Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,095)

Search Parameters:
Keywords = oil content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 8700 KiB  
Article
Linalool and Geraniol Defend Neurons from Oxidative Stress, Inflammation, and Iron Accumulation in In Vitro Parkinson’s Models
by Edina Pandur, Balázs Major, Tibor Rák, Katalin Sipos, Adrienne Csutak and Györgyi Horváth
Antioxidants 2024, 13(8), 917; https://doi.org/10.3390/antiox13080917 (registering DOI) - 29 Jul 2024
Abstract
Parkinson’s disease is one of the most prevalent neurological disorders affecting millions of people worldwide. There is a growing demand for novel and natural substances as complementary therapies. Essential oils and their various compounds are highly investigated natural plant-based products as potential treatment [...] Read more.
Parkinson’s disease is one of the most prevalent neurological disorders affecting millions of people worldwide. There is a growing demand for novel and natural substances as complementary therapies. Essential oils and their various compounds are highly investigated natural plant-based products as potential treatment options for common human diseases, such as microbial infections, chronic diseases, and neurodegenerative disorders. The present study focuses on the beneficial effects of linalool and geraniol, the major compounds of lavender (Lavandula angustifolia L.) and geranium (Pelargonium graveolens L’Hér. in Aiton) essential oils, on oxidative stress, inflammation, and iron metabolism of the rotenone and 6-hydroxydopamine-induced in vitro Parkinson’s models. The experiments were carried out on all-trans retinoic acid differentiated SH-SY5Y cells. The effects of linalool and geraniol were compared to rasagiline, an MAO-B inhibitor. The results revealed that both essential oil compounds reduce the level of reactive oxygen species and alter the antioxidant capacity of the cells. They lower the secretion of IL-6, IL-8, and IL-1β pro-inflammatory cytokines. Moreover, linalool and geraniol change the expression of iron-related genes, such as the iron importer transferrin receptor 1, heme-oxygenase-1, and ferroportin iron exporter, and influence the intracellular iron contents. In addition, it has been unveiled that iron availability is concatenated with the actions of the essential oil compounds. Based on the results, linalool and geraniol are vigorous candidates as an alternative therapy for Parkinson’s disease. Full article
19 pages, 2639 KiB  
Article
Vitamin Solutions Effects on Reproduction of Broodstock, Growth Performance, and Survival Rate of Pangasius Catfish Fingerlings
by Chau Thi Da, Bui Thi Kim Xuyen, Thi Kieu Oanh Nguyen, Van Tai Tang, Pham Thi Thu Ha, Minh Tan Pham and Håkan Berg
Animals 2024, 14(15), 2203; https://doi.org/10.3390/ani14152203 (registering DOI) - 29 Jul 2024
Abstract
This study evaluates the effect of different diets supplemented with vitamin solutions on Pangasius catfish broodstock reproduction, growth performances, and the survival rates of fish larvae and fingerling. The growth and reproductive performances of breeders fed with different test diets showed significant differences [...] Read more.
This study evaluates the effect of different diets supplemented with vitamin solutions on Pangasius catfish broodstock reproduction, growth performances, and the survival rates of fish larvae and fingerling. The growth and reproductive performances of breeders fed with different test diets showed significant differences among the six tested diets (p < 0.05). The highest final body weight (FBW), weight gain (WG), daily weight gain (DWG), specific growth rate (SGR) of broodstock, and survival rate of Pangasius fingerlings were found in Treatment 5, which contained 0.6% H-OVN mixed with 12.6% algal oil, and Treatment 3, which contained 0.6% vitamin premix H-OVN. The average gonadosomatic index (GSI), relative fecundity index (RFI), fertilized eggs, hatching rates of eggs, and survival rate of fingerlings was 9.1 ± 2.8 (6.7–12.8%), 133,224 ± 39,090 (104,267–199,512 eggs/kg), 77.9 ± 22.2 (62.2–93.6%), and 45.3 ± 17.4 (22.0–66.3%), respectively. The findings of this study showed that the diet containing 35% CP contents supplemented with 0.6% vitamin premix H-OVN mixed with algal oils showed the highest results in terms of growth, reproductive performance indices, and survival rates of Pangasius catfish fingerlings. Full article
24 pages, 6270 KiB  
Article
Antioxidant Properties of Lippia alba Essential Oil: A Potential Treatment for Oxidative Stress-Related Conditions in Plants and Cancer Cells
by Ilaria Borromeo, Anastasia De Luca, Fabio Domenici, Cristiano Giordani, Luisa Rossi and Cinzia Forni
Int. J. Mol. Sci. 2024, 25(15), 8276; https://doi.org/10.3390/ijms25158276 (registering DOI) - 29 Jul 2024
Abstract
Lippia alba (Mill.) N.E.Br. ex Britton and P. Wilson is used in folk medicine of Central and South America for its biological activities: i.e., antifungal, antibacterial, antiviral, and anti-inflammatory. Based on ethnopharmacological information and the increasing interest in this species, this work aimed [...] Read more.
Lippia alba (Mill.) N.E.Br. ex Britton and P. Wilson is used in folk medicine of Central and South America for its biological activities: i.e., antifungal, antibacterial, antiviral, and anti-inflammatory. Based on ethnopharmacological information and the increasing interest in this species, this work aimed to test a possible wide use of its essential oil (EO) in pharmaceutical and horticultural applications. Therefore, we focused the attention on the antioxidant activity of the oil as a possible tool to overcome the oxidative stress in both applications. For this purpose, we have chosen three aggressive breast cancer cell lines and two horticultural species (Solanum lycopersicum L. and Phaseolus acutifolius L.) that are very sensitive to salt stress. We determined the antioxidant activity of L. alba EO through the quantification of phenols and flavonoids. Regarding tomato and bean plants under salt stress, L. alba EO was used for the first time as a seed priming agent to enhance plant salt tolerance. In this case, the seed treatment enhanced the content of phenolic compounds, reduced power and scavenger activity, and decreased membrane lipid peroxidation, thus mitigating the oxidative stress induced by salt. While in breast cancer cells the EO treatment showed different responses according to the cell lines, i.e., in SUM149 and MDA-MB-231 the EO decreased proliferation and increased antioxidant activity and lipid peroxidation, showing high cytotoxic effects associated with the release of lactate dehydrogenase, vice versa no effect was observed in MDA-MB-468. Such antioxidant activity opens a new perspective about this essential oil as a possible tool to counteract proliferation in some cancer cell lines and in horticulture as a seed priming agent to protect from oxidative damage in crops sensitive to salinity. Full article
Show Figures

