Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (27,456)

Search Parameters:
Keywords = nature product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2704 KiB  
Article
Improving the Antioxidant and Anti-Inflammatory Activity of Fermented Milks with Exopolysaccharides-Producing Lactiplantibacillus plantarum Strains
by Roberta Prete, Francesca Dell’Orco, Giusi Sabatini, Federica Montagano, Natalia Battista and Aldo Corsetti
Foods 2024, 13(11), 1663; https://doi.org/10.3390/foods13111663 (registering DOI) - 25 May 2024
Abstract
Exopolysaccharides (EPSs) producing lactic acid bacteria have been claimed to confer various health benefits to the host, including the ability to face oxidative and inflammatory-related stress. This study investigated the ability of food-borne Lactiplantibacillus (Lpb.) plantarum to improve the antioxidant activity [...] Read more.
Exopolysaccharides (EPSs) producing lactic acid bacteria have been claimed to confer various health benefits to the host, including the ability to face oxidative and inflammatory-related stress. This study investigated the ability of food-borne Lactiplantibacillus (Lpb.) plantarum to improve the antioxidant activity of fermented milks by producing EPSs. Two Lpb. plantarum strains, selected as lower and higher EPSs producers, have been applied in lab-scale fermented milk production, in combination with conventional starters. Antioxidant activity was investigated in vitro using DPPH (1,1-diphenyl-2-picrylhydrazyl), ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and FRAP (ferric reducing antioxidant power) assays while the ability to modulate reactive oxygen species (ROS) level was evaluated in an intestinal healthy model, subjected to both oxidative and inflammatory stress. Furthermore, to verify whether digestion affects functionality, fermented milks were evaluated before and after in vitro-simulated INFOGEST digestion. The results showed an improved antioxidant activity of fermented milk enriched with Lpb. plantarum LT100, the highest EPSs producer. Furthermore, the data showed a different ROS modulation with a protective anti-inflammatory effect of samples enriched with Lpb. plantarum strains. Our data suggest the use of selected EPS-producing strains of Lpb. plantarum as a natural strategy to enrich the functionality of fermented milks in terms of ROS modulation and inflammatory-related stress. Full article
14 pages, 1533 KiB  
Article
Habitat Fragmentation Enhances the Difference between Natural and Artificial Reefs in an Urban Marine Coastal Tract
by Ilaria Mancini, Annalisa Azzola, Carlo Nike Bianchi, Marco Capello, Laura Cutroneo, Carla Morri, Alice Oprandi and Monica Montefalcone
Diversity 2024, 16(6), 316; https://doi.org/10.3390/d16060316 (registering DOI) - 25 May 2024
Viewed by 98
Abstract
Coastal urbanization and the consequent proliferation of artificial structures greatly impact rocky reef communities, productive and diverse marine environments that play a crucial role in the functioning of broader coastal ecosystems. This study, conducted along a 7 km stretch of coastline at increasing [...] Read more.
Coastal urbanization and the consequent proliferation of artificial structures greatly impact rocky reef communities, productive and diverse marine environments that play a crucial role in the functioning of broader coastal ecosystems. This study, conducted along a 7 km stretch of coastline at increasing distance from the port of Genoa (Ligurian Sea), investigated whether the alternating presence of artificial and natural reefs leads to discernible differences in the biota inhabiting these two reef types. The study area is one of the most anthropized areas of the Mediterranean Sea, exhibiting nearly 60% coastal artificialization, which severely impacts coastal ecosystems, favouring the replacement of sensitive species with more tolerant species. Ten reefs (5 natural and 5 artificial) were surveyed by scuba diving at about a 6-m depth, employing quadrats of 50 cm × 50 cm to estimate visually the percent cover of conspicuous sessile organisms. The artificial reefs hosted a similar number of species (18) to their natural counterparts (19) but exhibited a distinct community composition: the former were especially characterized by Jania rubens and filamentous algae, with the latter characterized by Peyssonnelia squamaria and Mesophyllum lichenoides. This difference, however, became negligible where coastal habitat fragmentation (here measured with a purposely devised Fragmentation Index) was minimal. Reducing fragmentation may therefore represent a management strategy to minimize the potential impact of artificial structures on marine biodiversity. Full article
16 pages, 3797 KiB  
Article
Non-Targeted Detection of Synthetic Oligonucleotides in Equine Serum Using Liquid Chromatography–High-Resolution Mass Spectrometry
by Emily Helmes, Jacob Montgomery, Gwendolyne Alarcio, Herra G. Mendoza, Jeffrey A. Blea, Peter A. Beal and Benjamin C. Moeller
Int. J. Mol. Sci. 2024, 25(11), 5752; https://doi.org/10.3390/ijms25115752 (registering DOI) - 25 May 2024
Viewed by 118
Abstract
There is great concern in equine sport over the potential use of pharmaceutical agents capable of editing the genome or modifying the expression of gene products. Synthetic oligonucleotides are short, single-stranded polynucleotides that represent a class of agents capable of modifying gene expression [...] Read more.
