Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,148)

Search Parameters:
Keywords = neurotransmitter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 506 KiB  
Review
New Advances in Attention-Deficit/Hyperactivity Disorder-like Dogs
by Ángela González-Martínez, Susana Muñiz de Miguel and Francisco Javier Diéguez
Animals 2024, 14(14), 2067; https://doi.org/10.3390/ani14142067 - 14 Jul 2024
Viewed by 808
Abstract
Similar to humans, dogs could suffer an Attention-Deficit/Hyperactivity Disorder-like syndrome (ADHD-like). In fact, several studies highlight the use of dogs as a model for studying ADHD. This condition entails behavioral problems expressed through impulsivity, attention issues, hyperactivity, and/or aggression, compromising the quality of [...] Read more.
Similar to humans, dogs could suffer an Attention-Deficit/Hyperactivity Disorder-like syndrome (ADHD-like). In fact, several studies highlight the use of dogs as a model for studying ADHD. This condition entails behavioral problems expressed through impulsivity, attention issues, hyperactivity, and/or aggression, compromising the quality of life for both the caregiver and the dog. The pathophysiology of ADHD-like is complex and is associated with dysregulation of various neurotransmitters such as serotonin and dopamine. The expression of ADHD-like behavior in dogs would appear to depend on a classical gene–environment interaction as is the case with many neurological disorders in humans. In addition to the described symptomatology, ADHD-like dogs can exhibit strong comorbidities with compulsive behaviors, aggressiveness, inappropriate elimination and fearfulness, in addition to epilepsy, foreign body ingestion, and pruritus. In spite of the fact that there is no veterinary consensus about the diagnosis of ADHD-like, some validated questionnaires could be helpful, but these cannot be used as a unique diagnostic tool. The use of drugs, such as fluoxetine, in addition to an adequate environmental enrichment, relaxation protocols, and behavior modification can achieve an adequate quality of life for both the dog and caregivers. Full article
(This article belongs to the Special Issue Pet Behavioral Medicine, Volume II)
Show Figures

Figure 1

22 pages, 7518 KiB  
Article
Oral Exposure to Microplastics Affects the Neurochemical Plasticity of Reactive Neurons in the Porcine Jejunum
by Ismena Gałęcka and Jarosław Całka
Nutrients 2024, 16(14), 2268; https://doi.org/10.3390/nu16142268 - 14 Jul 2024
Viewed by 501
Abstract
Plastics are present in almost every aspect of our lives. Polyethylene terephthalate (PET) is commonly used in the food industry. Microparticles can contaminate food and drinks, posing a threat to consumers. The presented study aims to determine the effect of microparticles of PET [...] Read more.
Plastics are present in almost every aspect of our lives. Polyethylene terephthalate (PET) is commonly used in the food industry. Microparticles can contaminate food and drinks, posing a threat to consumers. The presented study aims to determine the effect of microparticles of PET on the population of neurons positive for selected neurotransmitters in the enteric nervous system of the jejunum and histological structure. An amount of 15 pigs were divided into three groups (control, receiving 0.1 g, and 1 g/day/animal orally). After 28 days, fragments of the jejunum were collected for immunofluorescence and histological examination. The obtained results show that histological changes (injury of the apical parts of the villi, accumulations of cellular debris and mucus, eosinophil infiltration, and hyperaemia) were more pronounced in pigs receiving a higher dose of microparticles. The effect on neuronal nitric oxide synthase-, and substance P-positive neurons, depends on the examined plexus and the dose of microparticles. An increase in the percentage of galanin-positive neurons and a decrease in cocaine and amphetamine-regulated transcript-, vesicular acetylcholine transporter-, and vasoactive intestinal peptide-positive neurons do not show such relationships. The present study shows that microparticles can potentially have neurotoxic and pro-inflammatory effects, but there is a need for further research to determine the mechanism of this process and possible further effects. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