Figure 1

23 pages, 14629 KiB  
Article
Diagenesis of Cenomanian–Early Turonian and the Control of Carbonate Reservoirs in the Northern Central Arabian Basin
by Fengfeng Li, Yong Li, Haiying Han, Wenqi Zhang and Lei Li
Minerals 2024, 14(8), 769; https://doi.org/10.3390/min14080769 (registering DOI) - 29 Jul 2024
Abstract
The carbonate reservoirs of Cenomanian–Early Turonian in the northeastern Central Arabian Basin hold considerable oil reserves and are great contributors to oil production. Diagenesis have a great impact on carbonate reservoir petrophysical properties, microstructure, and heterogeneity. By integrating cores, cast thin sections, regular [...] Read more.
The carbonate reservoirs of Cenomanian–Early Turonian in the northeastern Central Arabian Basin hold considerable oil reserves and are great contributors to oil production. Diagenesis have a great impact on carbonate reservoir petrophysical properties, microstructure, and heterogeneity. By integrating cores, cast thin sections, regular core analysis, CT, and isotopes, this study provides an improved understanding of diagenesis in the Cenomanian–Early Turonian and its effect on carbonate reservoirs. The results showed that three diagenetic environments were identified in the Cenomanian–Early Turonian based on texture, structure, cement, crystal form, and crystal size, which were marine environment, meteoric environment, and burial environment. Six diageneses were identified based on residual bioclastic, secondary pores, calcite quantity, dolomite size, and stylolite, namely dissolution, cementation, micritization, dolomitization, compaction, and pressure solution. A micritization model in high energy sediment, a dolomitization model in burrows, and a comprehensive diagenetic model were established. It concluded that dissolution during meteoric environment is most favorable to reservoir physical properties, while cementation is least favorable. The cement content controls the microstructure and petrophysical property. Micritization is detrimental to the petrophysical properties, and the micrite it forms are distributed in the interparticle pores, reducing the reservoir property deposited in high energy environment. Dolomitization is less developed in substrate but widely developed in burrows, which result in the physical properties of the burrows being higher than those of substrate. Compaction and pressure solution have a negative impact on reservoir physical properties. Full article
Show Figures

