Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,592)

Search Parameters:
Keywords = network topology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 623 KiB  
Article
Enhancing Reliability and Stability of BLE Mesh Networks: A Multipath Optimized AODV Approach
by Muhammad Rizwan Ghori, Tat-Chee Wan, Gian Chand Sodhy, Mohammad Aljaidi, Amna Rizwan, Ali Safaa Sadiq and Omprakash Kaiwartya
Sensors 2024, 24(18), 5901; https://doi.org/10.3390/s24185901 - 11 Sep 2024
Abstract
Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet [...] Read more.
Bluetooth Low Energy (BLE) mesh networks provide flexible and reliable communication among low-power sensor-enabled Internet of Things (IoT) devices, enabling them to communicate in a flexible and robust manner. Nonetheless, the majority of existing BLE-based mesh protocols operate as flooding-based piconet or scatternet overlays on top of existing Bluetooth star topologies. In contrast, the Ad hoc On-Demand Distance Vector (AODV) protocol used primarily in wireless ad hoc networks (WAHNs) is forwarding-based and therefore more efficient, with lower overheads. However, the packet delivery ratio (PDR) and link recovery time for AODV performs worse compared to flooding-based BLE protocols when encountering link disruptions. We propose the Multipath Optimized AODV (M-O-AODV) protocol to address these issues, with improved PDR and link robustness compared with other forwarding-based protocols. In addition, M-O-AODV achieved a PDR of 88%, comparable to the PDR of 92% for flooding-based BLE, unlike protocols such as Reverse-AODV (R-AODV). Also, M-O-AODV was able to perform link recovery within 3700 ms in the case of node failures, compared with other forwarding-based protocols that require 4800 ms to 6000 ms. Consequently, M-O-AODV-based BLE mesh networks are more efficient for wireless sensor-enabled IoT environments. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
17 pages, 4107 KiB  
Article
An Efficient and Automatic Simplification Method for Arbitrary Complex Networks in Mine Ventilation
by Deyun Zhong, Lixue Wen, Lin Bi and Yulong Liu
Mathematics 2024, 12(18), 2815; https://doi.org/10.3390/math12182815 - 11 Sep 2024
Abstract
The simplification of complex networks is a research field closely related to graph theory in discrete mathematics. The existing methods are typically limited to simplifying the series sub-networks, parallel sub-networks, diagonal sub-networks, and nested simple sub-networks. From the current perspective, there are no [...] Read more.
The simplification of complex networks is a research field closely related to graph theory in discrete mathematics. The existing methods are typically limited to simplifying the series sub-networks, parallel sub-networks, diagonal sub-networks, and nested simple sub-networks. From the current perspective, there are no available methods that can handle complex sub-networks and nested complex sub-networks. In this paper, we innovatively propose an efficient and automatic equivalence simplification method for arbitrary complex ventilation networks. The method enables, for the first time, the maximum possible equivalence simplification of nested simple sub-networks and nested complex sub-networks. In order to avoid the NP-hard problem caused by the searching of simplifiable sub-networks, it is necessary to analyze the intrinsic topology relationship between simplifiable sub-networks and spanning sub-graphs to optimize the searching process. One of our main contributions is that we present an efficient searching method for arbitrarily nested reducible sub-networks based on the bidirectional traversal process of a directed tree. The method optimizes the searching process for simplifiable node pairs by combining the characteristics of a directed tree with the judgment rules of simplifiable sub-networks. Moreover, by deriving the formula of an equivalent air resistance calculation for complex sub-networks, another one of our main contributions is that we present an equivalent calculation and simplification method for arbitrarily complex sub-networks based on the principle of energy conservation. The basic idea of the method is to calculate the equivalent air resistance using the ventilation network resolution of the constructed virtual sub-networks. We realize the simplification method of arbitrarily complex mine ventilation networks, and we validate the reliability of the simplification method by comparing the air distribution results using the network solution method before and after simplification. It can be determined that, with appropriate modifications to meet specific requirements, the proposed method can also be applicable to equivalent simplification instances of other types of complex networks. Based on the results analysis of several real-world mine ventilation network examples, the effectiveness of the proposed method is further verified, which can satisfactorily meet the requirements for simplifying complex networks. Full article
Show Figures