12 pages, 2256 KiB  
Article
Short- and Long-Term Neurobehavioral Effects of Developmental Exposure to Valproic Acid in Zebrafish
by Marina Ricarte, Niki Tagkalidou, Marina Bellot, Juliette Bedrossiantz, Eva Prats, Cristian Gomez-Canela, Natalia Garcia-Reyero and Demetrio Raldúa
Int. J. Mol. Sci. 2024, 25(14), 7688; https://doi.org/10.3390/ijms25147688 - 13 Jul 2024
Viewed by 287
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, anxiety, hyperactivity, and interest restricted to specific subjects. In addition to the genetic factors, multiple environmental factors have been related to the development of ASD. Animal models [...] Read more.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, anxiety, hyperactivity, and interest restricted to specific subjects. In addition to the genetic factors, multiple environmental factors have been related to the development of ASD. Animal models can serve as crucial tools for understanding the complexity of ASD. In this study, a chemical model of ASD has been developed in zebrafish by exposing embryos to valproic acid (VPA) from 4 to 48 h post-fertilization, rearing them to the adult stage in fish water. For the first time, an integrative approach combining behavioral analysis and neurotransmitters profile has been used for determining the effects of early-life exposure to VPA both in the larval and adult stages. Larvae from VPA-treated embryos showed hyperactivity and decreased visual and vibrational escape responses, as well as an altered neurotransmitters profile, with increased glutamate and decreased acetylcholine and norepinephrine levels. Adults from VPA-treated embryos exhibited impaired social behavior characterized by larger shoal sizes and a decreased interest for their conspecifics. A neurotransmitter analysis revealed a significant decrease in dopamine and GABA levels in the brain. These results support the potential predictive validity of this model for ASD research. Full article
(This article belongs to the Special Issue Zebrafish: A Model Organism for Human Health and Disease)
Show Figures

Figure 1

19 pages, 1331 KiB  
Review
The Relationship between Canine Behavioral Disorders and Gut Microbiome and Future Therapeutic Perspectives
by Paula Kiełbik and Olga Witkowska-Piłaszewicz
Animals 2024, 14(14), 2048; https://doi.org/10.3390/ani14142048 - 12 Jul 2024
Viewed by 408
Abstract
Canine behavioral disorders have become one of the most common concerns and challenging issues among dog owners. Thus, there is a great demand for knowledge about various factors affecting dogs’ emotions and well-being. Among them, the gut–brain axis seems to be particularly interesting, [...] Read more.
Canine behavioral disorders have become one of the most common concerns and challenging issues among dog owners. Thus, there is a great demand for knowledge about various factors affecting dogs’ emotions and well-being. Among them, the gut–brain axis seems to be particularly interesting, especially since in many instances the standard treatment or behavioral therapies insufficiently improve animal behavior. Therefore, to face this challenge, the search for novel therapeutic methods is highly required. Existing data show that mammals’ gut microbiome, immune system, and nervous system are in continuous communication and influence animal physiology and behavior. This review aimed to summarize and discuss the most important scientific evidence on the relationship between mental disorders and gut microbiota in dogs, simultaneously presenting comparable outcomes in humans and rodent models. A comprehensive overview of crucial mechanisms of the gut–brain axis is included. This refers especially to the neurotransmitters crucial for animal behavior, which are regulated by the gut microbiome, and to the main microbial metabolites—short-chain fatty acids (SCFAs). This review presents summarized data on gut dysbiosis in relation to the inflammation process within the organism, as well as the activation of the hypothalamic–pituitary–adrenal (HPA) axis. All of the above mechanisms are presented in this review in strict correlation with brain and/or behavioral changes in the animal. Additionally, according to human and laboratory animal studies, the gut microbiome appears to be altered in individuals with mental disorders; thus, various strategies to manipulate the gut microbiota are implemented. This refers also to the fecal microbiome transplantation (FMT) method, based on transferring the fecal matter from a donor into the gastrointestinal tract of a recipient in order to modulate the gut microbiota. In this review, the possible effects of the FMT procedure on animal behavioral disorders are discussed. Full article
(This article belongs to the Special Issue Advances in Companion Animal Cognition and Behavior)
Show Figures