Figure 1

11 pages, 1551 KiB  
Article
Classification Method of Heavy Oil Based on Chemical Composition and Bulk Properties
by Weilai Zhang, Jianxun Wu, Shuofan Li, Yahe Zhang, Suoqi Zhao and Quan Shi
Energies 2024, 17(15), 3733; https://doi.org/10.3390/en17153733 (registering DOI) - 29 Jul 2024
Abstract
Heavy oil resources in the world are extremely abundant, and viscosity is currently the main reference index for heavy oil classification. However, the diversification of practical issues in heavy oil exploitation, and the refinement of processing and utilization urgently require the support of [...] Read more.
Heavy oil resources in the world are extremely abundant, and viscosity is currently the main reference index for heavy oil classification. However, the diversification of practical issues in heavy oil exploitation, and the refinement of processing and utilization urgently require the support of heavy oil classification with more reference indexes. In this study, the macroscopic properties of typical heavy oils in China were analyzed, and the semi-quantitative analysis of the molecular composition of different heavy oils was completed based on high-resolution mass spectrometry. The results show that heavy oils with similar viscosities can exhibit huge differences in macroscopic properties and chemical composition. According to the evaluation of the chemical composition and macroscopic properties of typical Chinese heavy oils, 12 types of compounds belonging to saturates, aromatics, resins, and asphaltenes (SARA) were identified, establishing a connection between the macroscopic fractions and molecular compositions of heavy oils. By summarizing the comparative results, a new classification criterion for heavy oils was established, focusing on the main parameters of H/C ratio and total acid number (TAN), with sulfur content as a supplementary indicator. H/C is the embodiment of the degree of molecular condensation in the macroscopic properties, reflecting the structural characteristics of the main molecules of the heavy oil. Chinese heavy oil is generally characterized by high TAN, which corresponds to the composition of petroleum acids, and it is also an important reference index for the exploitation and processing of heavy oils. Most Chinese heavy oils have a very low sulfur content, but the presence of sulfur compounds in high-sulfur heavy oils can lead to significant differences in the distribution of compound types among the SARA. This new classification method for heavy oil combines the characteristics of chemical composition of heavy oils, which is expected to provide valuable support for the extraction and processing of heavy oil. Full article
Show Figures