Figure 1

16 pages, 6507 KiB  
Article
Neutral-Point Voltage Regulation and Control Strategy for Hybrid Grounding System Combining Power Module and Low Resistance in 10 kV Distribution Network
by Yu Zhou, Kangli Liu, Wanglong Ding, Zitong Wang, Yuchen Yao, Tinghuang Wang and Yuhan Zhou
Electronics 2024, 13(18), 3608; https://doi.org/10.3390/electronics13183608 - 11 Sep 2024
Abstract
A single-phase grounding fault often occurs in 10 kV distribution networks, seriously affecting the safety of equipment and personnel. With the popularization of urban cables, the low-resistance grounding system gradually replaced arc suppression coils in some large cities. Compared to arc suppression coils, [...] Read more.
A single-phase grounding fault often occurs in 10 kV distribution networks, seriously affecting the safety of equipment and personnel. With the popularization of urban cables, the low-resistance grounding system gradually replaced arc suppression coils in some large cities. Compared to arc suppression coils, the low-resistance grounding system features simplicity and reliability. However, when a high-resistance grounding fault occurs, a lower amount of fault characteristics cannot trigger the zero-sequence protection action, so this type of fault will exist for a long time, which poses a threat to the power grid. To address this kind of problem, in this paper, a hybrid grounding system combining the low-resistance protection device and fully controlled power module is proposed. During a low-resistance grounding fault, the fault isolation is achieved through the zero-sequence current protection with the low-resistance grounding system itself, while, during a high-resistance grounding fault, the reliable arc extinction is achieved by regulating the neutral-point voltage with a fully controlled power module. Firstly, this paper introduces the principles, topology, and coordination control of the hybrid grounding system for active voltage arc extinction. Subsequently, a dual-loop-based control method is proposed to suppress the fault phase voltage. Furthermore, a faulty feeder selection method based on the Kepler optimization algorithm and convolutional neural network is proposed for the timely removal of permanent faults. Lastly, the simulation and HIL-based emulated results verify the rationality and effectiveness of the proposed method. Full article
Show Figures

Figure 1

16 pages, 2094 KiB  
Article
Graph Convolutional Networks for Predicting Cancer Outcomes and Stage: A Focus on cGAS-STING Pathway Activation
by Mateo Sokač, Borna Skračić, Danijel Kučak and Leo Mršić
Mach. Learn. Knowl. Extr. 2024, 6(3), 2033-2048; https://doi.org/10.3390/make6030100 - 11 Sep 2024
Abstract
The study presented in this paper evaluated gene expression profiles from The Cancer Genome Atlas (TCGA). To reduce complexity, we focused on genes in the cGAS–STING pathway, crucial for cytosolic DNA detection and immune response. The study analyzes three clinical variables: disease-specific survival [...] Read more.
The study presented in this paper evaluated gene expression profiles from The Cancer Genome Atlas (TCGA). To reduce complexity, we focused on genes in the cGAS–STING pathway, crucial for cytosolic DNA detection and immune response. The study analyzes three clinical variables: disease-specific survival (DSS), overall survival (OS), and tumor stage. To effectively utilize the high-dimensional gene expression data, we needed to find a way to project these data meaningfully. Since gene pathways can be represented as graphs, a novel method of presenting genomics data using graph data structure was employed, rather than the conventional tabular format. To leverage the gene expression data represented as graphs, we utilized a graph convolutional network (GCN) machine learning model in conjunction with the genetic algorithm optimization technique. This allowed for obtaining an optimal graph representation topology and capturing important activations within the pathway for each use case, enabling a more insightful analysis of the cGAS–STING pathway and its activations across different cancer types and clinical variables. To tackle the problem of unexplainable AI, graph visualization alongside the integrated gradients method was employed to explain the GCN model’s decision-making process, identifying key nodes (genes) in the cGAS–STING pathway. This approach revealed distinct molecular mechanisms, enhancing interpretability. This study demonstrates the potential of GCNs combined with explainable AI to analyze gene expression, providing insights into cancer progression. Further research with more data is needed to validate these findings. Full article
(This article belongs to the Section Network)
Show Figures