Figure 1

17 pages, 693 KiB  
Review
Natural Language Processing and Schizophrenia: A Scoping Review of Uses and Challenges
by Antoine Deneault, Alexandre Dumais, Marie Désilets and Alexandre Hudon
J. Pers. Med. 2024, 14(7), 744; https://doi.org/10.3390/jpm14070744 - 12 Jul 2024
Viewed by 304
Abstract
(1) Background: Approximately 1% of the global population is affected by schizophrenia, a disorder marked by cognitive deficits, delusions, hallucinations, and language issues. It is associated with genetic, neurological, and environmental factors, and linked to dopaminergic hyperactivity and neurotransmitter imbalances. Recent research reveals [...] Read more.
(1) Background: Approximately 1% of the global population is affected by schizophrenia, a disorder marked by cognitive deficits, delusions, hallucinations, and language issues. It is associated with genetic, neurological, and environmental factors, and linked to dopaminergic hyperactivity and neurotransmitter imbalances. Recent research reveals that patients exhibit significant language impairments, such as reduced verbal output and fluency. Advances in machine learning and natural language processing show potential for early diagnosis and personalized treatments, but additional research is required for the practical application and interpretation of such technology. The objective of this study is to explore the applications of natural language processing in patients diagnosed with schizophrenia. (2) Methods: A scoping review was conducted across multiple electronic databases, including Medline, PubMed, Embase, and PsycInfo. The search strategy utilized a combination of text words and subject headings, focusing on schizophrenia and natural language processing. Systematically extracted information included authors, population, primary uses of the natural language processing algorithms, main outcomes, and limitations. The quality of the identified studies was assessed. (3) Results: A total of 516 eligible articles were identified, from which 478 studies were excluded based on the first analysis of titles and abstracts. Of the remaining 38 studies, 18 were selected as part of this scoping review. The following six main uses of natural language processing were identified: diagnostic and predictive modeling, followed by specific linguistic phenomena, speech and communication analysis, social media and online content analysis, clinical and cognitive assessment, and linguistic feature analysis. (4) Conclusions: This review highlights the main uses of natural language processing in the field of schizophrenia and the need for more studies to validate the effectiveness of natural language processing in diagnosing and treating schizophrenia. Full article
(This article belongs to the Section Personalized Therapy and Drug Delivery)
Show Figures

Figure 1

22 pages, 2407 KiB  
Review
Fibromyalgia: A Review of the Pathophysiological Mechanisms and Multidisciplinary Treatment Strategies
by Lina Noelia Jurado-Priego, Cristina Cueto-Ureña, María Jesús Ramírez-Expósito and José Manuel Martínez-Martos
Biomedicines 2024, 12(7), 1543; https://doi.org/10.3390/biomedicines12071543 - 11 Jul 2024
Viewed by 473
Abstract
Fibromyalgia is a syndrome characterized by chronic widespread musculoskeletal pain, which may or may not be associated with muscle or joint stiffness, accompanied by other symptoms such as fatigue, sleep disturbances, anxiety, and depression. It is a highly prevalent condition globally, being considered [...] Read more.
Fibromyalgia is a syndrome characterized by chronic widespread musculoskeletal pain, which may or may not be associated with muscle or joint stiffness, accompanied by other symptoms such as fatigue, sleep disturbances, anxiety, and depression. It is a highly prevalent condition globally, being considered the third most common musculoskeletal disorder, following lower back pain and osteoarthritis. It is more prevalent in women than in men, and although it can occur at any age, it is more common between the ages of thirty and thirty-five. Although the pathophysiology and etiopathogenesis remain largely unknown, three underlying processes in fibromyalgia have been investigated. These include central sensitization, associated with an increase in the release of both excitatory and inhibitory neurotransmitters; peripheral sensitization, involving alterations in peripheral nociceptor signaling; and inflammatory and immune mechanisms that develop concurrently with the aforementioned processes. Furthermore, it has been determined that genetic, endocrine, psychological, and sleep disorders may influence the development of this pathology. The accurate diagnosis of fibromyalgia remains challenging as it lacks specific diagnostic biomarkers, which are still under investigation. Nonetheless, diagnostic approaches to the condition have evolved based on the use of scales and questionnaires for pain identification. The complexity associated with this pathology makes it difficult to establish a single effective treatment. Therefore, treatment is multidisciplinary, involving both pharmacological and non-pharmacological interventions aimed at alleviating symptoms. The non-pharmacological treatments outlined in this review are primarily related to physiotherapy interventions. The effectiveness of physical exercise, both on land and in water, as well as the application of electrotherapy combined with transcranial therapy and manual therapy has been highlighted. All of these interventions aim to improve the quality of life of patients highly affected by fibromyalgia. Full article
(This article belongs to the Special Issue Advanced Research on Fibromyalgia (2nd Edition))
Show Figures