There is great concern in equine sport over the potential use of pharmaceutical agents capable of editing the genome or modifying the expression of gene products. Synthetic oligonucleotides are short, single-stranded polynucleotides that represent a class of agents capable of modifying gene expression products with a high potential for abuse in horseracing. As these substances are not covered by most routine anti-doping analytical approaches, they represent an entire class of compounds that are not readily detectable. The nucleotide sequence for each oligonucleotide is highly specific, which makes targeted analysis for these agents problematic. Accordingly, we have developed a non-targeted approach to detect the presence of specific product ions that are not naturally present in ribonucleic acids. Briefly, serum samples were extracted using solid-phase extraction with a mixed-mode cartridge following the disruption of protein interactions to isolate the oligonucleotides. Following the elution and concentration steps, chromatographic separation was achieved utilizing reversed-phase liquid chromatography. Following an introduction to a Thermo Q Exactive HF mass spectrometer using electrospray ionization, analytes were detected utilizing a combination of full-scan, parallel reaction monitoring and all ion fragmentation scan modes. The limits of detection were determined along with the accuracy, precision, stability, recovery, and matrix effects using a representative 13mer oligonucleotide. Following method optimization using the 13mer oligonucleotide, the method was applied to successfully detect the presence of specific product ions in three unique oligonucleotide sequences targeting equine-specific transcripts. Full article
(This article belongs to the Special Issue Gene Doping Control in Human and Animal Sports)
22 pages, 1502 KiB  
Review
Saffron, a Potential Bridge between Nutrition and Disease Therapeutics: Global Health Challenges and Therapeutic Opportunities
by Rakeeb Ahmad Mir, Anshika Tyagi, Sofi Javed Hussain, Mohammed A. Almalki, Mohammad Tarique Zeyad, Rupesh Deshmukh and Sajad Ali
Plants 2024, 13(11), 1467; https://doi.org/10.3390/plants13111467 (registering DOI) - 25 May 2024
Viewed by 120
Abstract
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their [...] Read more.