Figure 1

16 pages, 10064 KiB  
Article
A Wireless Ad Hoc Network Communication Platform and Data Transmission Strategies for Multi-Bus Instruments
by Lushuai Qian, Kexin Gu, Yaqiong Fu, Yuli Shen and Suan Xu
Electronics 2024, 13(18), 3596; https://doi.org/10.3390/electronics13183596 - 10 Sep 2024
Viewed by 168
Abstract
As automatic test technology advances, the number of programmable instruments in a single test system increases. Traditional wired communication methods have a limited range and involve complex cable layouts. Single-function wireless converters provide a viable alternative, but they have limitations. These include complicated [...] Read more.
As automatic test technology advances, the number of programmable instruments in a single test system increases. Traditional wired communication methods have a limited range and involve complex cable layouts. Single-function wireless converters provide a viable alternative, but they have limitations. These include complicated configuration, issues with multi-system collaboration, and data blocking. This paper proposes a wireless ad hoc network platform for multi-bus instruments based on a low-cost ESP-12H WiFi module. The platform supports GPIB, RS232, RS485, and CAN bus interface instrument access. It features easy configuration, ad hoc networking, and self-repairing capabilities. A relay multi-hop network with a tree topology expands capacity and coverage. Additionally, a dynamic window-receiving mode and an improved multi-priority queue ensure data transmission integrity. The experimental results show that the platform’s networking time is less than 10 s, and the coverage range reaches 50 m in complex indoor environments. It also shows good stability when running for a long time. However, due to hardware and software design limitations, the actual upload speeds fall short of the theoretical values. For example, RS232 and RS485 are about 10% slower than the theoretical values, and GPIB is about 80% slower. Further optimization is required in the future. Full article
Show Figures

Figure 1

4 pages, 724 KiB  
Proceeding Paper
Pressure Sensor Placement for Pipe Roughness Calibration Based on Graph-Based Surrogate Model Coupled with Genetic Algorithm
by Mohammad Rajabi, Mohsen Hajibabaei, Massoud Tabesh and Robert Sitzenfrei
Eng. Proc. 2024, 69(1), 95; https://doi.org/10.3390/engproc2024069095 - 10 Sep 2024
Viewed by 60
Abstract
In this study, a graph-based method is implemented for sensor placement in a water distribution network (WDN) instead of using a hydraulic model. The proposed methodology determines the pressure sensors’ location based on the node betweenness centrality of nodes from their source, considering [...] Read more.
In this study, a graph-based method is implemented for sensor placement in a water distribution network (WDN) instead of using a hydraulic model. The proposed methodology determines the pressure sensors’ location based on the node betweenness centrality of nodes from their source, considering the WDN topology and assigning hydraulic-inspired edge weights. Furthermore, the Non-dominated Sorting Genetic Algorithm (NSGA-II) determines the end node of the WDN’s critical paths for sensor placement to maximize monitoring network efficiency to calibrate the model and avoid additional data collection. For different numbers of sensors, the NSGA-II algorithm is implemented 10 times and the final Pareto front is determined. The graph-based approach reduces the sensor placement problem complexity to an acceptable level and can be implemented as a surrogate approach for hydraulic-based sensor placement. Full article
Show Figures

Figure 1

5 pages, 4349 KiB  
Proceeding Paper
Investigating the Efficacy of Topological Methods for Optimal Sensor Placement in Water Distribution Systems
by Ludovica Palma, Armando Di Nardo, Fatemeh Hatam, Giovanni Francesco Santonastaso and Michèle Prévost
Eng. Proc. 2024, 69(1), 93; https://doi.org/10.3390/engproc2024069093 - 10 Sep 2024
Viewed by 64
Abstract
Water-distribution networks (WDNs) are vital infrastructure that are exposed to the risk of contamination. Several factors contribute to this risk, including insufficient pressure, contamination in water storage tanks and more. Sensor systems are crucial for detecting contaminations promptly. Traditional optimization methods to define [...] Read more.
Water-distribution networks (WDNs) are vital infrastructure that are exposed to the risk of contamination. Several factors contribute to this risk, including insufficient pressure, contamination in water storage tanks and more. Sensor systems are crucial for detecting contaminations promptly. Traditional optimization methods to define sensor locations often require resource-intensive network modeling, posing challenges for water utilities. This study applies a topological approach using betweenness centrality to address sensor placement. Various weights based on the physical structure of the network are tested. Results highlight the effectiveness of weighted topological approaches in minimizing contamination’s public health impact, with the advantage of low computational costs inherent in graph-based network representations. Full article
Show Figures