Figure 1

15 pages, 1322 KiB  
Review
Ghrelin/GHSR System in Depressive Disorder: Pathologic Roles and Therapeutic Implications
by Xingli Pan, Yuxin Gao, Kaifu Guan, Jing Chen and Bingyuan Ji
Curr. Issues Mol. Biol. 2024, 46(7), 7324-7338; https://doi.org/10.3390/cimb46070434 (registering DOI) - 10 Jul 2024
Viewed by 251
Abstract
Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression. Ghrelin plays [...] Read more.
Depression is the most common chronic mental illness and is characterized by low mood, insomnia, and affective disorders. However, its pathologic mechanisms remain unclear. Numerous studies have suggested that the ghrelin/GHSR system may be involved in the pathophysiologic process of depression. Ghrelin plays a dual role in experimental animals, increasing depressed behavior and decreasing anxiety. By combining several neuropeptides and traditional neurotransmitter systems to construct neural networks, this hormone modifies signals connected to depression. The present review focuses on the role of ghrelin in neuritogenesis, astrocyte protection, inflammatory factor production, and endocrine disruption in depression. Furthermore, ghrelin/GHSR can activate multiple signaling pathways, including cAMP/CREB/BDNF, PI3K/Akt, Jak2/STAT3, and p38-MAPK, to produce antidepressant effects, given which it is expected to become a potential therapeutic target for the treatment of depression. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics in Brain Disorders)
Show Figures

Figure 1

12 pages, 1289 KiB  
Article
Regional Changes in Brain Biomolecular Markers in a Collagen-Induced Arthritis Rat Model
by Aletta M. E. Millen, Tshiamo T. Maluleke, Leandrie Pienaar, Farhanah N. Sallie, Radhini Veerappan, Per E. Andrén and Sooraj Baijnath
Biology 2024, 13(7), 516; https://doi.org/10.3390/biology13070516 - 10 Jul 2024
Viewed by 622
Abstract
Background: The effects of collagen-induced arthritis (CIA), a model of systemic inflammation, on brain regional molecular markers associated with neurological disorders are uncertain. Objective: This study investigated the brain regional molecular changes in markers associated with inflammation and neuronal dysfunction in a CIA [...] Read more.
Background: The effects of collagen-induced arthritis (CIA), a model of systemic inflammation, on brain regional molecular markers associated with neurological disorders are uncertain. Objective: This study investigated the brain regional molecular changes in markers associated with inflammation and neuronal dysfunction in a CIA model. Methods: Fourteen male Sprague Dawley rats were divided into control (n = 5) or CIA (n = 9) groups. 10 weeks after CIA induction, brain tissue was collected. Brain regional mRNA expression of inflammatory markers (IL-1β and IL-6), apoptotic markers (BAX and Bcl2) and neurotrophic factors (BDNF, CREB and TrkB) was determined. Monoamine distribution and abundance in different brain regions were determine by mass spectrometry imaging (MSI). Results: Neuroinflammation was confirmed in the CIA group by increased IL-β mRNA expression, concurrent with an increased BAX/Bcl2 ratio. The mRNA expression of CREB was increased in the midbrain and hippocampus while BDNF was increased and TrkB was decreased across all brain regions in CIA compared to control animals. Serotonin was decreased in the midbrain and hippocampus while dopamine was decreased in the striatum of CIA rats, compared to controls. Conclusion: CIA resulted in neuroinflammation concurrent with an apoptotic state and aberrant expression of neurotrophic factors and monoamines in the brain, suggestive of neurodegeneration. Full article
(This article belongs to the Special Issue Animal Models of Arthritis)
Show Figures