Plants are an important source of essential bioactive compounds that not only have a beneficial role in human health and nutrition but also act as drivers for shaping gut microbiome. However, the mechanism of their functional attributes is not fully understood despite their significance. One such important plant is Crocus sativus, also known as saffron, which possesses huge medicinal, nutritional, and industrial applications like food and cosmetics. The importance of this plant is grossly attributed to its incredible bioactive constituents such as crocins, crocetin, safranal, picrocrocin, and glycosides. These bioactive compounds possess a wide range of therapeutic activities against multiple human ailments. Since a huge number of studies have revealed negative unwanted side effects of modern-day drugs, the scientific communities at the global level are investigating a large number of medicinal plants to explore natural products as the best alternatives. Taken into consideration, the available research findings indicate that saffron has a huge scope to be further explored to establish alternative natural-product-based drugs for health benefits. In this review, we are providing an update on the role of bioactive compounds of saffron as therapeutic agents (human disorders and antimicrobial activity) and its nutritional values. We also highlighted the role of omics and metabolic engineering tools for increasing the content of key saffron bioactive molecules for its mass production. Finally, pre-clinical and clinical studies seem to be necessary to establish its therapeutic potential against human diseases. Full article
(This article belongs to the Special Issue Application and Chemical Characterization of Plant Natural Products)
Show Figures

Graphical abstract

14 pages, 1593 KiB  
Article
Isolation of Bacillus velezensis from Silage and Its Effect on Aerobic Stability and In Vitro Methane Production of Whole-Plant Corn Silage
by Chen Zhang, Zimo Zhang, Mengfan Zhu, Yongliang Wang, Tangtang Zhou, Fachun Wan, Yunhua Zhang and Lijuan Chen
Agriculture 2024, 14(6), 830; https://doi.org/10.3390/agriculture14060830 (registering DOI) - 25 May 2024
Viewed by 90
Abstract
Once a silo has been opened, the silage inside will face challenges such as aerobic deterioration, rot, and contamination. Biocontrol bacteria, as a kind of biological antiseptic, are highly effective and natural and are gaining increasing attention. This study aimed to screen a [...] Read more.
Once a silo has been opened, the silage inside will face challenges such as aerobic deterioration, rot, and contamination. Biocontrol bacteria, as a kind of biological antiseptic, are highly effective and natural and are gaining increasing attention. This study aimed to screen a strain with anti-microbial activity against silage spoilage microorganisms and examine its effects on the fermentation quality, aerobic stability, in vitro digestion, and methane production of silage. Lactic acid bacteria, pathogenic and rot-causing microorganisms, were used as indicators to screen the strains for putrefactive silage. The bacteriostatic spectrum, growth performance, and tolerance to the silage environment of the strain were tested. A strain named D-2 was screened from rotten whole-plant corn silage and identified as Bacillus velezensis through physiological and biochemical tests as well as 16S rDNA sequencing. This study found that D-2 exhibits antibacterial effects on several microorganisms, including Escherichia coli, Staphylococcus aureus, Salmonella enteritidis, Aspergillus niger, Saccharomyces cerevisiae, Fusarium oxysporum, and Fusarium graminearum. However, it has no adverse effect on Lactobacillus reuteri, Enterococcus faecium, or Lactobacillus casei. D-2 can attain a stable stage within 10 h and withstand temperatures of up to 70 °C. Moreover, this study found that D-2 had a high survival rate of over 97% after 48 h in a lactic acid environment with pH 4. Freshly chopped whole-plant corn was inoculated without or with D-2 and ensiled for 60 days. The results show that D-2 inoculations increase the content of water-soluble carbohydrates, acetic acid, and propionic acid in the silage and decrease the number of yeasts and molds, the NH4+-N/TN ratio, and the pH. We also found that fermenting whole-plant corn with D-2 significantly increased the in vitro digestibility and the propionic acid content, while also significantly inhibiting methane production. After being exposed to air for 10 days, D-2 can still effectively reduce the total number of yeasts and molds, prevent the decrease in lactic acid bacteria, and inhibit the increase in the pH and NH4+-N/TN ratio of silage products. Overall, D-2 is resistant to pathogenic and rot-causing microorganisms, allowing for easy adaptation to silage production conditions. D-2 can effectively improve aerobic stability and reduce losses in the nutritional value of silage, indicating possible applications for the prevention of silage rot and methane production. Full article
(This article belongs to the Special Issue Silage Preparation, Processing and Efficient Utilization)
17 pages, 3238 KiB  
Article
Application of Procyanidins from Aronia melanocarpa (Michx.) Elliott in Fresh-Cut Apple Preservation
by Shangjian Li, Jiajia Chen, Sarengaowa, Chen Chen and Wenzhong Hu
Horticulturae 2024, 10(6), 556; https://doi.org/10.3390/horticulturae10060556 (registering DOI) - 25 May 2024
Viewed by 107
Abstract
The aim of this study was to find a purely natural and effective preservative that could be used in fresh-cut apples extracting proanthocyanidin (PC) components from black chokeberry (Aronia melanocarpa (Michx.) Elliott) using DESs (deep eutectic solvents). DM130 microporous resins were used [...] Read more.