Figure 1

5 pages, 1992 KiB  
Proceeding Paper
The Dual Model under Pressure: How Robust Is Leak Detection under Uncertainties and Model Mismatches?
by Enrique Campbell, Edo Abraham, Johannes Koslowski, Olivier Piller and David B. Steffelbauer
Eng. Proc. 2024, 69(1), 89; https://doi.org/10.3390/engproc2024069089 - 9 Sep 2024
Viewed by 30
Abstract
This paper investigates the robustness of one innovative model-based method for leak detection, namely the Dual Model. We evaluate the algorithm’s performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) [...] Read more.
This paper investigates the robustness of one innovative model-based method for leak detection, namely the Dual Model. We evaluate the algorithm’s performance under various leakage scenarios in the L-Town network, despite uncertainties and model mismatches in (i) base demand, (ii) pipe roughness, (iii) the number of sensors, and (iv) network topology. Our investigation results indicate that the Dual Model is highly sensitive to discrepancies in the first three parameters. However, the impact can be mitigated through sensor-specific calibration, such as adjusting sensor elevations. Moreover, the Dual Model has demonstrated robustness to minor topology mismatches, like those introduced by closed valves. Full article
Show Figures

Figure 1

30 pages, 1978 KiB  
Article
RDSC: Range-Based Device Spatial Clustering for IoT Networks
by Fouad Achkouty, Laurent Gallon and Richard Chbeir
Sensors 2024, 24(17), 5851; https://doi.org/10.3390/s24175851 - 9 Sep 2024
Viewed by 217
Abstract
The growth of the Internet of Things (IoT) has become a crucial area of modern research. While the increasing number of IoT devices has driven significant advancements, it has also introduced several challenges, such as data storage, data privacy, communication protocols, complex network [...] Read more.
The growth of the Internet of Things (IoT) has become a crucial area of modern research. While the increasing number of IoT devices has driven significant advancements, it has also introduced several challenges, such as data storage, data privacy, communication protocols, complex network topologies, and IoT device management. In essence, the management of IoT devices is becoming more and more challenging, especially with the limited capacity and power of the IoT devices. The devices, having limited capacities, cannot store the information of the entire environment at once. In addition, device power consumption can affect network performance and stability. The devices’ sensing areas with device grouping and management can simplify further networking tasks and improve response quality with data aggregation and correction techniques. In fact, most research papers are looking forward to expanding network lifetimes by relying on devices with high power capabilities. This paper proposes a device spatial clustering technique that covers crucial challenges in IoT. Our approach groups the dispersed devices to create clusters of connected devices while considering their coverage, their storage capacities, and their power. A new clustering protocol alongside a new clustering algorithm is introduced, resolving the aforementioned challenges. Moreover, a technique for non-sensed area extraction is presented. The efficiency of the proposed approach has been evaluated with extensive experiments that gave notable results. Our technique was also compared with other clustering algorithms, showing the different results of these algorithms. Full article
Show Figures

Figure 1

15 pages, 6140 KiB  
Article
DAB-Based Bidirectional Wireless Power Transfer System with LCC-S Compensation Network under Grid-Connected Application
by Guocun Li, Zhouchi Cai, Chen Feng, Zeyu Sun and Xuewei Pan
Energies 2024, 17(17), 4519; https://doi.org/10.3390/en17174519 - 9 Sep 2024
Viewed by 245
Abstract
To realize two-way power transfer without physical connections under a grid-connected application, bidirectional wireless power transfer (BDWPT) is introduced. This paper proposes an LCC-S compensated BDWPT system based on dual-active-bridge (DAB) topology with the minimum component counts. LCC-S is designed to [...] Read more.
To realize two-way power transfer without physical connections under a grid-connected application, bidirectional wireless power transfer (BDWPT) is introduced. This paper proposes an LCC-S compensated BDWPT system based on dual-active-bridge (DAB) topology with the minimum component counts. LCC-S is designed to be a constant voltage (CV) network. To obtain the power transmission characteristics of the system, a mathematical model based on the fundamental harmonic approximation (FHA) method is established, and the result shows that the direction and amount of transfer power can be controlled by changing the magnitude of output voltages of either/both side of H-bridges. The reactive power of the system can be controlled to be zero when the output voltages of two H-bridges are in the same phase. Compared with DAB-based BDWPT systems with constant current (CC) compensation networks, the proposed structure has better transfer power regulation capability and easier control of the direction of power flow. A 1.1 kW experimental prototype is built in the laboratory to verify the characteristics of the proposed system. The results indicate that the power transfer characteristics of the proposed BDWPT system match its mathematical derivation results based on the FHA model. Full article
(This article belongs to the Special Issue Progress and Challenges in Grid-Connected Inverters and Converters)
Show Figures