Figure 1

21 pages, 2618 KiB  
Article
Anxiolytic, Antidepression, and Memory-Enhancing Effects of the Novel Instant Soup RJ6601 in the Middle-Aged of Female Rats
by Rujikan Chaisanam, Jintanaporn Wattanathorn, Wipawee Thukham-mee, Nawanant Piyavhatkul and Pongsatorn Paholpak
Foods 2024, 13(14), 2170; https://doi.org/10.3390/foods13142170 - 9 Jul 2024
Viewed by 350
Abstract
Due to the health benefits of polyphenols and dietary fiber in combating mental disorders, we hypothesized that a polyphenol- and dietary fiber-enriched soup (RJ6601) would improve mental wellness in a rat model of middle-aged women. To test this hypothesis, female Wistar rats aged [...] Read more.
Due to the health benefits of polyphenols and dietary fiber in combating mental disorders, we hypothesized that a polyphenol- and dietary fiber-enriched soup (RJ6601) would improve mental wellness in a rat model of middle-aged women. To test this hypothesis, female Wistar rats aged 18 months (350–450 g) were orally administered RJ6601 at doses of 200 and 400 mg/kg BW for 28 days. The anxiolytic, antidepression, and memory-enhancing effects were assessed every 7 days throughout the study period. The neuron density and levels of activities of AChE, total MAO, MAO-A, MAO-B, MDA, SOD, CAT, GSH-Px, IL-1β, IL-6, and BDNF in the prefrontal cortex at the end of study were also investigated. Furthermore, the amounts of Lactobacillus spp. and Bifidobacterium spp. in their feces were also determined. The results revealed that the developed soup shows anxiolytic, antidepression, and memory-enhancing effects. An increased neuron density; reductions in AChE, total MAO, MAO-A, MAO-B, and MDA; and an elevation of serum BDNF, together with increased amounts of both bacterial species in feces, were also observed. Our results suggest that RJ6601 is a potential mental wellness promotion supplement that enhances BDNF levels, brain plasticity, neurotransmitter balance, and oxidative stress and inflammation status, along with improving microbiota. Full article
Show Figures

Graphical abstract

2 pages, 139 KiB  
Editorial
The Role of Dopamine Neurotransmitters in Neurological Diseases: New Sight
by Yingfang Tian
Int. J. Mol. Sci. 2024, 25(14), 7529; https://doi.org/10.3390/ijms25147529 - 9 Jul 2024
Viewed by 306
Abstract
Dopamine (DA) is one of the most important catecholamine neurotransmitters in the central nervous system [...] Full article
23 pages, 1788 KiB  
Review
Interactions Involving Glycine and Other Amino Acid Neurotransmitters: Focus on Transporter-Mediated Regulation of Release and Glycine–Glutamate Crosstalk
by Luca Raiteri
Biomedicines 2024, 12(7), 1518; https://doi.org/10.3390/biomedicines12071518 - 8 Jul 2024
Viewed by 367
Abstract
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters [...] Read more.
Glycine plays a pivotal role in the Central Nervous System (CNS), being a major inhibitory neurotransmitter as well as a co-agonist of Glutamate at excitatory NMDA receptors. Interactions involving Glycine and other neurotransmitters are the subject of different studies. Functional interactions among neurotransmitters include the modulation of release through release-regulating receptors but also through transporter-mediated mechanisms. Many transporter-mediated interactions involve the amino acid transmitters Glycine, Glutamate, and GABA. Different studies published during the last two decades investigated a number of transporter-mediated interactions in depth involving amino acid transmitters at the nerve terminal level in different CNS areas, providing details of mechanisms involved and suggesting pathophysiological significances. Here, this evidence is reviewed also considering additional recent information available in the literature, with a special (but not exclusive) focus on glycinergic neurotransmission and Glycine–Glutamate interactions. Some possible pharmacological implications, although partly speculative, are also discussed. Dysregulations in glycinergic and glutamatergic transmission are involved in relevant CNS pathologies. Pharmacological interventions on glycinergic targets (including receptors and transporters) are under study to develop novel therapies against serious CNS pathological states including pain, schizophrenia, epilepsy, and neurodegenerative diseases. Although with limitations, it is hoped to possibly contribute to a better understanding of the complex interactions between glycine-mediated neurotransmission and other major amino acid transmitters, also in view of the current interest in potential drugs acting on “glycinergic” targets. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Graphical abstract