The aim of this study was to find a purely natural and effective preservative that could be used in fresh-cut apples extracting proanthocyanidin (PC) components from black chokeberry (Aronia melanocarpa (Michx.) Elliott) using DESs (deep eutectic solvents). DM130 microporous resins were used in purification experiments to obtain proanthocyanidin purifiers with a higher content. To investigate the free radical scavenging ability (DPPH, ·OH, O2, ABTS) of the resulting proanthocyanidin purifiers, experiments were conducted due to their potent antioxidant properties. The results show that the polyphenol extract from black chokeberry demonstrated an excellent antioxidant capacity, with more than 95% scavenging of DPPH, ABTS and superoxide anion at concentrations above 0.1 mg/mL. Furthermore, the antibacterial efficacy of the product was also evaluated. The results of this study on the inhibitory ability of bacteria demonstrated that PC exhibited superior inhibitory efficacy against E. coli and S. aureus, with inhibitory circles of 16 ± 0.11 mm and 18 ± 0.09 mm, respectively. Conversely, PC demonstrated no inhibitory efficacy against A. niger and Penicillium sp. Finally, the effect of PC in preserving fresh-cut apples was tested in terms of weight loss, hardness, appearance and total number of microorganisms. The results demonstrated a 26.44% reduction in weight loss and a 13.5% increase in hardness, as well as a 98% reduction in total bacterial counts in apple pieces treated with 5 mg/mL of PC in comparison to those left untreated. Full article
(This article belongs to the Special Issue Postharvest Application of Edible Coatings on Fruits and Vegetables)
Show Figures

Figure 1

20 pages, 687 KiB  
Review
Food and Food Waste Antioxidants: Could They Be a Potent Defence against Parkinson’s Disease?
by Claudia Cannas, Giada Lostia, Pier Andrea Serra, Alessandra Tiziana Peana and Rossana Migheli
Antioxidants 2024, 13(6), 645; https://doi.org/10.3390/antiox13060645 (registering DOI) - 25 May 2024
Viewed by 77
Abstract
Oxidative stress, an imbalance between reactive oxygen species (ROS) and endogenous antioxidants, plays an important role in the development of neurodegenerative diseases, including Parkinson’s. The human brain is vulnerable to oxidative stress because of the high rate of oxygen that it needs and [...] Read more.
Oxidative stress, an imbalance between reactive oxygen species (ROS) and endogenous antioxidants, plays an important role in the development of neurodegenerative diseases, including Parkinson’s. The human brain is vulnerable to oxidative stress because of the high rate of oxygen that it needs and the high levels of polyunsaturated fatty acids, which are substrates of lipid peroxidation. Natural antioxidants inhibit oxidation and reduce oxidative stress, preventing cancer, inflammation, and neurodegenerative disorders. Furthermore, in the literature, it is reported that antioxidants, due to their possible neuroprotective activity, may offer an interesting option for better symptom management, even Parkinson’s disease (PD). Natural antioxidants are usually found in several foods, such as fruits, vegetables, meat, fish, and oil, and in food wastes, such as seeds, peels, leaves, and skin. They can help the system of endogenous antioxidants, protect or repair cellular components from oxidative stress, and even halt lipid, protein, and DNA damage to neurons. This review will examine the extent of knowledge from the last ten years, about the neuroprotective potential effect of natural antioxidants present in food and food by-products, in in vivo and in vitro PD models. Additionally, this study will demonstrate that the pool of dietary antioxidants may be an important tool in the prevention of PD and an opportunity for cost savings in the public health area. Full article
Show Figures

Figure 1

24 pages, 19755 KiB  
Article
Vertical Accuracy Assessment and Improvement of Five High-Resolution Open-Source Digital Elevation Models Using ICESat-2 Data and Random Forest: Case Study on Chongqing, China
by Weifeng Xu, Jun Li, Dailiang Peng, Hongyue Yin, Jinge Jiang, Hongxuan Xia and Di Wen
Remote Sens. 2024, 16(11), 1903; https://doi.org/10.3390/rs16111903 (registering DOI) - 25 May 2024
Viewed by 90
Abstract
Digital elevation models (DEMs) are widely used in digital terrain analysis, global change research, digital Earth applications, and studies concerning natural disasters. In this investigation, a thorough examination and comparison of five open-source DEMs (ALOS PALSAR, SRTM1 DEM, SRTM3 DEM, NASADEM, and ASTER [...] Read more.