Figure 1

1 pages, 165 KiB  
Correction
Correction: Freitas, A.; Pires, J. Investigating the Impact of Topology and Physical Impairments on the Capacity of an Optical Backbone Network. Photonics 2024, 11, 342
by Alexandre Freitas and João Pires
Photonics 2024, 11(9), 849; https://doi.org/10.3390/photonics11090849 - 9 Sep 2024
Viewed by 109
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Optical Communication Networks: Advancements and Future Directions)
25 pages, 1972 KiB  
Article
FL-DSFA: Securing RPL-Based IoT Networks against Selective Forwarding Attacks Using Federated Learning
by Rabia Khan, Noshina Tariq, Muhammad Ashraf, Farrukh Aslam Khan, Saira Shafi and Aftab Ali
Sensors 2024, 24(17), 5834; https://doi.org/10.3390/s24175834 - 8 Sep 2024
Viewed by 535
Abstract
The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and [...] Read more.
The Internet of Things (IoT) is a significant technological advancement that allows for seamless device integration and data flow. The development of the IoT has led to the emergence of several solutions in various sectors. However, rapid popularization also has its challenges, and one of the most serious challenges is the security of the IoT. Security is a major concern, particularly routing attacks in the core network, which may cause severe damage due to information loss. Routing Protocol for Low-Power and Lossy Networks (RPL), a routing protocol used for IoT devices, is faced with selective forwarding attacks. In this paper, we present a federated learning-based detection technique for detecting selective forwarding attacks, termed FL-DSFA. A lightweight model involving the IoT Routing Attack Dataset (IRAD), which comprises Hello Flood (HF), Decreased Rank (DR), and Version Number (VN), is used in this technique to increase the detection efficiency. The attacks on IoT threaten the security of the IoT system since they mainly focus on essential elements of RPL. The components include control messages, routing topologies, repair procedures, and resources within sensor networks. Binary classification approaches have been used to assess the training efficiency of the proposed model. The training step includes the implementation of machine learning algorithms, including logistic regression (LR), K-nearest neighbors (KNN), support vector machine (SVM), and naive Bayes (NB). The comparative analysis illustrates that this study, with SVM and KNN classifiers, exhibits the highest accuracy during training and achieves the most efficient runtime performance. The proposed system demonstrates exceptional performance, achieving a prediction precision of 97.50%, an accuracy of 95%, a recall rate of 98.33%, and an F1 score of 97.01%. It outperforms the current leading research in this field, with its classification results, scalability, and enhanced privacy. Full article
Show Figures

Figure 1

30 pages, 24993 KiB  
Article
Multi-Objective Optimization of Orchestra Scheduler for Traffic-Aware Networks
by Niharika Panda, Supriya Muthuraman and Atis Elsts
Smart Cities 2024, 7(5), 2542-2571; https://doi.org/10.3390/smartcities7050099 - 6 Sep 2024
Viewed by 520
Abstract
The Internet of Things (IoT) presents immense opportunities for driving Industry 4.0 forward. However, in scenarios involving networked control automation, ensuring high reliability and predictable latency is vital for timely responses. To meet these demands, the contemporary wireless protocol time-slotted channel hopping (TSCH), [...] Read more.
The Internet of Things (IoT) presents immense opportunities for driving Industry 4.0 forward. However, in scenarios involving networked control automation, ensuring high reliability and predictable latency is vital for timely responses. To meet these demands, the contemporary wireless protocol time-slotted channel hopping (TSCH), also referred to as IEEE 802.15.4-2015, relies on precise transmission schedules to prevent collisions and achieve consistent end-to-end traffic flow. In the realm of diverse IoT applications, this study introduces a new traffic-aware autonomous multi-objective scheduling function called OPTIMAOrchestra. This function integrates slotframe and channel management, adapts to varying network sizes, supports mobility, and reduces collision risks. The effectiveness of two versions of OPTIMAOrchestra is extensively evaluated through multi-run experiments, each spanning up to 3600 s. It involves networks ranging from small-scale setups to large-scale deployments with 111 nodes. Homogeneous and heterogeneous network topologies are considered in static and mobile environments, where the nodes within a network send packets to the server with the same and different application packet intervals. The results demonstrate that OPTIMAOrchestra_ch4 achieves a current consumption of 0.72 mA while maintaining 100% reliability and 0.86 mA with a 100% packet delivery ratio in static networks. Both proposed Orchestra variants in mobile networks achieve 100% reliability, with current consumption recorded at 6.36 mA. Minimum latencies of 0.073 and 0.02 s are observed in static and mobile environments, respectively. On average, a collision rate of 5% is recorded for TSCH and RPL communication, with a minimum of 0% collision rate observed in the TSCH broadcast in mobile networks. Overall, the proposed OPTIMAOrchestra scheduler outperforms existing schedulers regarding network efficiency, time, and usability, significantly improving reliability while maintaining a balanced latency–energy trade-off. Full article
Show Figures