30 pages, 840 KiB  
Review
Unraveling the Potential Underlying Mechanisms of Mild Behavioral Impairment: Focusing on Amyloid and Tau Pathology
by Efthalia Angelopoulou, Anastasia Bougea, Alexandros Hatzimanolis, Nikolaos Scarmeas and Sokratis G. Papageorgiou
Cells 2024, 13(13), 1164; https://doi.org/10.3390/cells13131164 - 8 Jul 2024
Viewed by 781
Abstract
The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown [...] Read more.
The emergence of sustained neuropsychiatric symptoms (NPS) among non-demented individuals in later life, defined as mild behavioral impairment (MBI), is linked to a higher risk of cognitive decline. However, the underlying pathophysiological mechanisms remain largely unexplored. A growing body of evidence has shown that MBI is associated with alterations in structural and functional neuroimaging studies, higher genetic predisposition to clinical diagnosis of Alzheimer’s disease (AD), as well as amyloid and tau pathology assessed in the blood, cerebrospinal fluid, positron-emission tomography (PET) imaging and neuropathological examination. These findings shed more light on the MBI-related potential neurobiological mechanisms, paving the way for the development of targeted pharmacological approaches. In this review, we aim to discuss the available clinical evidence on the role of amyloid and tau pathology in MBI and the potential underlying pathophysiological mechanisms. Dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, disruption of neurotrophic factors, such as the brain-derived neurotrophic factor (BDNF), abnormal neuroinflammatory responses including the kynurenine pathway, dysregulation of transforming growth factor beta (TGF-β1), epigenetic alterations including micro-RNA (miR)-451a and miR-455-3p, synaptic dysfunction, imbalance in neurotransmitters including acetylcholine, dopamine, serotonin, gamma-aminobutyric acid (GABA) and norepinephrine, as well as altered locus coeruleus (LC) integrity are some of the potential mechanisms connecting MBI with amyloid and tau pathology. The elucidation of the underlying neurobiology of MBI would facilitate the design and efficacy of relative clinical trials, especially towards amyloid- or tau-related pathways. In addition, we provide insights for future research into our deeper understanding of its underlying pathophysiology of MBI, and discuss relative therapeutic implications. Full article
(This article belongs to the Special Issue Molecular Insights into Neurodegenerative Diseases)
Show Figures

Figure 1

16 pages, 6690 KiB  
Article
Fermented Gastrodia elata Bl. Alleviates Cognitive Deficits by Regulating Neurotransmitters and Gut Microbiota in D-Gal/AlCl3-Induced Alzheimer’s Disease-like Mice
by Yu Wang, Min Zhao, Chunzhi Xie, Lilang Li, Ling Lin, Qiji Li, Liangqun Li, Faju Chen, Xiaosheng Yang, Juan Yang and Ming Gao
Foods 2024, 13(13), 2154; https://doi.org/10.3390/foods13132154 - 8 Jul 2024
Viewed by 512
Abstract
Alzheimer’s disease (AD) is a common neurological disease with recognition ability loss symptoms and a major contributor to dementia cases worldwide. Gastrodia elata Bl. (GE), a food of medicine–food homology, has been reported to have a mitigating effect on memory and learning ability [...] Read more.
Alzheimer’s disease (AD) is a common neurological disease with recognition ability loss symptoms and a major contributor to dementia cases worldwide. Gastrodia elata Bl. (GE), a food of medicine–food homology, has been reported to have a mitigating effect on memory and learning ability decline. However, the effect of GE fermented by Lactobacillus plantarum, Acetobacter pasteurianus, and Saccharomyces (FGE) on alleviating cognitive deficits in AD was not studied. Mice were randomly divided into six groups, control, model, donepezil, low, medium, and high doses of FGE, and D-Galactose/Aluminum chloride (D-Gal/AlCl3) was used to establish an AD-like mouse model. The results indicated that FGE could improve the production of neurotransmitters and relieve oxidative stress damage in AD-like mice, which was evidenced by the declined levels of amyloid-β (Aβ), Tau, P-Tau, acetylcholinesterase (AchE), and malondialdehyde (MDA), and increased acetylcholine (Ach), choline acetyltransferase (ChAT), and superoxide dismutase (SOD) levels in brain tissue. Notably, FGE could enhance the richness of the gut microbiota, especially for beneficial bacteria such as Lachnospira and Lactobacillus. Non-target metabolomics results indicated that FGE could affect neurotransmitter levels by regulating amino acid metabolic pathways to improve AD symptoms. The FGE possessed an ameliorative effect on AD by regulating neurotransmitters, oxidative stress levels, and gut microbiota and could be considered a good candidate for ameliorating AD. Full article
Show Figures