Digital elevation models (DEMs) are widely used in digital terrain analysis, global change research, digital Earth applications, and studies concerning natural disasters. In this investigation, a thorough examination and comparison of five open-source DEMs (ALOS PALSAR, SRTM1 DEM, SRTM3 DEM, NASADEM, and ASTER GDEM V3) was carried out, with a focus on the Chongqing region as a specific case study. By utilizing ICESat-2 ATL08 data for validation and employing a random forest model to refine terrain variables such as slope, aspect, land cover, and landform type, a study was undertaken to assess the precision of DEM data. Research indicates that spatial resolution significantly impacts the accuracy of DEMs. ALOS PALSAR demonstrated satisfactory performance, reducing the corrected root mean square error (RMSE) from 13.29 m to 9.15 m. The implementation of the random forest model resulted in a significant improvement in the accuracy of the 30 m resolution NASADEM product. This improvement was supported by a decrease in the RMSE from 38.24 m to 9.77 m, demonstrating a significant 74.45% enhancement in accuracy. Consequently, the ALOS PALSAR and NASADEM datasets are considered the preferred data sources for mountainous urban areas. Furthermore, the study established a clear relationship between the precision of DEMs and slope, demonstrating a consistent decline in precision as slope steepness increases. The influence of aspect on accuracy was considered to be relatively minor, while vegetated areas and medium-to-high-relief mountainous terrains were identified as the main challenges in attaining accuracy in the DEMs. This study offers valuable insights into selecting DEM datasets for complex terrains in mountainous urban areas, highlighting the critical importance of choosing the appropriate DEM data for scientific research. Full article
Show Figures

Figure 1

16 pages, 8900 KiB  
Article
Effect of Cross-Well Natural Fractures and Fracture Network on Production History Match and Well Location Optimization in an Ultra-Deep Gas Reservoir
by Dong Chen, Yuwei Jiao, Fenglai Yang, Chuxi Liu, Min Yang, Joseph Leines Artieda and Wei Yu
Processes 2024, 12(6), 1085; https://doi.org/10.3390/pr12061085 (registering DOI) - 25 May 2024
Viewed by 81
Abstract
Understanding subsurface natural fracture systems is crucial to characterize well production dynamics and long-term productivity potential. In addition, the placement of future wells can benefit from in-depth fracture network connectivity investigations, vastly improving new wells’ profitability and life cycles if they are placed [...] Read more.