Figure 1

13 pages, 4021 KiB  
Article
A Deep Reinforcement Learning Optimization Method Considering Network Node Failures
by Xueying Ding, Xiao Liao, Wei Cui, Xiangliang Meng, Ruosong Liu, Qingshan Ye and Donghe Li
Energies 2024, 17(17), 4471; https://doi.org/10.3390/en17174471 - 6 Sep 2024
Viewed by 385
Abstract
Nowadays, the microgrid system is characterized by a diversification of power factors and a complex network structure. Existing studies on microgrid fault diagnosis and troubleshooting mostly focus on the fault detection and operation optimization of a single power device. However, for increasingly complex [...] Read more.
Nowadays, the microgrid system is characterized by a diversification of power factors and a complex network structure. Existing studies on microgrid fault diagnosis and troubleshooting mostly focus on the fault detection and operation optimization of a single power device. However, for increasingly complex microgrid systems, it becomes increasingly challenging to effectively contain faults within a specific spatiotemporal range. This can lead to the spread of power faults, posing great harm to the safety of the microgrid. The topology optimization of the microgrid based on deep reinforcement learning proposed in this paper starts from the overall power grid and aims to minimize the overall failure rate of the microgrid by optimizing the topology of the power grid. This approach can limit internal faults within a small range, greatly improving the safety and reliability of microgrid operation. The method proposed in this paper can optimize the network topology for the single node fault and multi-node fault, reducing the influence range of the node fault by 21% and 58%, respectively. Full article
(This article belongs to the Special Issue Artificial Intelligence and Machine Learning in Smart Grids)
Show Figures

Figure 1

14 pages, 1107 KiB  
Article
Optimizing Electric Vehicle Charging Station Locations: A Study on a Small Outlying Island in Hong Kong
by Yui-yip Lau, Yang Andrew Wu, Lok Man Wong, Juai Wu, Zhaoyang Dong, Christine Yip, Stephanie W. Lee and Jason K. Y. Chan
Urban Sci. 2024, 8(3), 134; https://doi.org/10.3390/urbansci8030134 - 5 Sep 2024
Viewed by 476
Abstract
Electric vehicles (EVs) have been widely considered an essential element to contribute to green and smart transportation, which will further enhance the development of smart cities. Hong Kong, as one of the largest metropolises in the world, has promoted the deployment of EVs [...] Read more.
Electric vehicles (EVs) have been widely considered an essential element to contribute to green and smart transportation, which will further enhance the development of smart cities. Hong Kong, as one of the largest metropolises in the world, has promoted the deployment of EVs for both the private and public transportation sectors over the past decade, with substantial financial subsidies and encouraging policy incentives. With the rapid penetration of EVs, especially in the market of private passenger cars, Hong Kong may face the challenge of insufficient charging facilities in the next few years. As such, the research study aims to develop a mathematical model using a topological method to map out feasible locations for new EV charging facilities on Ap Lei Chau Island, to construct a small Python program to optimize the mapping process of these feasible locations, and to estimate energy consumption and associated economic analysis to foster the spatial planning of EV charging facility networks. In conclusion, optimal locations for new charging facilities for EVs have been revealed to match the rapid growth of EV usage and facilitate the emergence of green and smart transportation. Full article
Back to TopTop