Graphical abstract

15 pages, 1654 KiB  
Opinion
Clinical Conditions Targeted by OnabotulinumtoxinA in Different Ways in Medicine
by Dilara Onan, Fatemeh Farham and Paolo Martelletti
Toxins 2024, 16(7), 309; https://doi.org/10.3390/toxins16070309 - 7 Jul 2024
Viewed by 404
Abstract
OnabotulinumtoxinA (BT-A) is used in different medical fields for its beneficial effects. BT-A, a toxin originally produced by the bacterium Clostridium botulinum, is widely known for its ability to temporarily paralyze muscles by blocking the release of acetylcholine, a neurotransmitter involved in muscle [...] Read more.
OnabotulinumtoxinA (BT-A) is used in different medical fields for its beneficial effects. BT-A, a toxin originally produced by the bacterium Clostridium botulinum, is widely known for its ability to temporarily paralyze muscles by blocking the release of acetylcholine, a neurotransmitter involved in muscle contraction. The literature continually reports new hypotheses regarding potential applications that do not consider blockade of acetylcholine release at the neuromuscular junction as a common pathway. In this opinion article, it is our aim to investigate the different pathway targets of BT-A in different medical applications. First of all, the acetylcholine effect of BT-A is used to reduce wrinkles for cosmetic purposes, in the treatment of urological problems, excessive sweating, temporomandibular joint disorders, obesity, migraine, spasticity in neurological diseases, and in various cases of muscle overactivity such as cervical dystonia, blepharospasm, and essential head tremor. In another potential pathway, glutamate A, CGRP, and substance P are targeted for pain inhibition with BT-A application in conditions such as migraine, trigeminal neuralgia, neuropathic pain, and myofascial pain syndrome. On the other hand, as a mechanism different from acetylcholine and pain mediators, BT-A is used in the treatment of hair loss by increasing oxygenation and targeting transforming growth factor-beta 1 cells. In addition, the effect of BT-A on the apoptosis of cancer cells is also known and is being developed. The benefits of BT-A applied in different doses to different regions for different medical purposes are shown in literature studies, and it is also emphasized in those studies that repeating the applications increases the benefits in the long term. The use of BT-A continues to expand as researchers discover new potential therapeutic uses for this versatile toxin. Full article
(This article belongs to the Section Bacterial Toxins)
Show Figures

Figure 1

28 pages, 7326 KiB  
Article
Novel Insights into Changes in Gene Expression within the Hypothalamus in Two Asthma Mouse Models: A Transcriptomic Lung–Brain Axis Study
by Eslam M. Bastawy, Izel M. Eraslan, Lara Voglsanger, Cenk Suphioglu, Adam J. Walker, Olivia M. Dean, Justin L. Read, Mark Ziemann and Craig M. Smith
Int. J. Mol. Sci. 2024, 25(13), 7391; https://doi.org/10.3390/ijms25137391 - 5 Jul 2024
Viewed by 431
Abstract
Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung–brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood–brain [...] Read more.
Patients with asthma experience elevated rates of mental illness. However, the molecular links underlying such lung–brain crosstalk remain ambiguous. Hypothalamic dysfunction is observed in many psychiatric disorders, particularly those with an inflammatory component due to many hypothalamic regions being unprotected by the blood–brain barrier. To gain a better insight into such neuropsychiatric sequelae, this study investigated gene expression differences in the hypothalamus following lung inflammation (asthma) induction in mice, using RNA transcriptome profiling. BALB/c mice were challenged with either bacterial lipopolysaccharide (LPS, E. coli) or ovalbumin (OVA) allergens or saline control (n = 7 per group), and lung inflammation was confirmed via histological examination of postmortem lung tissue. The majority of the hypothalamus was micro-dissected, and total RNA was extracted for sequencing. Differential expression analysis identified 31 statistically significant single genes (false discovery rate FDR5%) altered in expression following LPS exposure compared to controls; however, none were significantly changed following OVA treatment, suggesting a milder hypothalamic response. When gene sets were examined, 48 were upregulated and 8 were downregulated in both asthma groups relative to controls. REACTOME enrichment analysis suggests these gene sets are involved in signal transduction metabolism, immune response and neuroplasticity. Interestingly, we identified five altered gene sets directly associated with neurotransmitter signaling. Intriguingly, many of these altered gene sets can influence mental health and or/neuroinflammation in humans. These findings help characterize the links between asthma-induced lung inflammation and the brain and may assist in identifying relevant pathways and therapeutic targets for future intervention. Full article
(This article belongs to the Special Issue Genetic Variants in Neurological and Psychiatric Diseases)
Show Figures

Graphical abstract

Back to TopTop