Understanding subsurface natural fracture systems is crucial to characterize well production dynamics and long-term productivity potential. In addition, the placement of future wells can benefit from in-depth fracture network connectivity investigations, vastly improving new wells’ profitability and life cycles if they are placed in dense, well-connected natural fracture zones. In this study, a novel natural fracture calibration workflow is proposed. This workflow starts with the extraction of sector geology and a natural fracture model from the pre-built full-field model. Then, a cross wellbore discrete fracture network (CW-DFN) is created using a novel CW-DFN generation tool, based on image log data. An innovative fracture network identification tool is developed to detect the interconnected regional fracture network (IcFN) with CW-DFN. The non-intrusive embedded discrete fracture model (EDFM) is utilized to numerically incorporate the complex IcFN and CW-DFN in a reservoir simulation, and it is history-matched by tuning their conductivities. This workflow is applied to a single vertical well within a natural fracture carbonate reservoir in Northwest China. The study results show that the number of CW-DFNs is 11, and the number of IcFNs is 72. The non-intersected natural fractures only account for 5.5% of the production, and thus can be removed to improve simulation efficiency. The history-matching absolute average relative deviation (AARD) is 15.16%. The calibrated effective fracture permeability is 280 millidarcy, with an aperture of 0.001 m, equating to a conductivity of 0.28 millidarcy-meter. The 30-year gas production forecast is estimated to be 1.66 billion cubic meters based on a history-matched model. Finally, if the well is drilled to the east of the sector, 30-year production declines to 1.33 billion cubic meters (a reduction of 20%). However, if the well is drilled to the west of the sector, 30-year production increases to 2 billion cubic meters (an improvement of 20.5%). Full article
21 pages, 1262 KiB  
Article
Advancement of an Environmentally Friendly and Innovative Sustainable Rubber Wrap Film with Superior Sealing Properties
by Sunisa Suchat and Siwarote Boonrasri
Polymers 2024, 16(11), 1499; https://doi.org/10.3390/polym16111499 - 24 May 2024
Viewed by 135
Abstract
Common kitchen wraps like plastic and aluminum foil create significant environmental burdens. Plastic wrap, typically made from non-renewable fossil fuels, often ends up in landfills for centuries, breaking down into harmful microplastics. Aluminum foil, while effective, requires a large amount of energy to [...] Read more.
Common kitchen wraps like plastic and aluminum foil create significant environmental burdens. Plastic wrap, typically made from non-renewable fossil fuels, often ends up in landfills for centuries, breaking down into harmful microplastics. Aluminum foil, while effective, requires a large amount of energy to produce, and recycling it at home can be impractical due to food residue. A promising new alternative, low-nitrosamine rubber wrap film, aims to reduce waste by offering a reusable option compared to traditional single-use plastic wrap. The film is environmentally friendly, durable, and effective in sealing containers and keeping food fresh or crispy. The raw materials used to make the product were studied, namely fresh and concentrated natural rubber latex. No nitrosamines were found in either the fresh or concentrated latex, which is important as nitrosamines are known to be carcinogenic. The absence of nitrosamines in the raw materials suggests that the universal rubber wrap film is safe for use. In this study, the rubber formulation and properties of rubber used to make rubber wrap film were studied. The content of additives affecting the rubber properties was varied to find the optimum rubber formulation for making rubber wrap films. The rubber formulation with the least amount of chemicals that met the following criteria was selected: tensile strength of at least 15 MPa, elongation at break of at least 600%, and nitrosamine content below 6 ppm. It was found experimentally that the optimum rubber formulation for making a translucent rubber film had 0.7 phr zinc oxide and 1.0 phr sulfur. Performance tests revealed the rubber wrap film’s superior sealing capabilities. Its elasticity allows for a tighter fit on containers, effectively conforming to various shapes and creating an optimal seal compared to plastic wrap and aluminum foil. The results of this study provide valuable information for developing a universal rubber wrap film that is safe with low nitrosamines. Full article
(This article belongs to the Special Issue Advances in Rubbers)
19 pages, 509 KiB  
Review
Upcycling Food Waste into Biomaterials Applicable to Medical Products
by Genna Mahabeer and Sha Jin
Sustainability 2024, 16(11), 4473; https://doi.org/10.3390/su16114473 - 24 May 2024
Viewed by 183
Abstract
Globally, an estimated 1.3 billion tons of food are wasted each year, according to a report from the Food and Agriculture Organization of the United Nations. A variety of waste streams constantly generate large amounts of food waste that end up in landfills. [...] Read more.
