use of [...] Read more.
Recycling fly ash (FA) and furnace bottom ash (FBA) help with reducing greenhouse gas emissions, conserving natural resources, and minimizing waste accumulation. However, research on recycling FBA is progressing more slowly compared to FA. This research aims to investigate the combined use of FBA as a replacement for both fine aggregate and cement and its influence on the performance of mortar. The findings indicated that incorporating 25% FBA as a fine aggregate replacement and 10% or 20% ground FBA (GFBA) as a cement replacement significantly enhanced compressive strength after 28 and 56 days. Flexural strength was comparable to control mortar at 28 days and superior at 56 days. However, increasing the FBA content beyond 25% as a fine aggregate replacement reduced workability and increased porosity, which negatively affected mechanical performance and water absorption. Microstructural analyses revealed denser and more compact structures in the mortar with combined FBA replacement for both fine aggregate and cement, specifically 25% as a fine aggregate replacement and 10% and 20% as cement replacements. Optimal performance was noted in mixtures with Ca/Si and Ca/Al ratios within the ranges of 1.8–1.5 and 0.24–0.19, respectively. Trace element leaching analysis has not shown significant differences between GFBA, FA, and OPC. Regarding environmental impact assessment, using FBA as a fine aggregate replacement did not show a significant reduction in CO2 emissions, but replacing cement with FBA reduced emissions remarkably. Generally, using FBA as a replacement for both fine aggregate and cement in mortar enhances compressive and flexural strengths at optimal levels, promotes sustainability by reducing landfill waste and CO2 emissions, and supports cleaner production practices despite some workability challenges. Full article
Show Figures

Figure 1

2 pages, 172 KiB  
Correction
Correction: Bănăduc et al. Multi-Interacting Natural and Anthropogenic Stressors on Freshwater Ecosystems: Their Current Status and Future Prospects for 21st Century. Water 2024, 16, 1483
by Doru Bănăduc, Angela Curtean-Bănăduc, Sophia Barinova, Verónica L. Lozano, Sergey Afanasyev, Tamara Leite, Paulo Branco, Daniel F. Gomez Isaza, Juergen Geist, Aristoteles Tegos, Snežana B. Simić, Horea Olosutean and Kevin Cianfanglione
Water 2024, 16(15), 2193; https://doi.org/10.3390/w16152193 - 2 Aug 2024
Viewed by 215
Abstract
In the original publication [...] Full article
29 pages, 34731 KiB  
Article
Impact of the September 2023 Storm Daniel and Subsequent Flooding in Thessaly (Greece) on the Natural and Built Environment and on Infectious Disease Emergence
by Spyridon Mavroulis, Maria Mavrouli, Efthymios Lekkas and Athanasios Tsakris
Environments 2024, 11(8), 163; https://doi.org/10.3390/environments11080163 - 2 Aug 2024
Viewed by 287
Abstract
The storm Daniel and subsequent floods hit the Region of Thessaly (Greece) in early September 2023, causing extensive damage to the built environment (buildings, networks, and infrastructure), the natural environment (water bodies and soil), and the population (fatalities, injured, homeless, and displaced people). [...] Read more.
The storm Daniel and subsequent floods hit the Region of Thessaly (Greece) in early September 2023, causing extensive damage to the built environment (buildings, networks, and infrastructure), the natural environment (water bodies and soil), and the population (fatalities, injured, homeless, and displaced people). Additionally, the conditions and factors favorable for indirect public health impact (infectious diseases) emerged in the flood-affected communities. The factors had to do with infectious diseases from rodents and vectors, injuries, respiratory infections, water contamination, flood waste and their disposal sites as well as structural damage to buildings and the failures of infrastructure. The conditions that evolved necessitated the mobilization of the Civil Protection and Public Health agencies not only to cope with the storm and subsequent floods but also to avoid and manage indirect public health impact. The instructions provided to affected residents, health experts, and Civil Protection staff were consistent with the best practices and lessons learned from previous disasters. The emphasis should be on training actions for competent agencies, as well as education and increasing the awareness of the general population. Non-structural and structural measures should be implemented for increasing the climate resilience of infrastructures including the health care systems within a One Health approach. Full article
Show Figures

Figure 1

Back to TopTop