Globally, an estimated 1.3 billion tons of food are wasted each year, according to a report from the Food and Agriculture Organization of the United Nations. A variety of waste streams constantly generate large amounts of food waste that end up in landfills. As food waste is left to naturally decay in landfills, it emits greenhouse gases that pollute the environment and induce climate change. However, most types of food waste contain valuable components that can be extracted to manufacture industrial products. Therefore, instead of abandoning food waste to decay and harm the environment, there is an alternative to upcycle it as a new raw materials supply source. This review provides a comprehensive update on how environmental sustainability can be improved using diverse types of food waste as sources to generate biomaterials for fabricating medical products, including lignin, cellulose, chitosan, pectin, collagen, hydroxyapatite, and biodegradable polymers. The review also highlights biochemical technologies applied for extracting useful components from food waste and details the current advances for developing medical products, including wound dressings and nanoparticles for tissue engineering and drug delivery. Full article
7 pages, 168 KiB  
Editorial
Special Issue on IberSPEECH 2022: Speech and Language Technologies for Iberian Languages
by José L. Pérez-Córdoba, Francesc Alías-Pujol and Zoraida Callejas
Appl. Sci. 2024, 14(11), 4505; https://doi.org/10.3390/app14114505 - 24 May 2024
Viewed by 134
Abstract
ThisSpecial Issue presents the latest advances in research and novel applications of speech and language technologies based on the works presented at the sixth edition of the IberSPEECH conference held in Granada in 2022, paying special attention to those focused on Iberian languages. [...] Read more.
ThisSpecial Issue presents the latest advances in research and novel applications of speech and language technologies based on the works presented at the sixth edition of the IberSPEECH conference held in Granada in 2022, paying special attention to those focused on Iberian languages. IberSPEECH is the international conference of the Special Interest Group on Iberian Languages (SIG-IL) of the International Speech Communication Association (ISCA) and the Spanish Thematic Network on Speech Technologies (Red Temática en Tecnologías del Habla, or RTTH for short). Several researchers were invited to extend the contributions presented at IberSPEECH2022 due to their interest and quality. As a result, the Special Issue is composed of 11 papers that cover different research topics related to speech perception, speech analysis and enhancement, speaker verification and identification, speech production and synthesis, natural language processing, together with several applications and evaluation challenges. Full article
14 pages, 2675 KiB  
Article
Resilient Response to Combined Heat and Drought Stress Conditions of a Tomato Germplasm Collection, Including Natural and Ethyl Methanesulfonate-Induced Variants
by Rocío Fonseca, Rosa Micol-Ponce, Carmen V. Ozuna, Laura Castañeda, Carmen Capel, Antonia Fernández-Lozano, Ana Ortiz-Atienza, Sandra Bretones, José M. Pérez-Jiménez, Abraham S. Quevedo-Colmena, Juan D. López-Fábregas, Teresa Barragán-Lozano, Ricardo Lebrón, Celia Faura, Juan Capel, Trinidad Angosto, Isabel Egea, Fernando J. Yuste-Lisbona and Rafael Lozano
Horticulturae 2024, 10(6), 552; https://doi.org/10.3390/horticulturae10060552 - 24 May 2024
Viewed by 285
Abstract
Agricultural systems are currently facing significant issues, primarily due to population growth rates in the context of global climate change. Rising temperatures cause plant heat stress and impact crop yield, which in turn compromises global food production and safety. Climate change is also [...] Read more.
Agricultural systems are currently facing significant issues, primarily due to population growth rates in the context of global climate change. Rising temperatures cause plant heat stress and impact crop yield, which in turn compromises global food production and safety. Climate change is also having a significant impact on water availability around the world, and droughts are becoming more frequent and severe in many regions. The combined effect of both heat and drought stresses increases plant damage, resulting in reduced plant development and productivity loss. Therefore, developing heat–drought-tolerant crop varieties is crucial for enhancing yield under these challenging conditions. Tomato (Solanum lycopersicum L.), a major vegetable crop highly appreciated for its nutritional qualities, is particularly sensitive to extreme temperatures, which have a significant negative impact on tomato fruit setting and cause male gametophyte abortion. In this work, a classical genetic approach was employed to identify tomato genotypes showing a resilient response to combined heat and drought stress conditions. A phenotype screening of a natural germplasm collection and an ethyl methanesulfonate (EMS) mutagenized population resulted in the identification of a significant number of tomato lines tolerant to combined heat and drought conditions, specifically 161 EMS lines and 24 natural accessions as tolerant. In addition, TILLING and Eco-TILLING analyses were used as proof-of-concept to isolate new genetic variants of genes previously reported as key regulators of abiotic stress responses in different species. The identification of these variants holds the potential to provide suitable plant material for breeding programs focused on enhancing tomato resilience to adverse climate conditions. Full article
(This article belongs to the Special Issue Horticultural Production in Controlled Environment)
30 pages, 1065 KiB  
Review
Edible Offal as a Valuable Source of Nutrients in the Diet—A Review
by Agnieszka Latoch, Dariusz Mirosław Stasiak and Patryk Siczek
Nutrients 2024, 16(11), 1609; https://doi.org/10.3390/nu16111609 - 24 May 2024
Viewed by 183
Abstract
The global increase in demand for meat leads to substantial quantities of by-products, including edible offal from both wild and domesticated animals raised for diversified consumption products within an agricultural framework. Information on the nutritional value of offal is scattered and limited. This [...] Read more.
The global increase in demand for meat leads to substantial quantities of by-products, including edible offal from both wild and domesticated animals raised for diversified consumption products within an agricultural framework. Information on the nutritional value of offal is scattered and limited. This review aims to synthesize scientific publications on the potential of offal as a source of nutrients and bioactive substances in human diets. The literature review included publications available in ISI Web of Science and Google Scholar published between 2014 and 2024. Findings indicate that edible offal is characterized by a nutrient concentration often surpassing that found in skeletal muscle. This review discusses the yield of edible offal and explores factors influencing human consumption. Selected factors affecting the nutritional value of offal of various animals and the importance of individual nutrients in ensuring the proper functioning of the human body were analyzed. The optimal use of offal in processing and catering can significantly benefit aspects of human life, including diet quality, food security, and conservation of natural resources. Full article
16 pages, 3101 KiB  
Article
An Optimized Microwave-Assisted Digestion Method to Analyze the Amino Acids Profile of Quisqualis Fructus from Different Planted Origins
by Lei Dai, Lin Yang, Yiwu Wang, Yan Li, Jianing Zhao, Shuxiang Pan, Yaxuan Li, Dan Yang and Dan He
Foods 2024, 13(11), 1645; https://doi.org/10.3390/foods13111645 - 24 May 2024
Viewed by 204
Abstract
This study aims to establish a rapid and convenient microwave-assisted digestion method for sample pretreatment to determine amino acid profiles in natural products. This method was applied to analyze the amino acid profiles of Quisqualis Fructus (QF) from different planted origins. The microwave-assisted [...] Read more.
This study aims to establish a rapid and convenient microwave-assisted digestion method for sample pretreatment to determine amino acid profiles in natural products. This method was applied to analyze the amino acid profiles of Quisqualis Fructus (QF) from different planted origins. The microwave-assisted digestion conditions were optimized by a response surface methodology (RSM), and 17 amino acids in different planted origins of QF were determined by an automatic amino acid analyzer according to the optimized digestion conditions. The contents of 17 amino acids in QF from different planted origins were further analyzed by fingerprint and chemometric analysis. The temperature of microwave digestion at 167 °C, time of microwave digestion at 24 min, and a solid–liquid ratio of 46.5 g/mL was selected as the optimal digestion conditions. The total content of 17 amino acids in QF from different planted origins ranged from 71.88 to 91.03 mg/g. Amino acid composition and nutritional evaluation indicated that the content of medicinal amino acids was higher than aromatic amino acids. The results of fingerprint analysis reflected that the similarity between the 16 batches of QF ranged from 0.889 to 0.999, while chemometrics analysis indicated amino acid content in QF varied from different planted origins, and six important differential amino acids were screened. Compared with the traditional extraction method, microwave-assisted digestion with response surface optimized has the advantages of rapidity, convenience, and reliability, which could be used to study the amino acid profiles in natural products. The amino acid profile of QF indicated that it has a rich medicinal nutritional value. Different planted origins of QF have a high degree of similarity and could be effectively distinguished by chemometric analysis. Full article
(This article belongs to the Section Food Analytical Methods)
Back to TopTop