Figure 1

19 pages, 3515 KiB  
Article
Influence of Carbonated Pyrolysis Oil Recycled from Scrap Tires on Metallurgical Efficiency of Coal Flotation
by Iman Hasanizadeh, Hamid Khoshdast, Mehdi Safari, Kaveh Asgari and Ahmad Rahmanian
Minerals 2024, 14(8), 765; https://doi.org/10.3390/min14080765 (registering DOI) - 27 Jul 2024
Viewed by 337
Abstract
This research assesses the effect of carbonated pyrolysis oil (CPO) derived from scrap car tires on the metallurgical efficiency of coal flotation as a flotation additive. Using a statistical experimental design, the influence of various operational variables, including solid percent of feed pulp [...] Read more.
This research assesses the effect of carbonated pyrolysis oil (CPO) derived from scrap car tires on the metallurgical efficiency of coal flotation as a flotation additive. Using a statistical experimental design, the influence of various operational variables, including solid percent of feed pulp and dosages of reagents, i.e., CPO as an additive, diesel oil as a collector, and pine oil as a frother, on the ash content and yield of the final concentrate were investigated. Experimental data vary significantly based on operational conditions, ranging from 6.6% ash content with a 15% yield to 19.1% ash content with a 76.8% yield. The composition of the pyrolysis oil was identified by using Fourier transform infrared spectroscopy (FTIR). The analysis of variance (ANOVA) of experimental results demonstrated that almost all variables had a substantial effect on the flotation responses, positive or negative, depending on the variable or variable interaction. It was discovered that the usage of CPO intensified the total yield and ash content of concentrate in a nonlinear fashion in a range of 15% and 4%, respectively. The results revealed a non-selective interaction effect between CPO and pine oil, as well as competitive adsorption between diesel oil and CPO, which contributed to the curved behavior of flotation measurements. The detrimental effect of CPO on the flotation response of the studied coal sample was also related to the interaction of the hydrophilic groups in the CPO structure and the oxide groups of ash material in coal particles. This work shows the potential of carbonated pyrolysis oil to enhance coal flotation performance and sheds light on the underlying mechanisms. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
22 pages, 5121 KiB  
Article
Analysis of the Pomelo Peel Essential Oils at Different Storage Durations Using a Visible and Near-Infrared Spectroscopic on Intact Fruit
by Panmanas Sirisomboon, Jittra Duangchang, Thitima Phanomsophon, Ravipat Lapcharoensuk, Bim Prasad Shrestha, Sumaporn Kasemsamran, Warunee Thanapase, Pimpen Pornchaloempong and Satoru Tsuchikawa
Foods 2024, 13(15), 2379; https://doi.org/10.3390/foods13152379 - 27 Jul 2024
Viewed by 518
Abstract
Pomelo fruit pulp mainly is consumed fresh and with very little processing, and its peels are discarded as biological waste, which can cause the environmental problems. The peels contain several bioactive chemical compounds, especially essential oils (EOs). The content of a specific EO [...] Read more.
Pomelo fruit pulp mainly is consumed fresh and with very little processing, and its peels are discarded as biological waste, which can cause the environmental problems. The peels contain several bioactive chemical compounds, especially essential oils (EOs). The content of a specific EO is important for the extraction process in industry and in research units such as breeding research. The explanation of the biosynthesis pathway for EO generation and change was included. The chemical bond vibration affected the prediction of EO constituents was comprehensively explained by regression coefficient plots and x-loading plots. Visible and near-infrared spectroscopy (VIS/NIRS) is a prominent rapid technique used for fruit quality assessment. This research work was focused on evaluating the use of VIS/NIRS to predict the composition of EOs found in the peel of the pomelo fruit (Citrus maxima (J. Burm.) Merr. cv Kao Nam Pueng) following storage. The composition of the peel oil was analyzed by gas chromatography–mass spectrometry (GC-MS) at storage durations of 0, 15, 30, 45, 60, 75, 90, 105 and 120 days (at 10 °C and 70% relative humidity). The relationship between the NIR spectral data and the major EO components found in the peel, including nootkatone, geranial, β-phellandrene and limonene, were established using the raw spectral data in conjunction with partial least squares (PLS) regression. Preprocessing of the raw spectra was performed using multiplicative scatter correction (MSC) or second derivative preprocessing. The PLS model of nootkatone with full MSC had the highest correlation coefficient between the predicted and reference values (r = 0.82), with a standard error of prediction (SEP) of 0.11% and bias of 0.01%, while the models of geranial, β-phellandrene and limonene provided too low r values of 0.75, 0.75 and 0.67, respectively. The nootkatone model is only appropriate for use in screening and some other approximate calibrations, though this is the first report of the use of NIR spectroscopy on intact fruit measurement for its peel EO constituents during cold storage. Full article
(This article belongs to the Topic Advances in Spectroscopic and Chromatographic Techniques)
Show Figures

Figure 1

16 pages, 16647 KiB  
Article
A Preliminary Assessment of Underground Space Resources for Hydrogen Storage in Salt Caverns in Lambton County, Southern Ontario, Canada
by Ling Li, Shunde Yin and Zhizhang Wang
Mining 2024, 4(3), 530-545; https://doi.org/10.3390/mining4030030 (registering DOI) - 26 Jul 2024
Viewed by 204
Abstract
Underground hydrogen storage (UHS) is considered to solve the intermittency problem of renewable energy. A geological assessment indicated that the B unit of the Salina Group in Southern Ontario, Canada, is the most promising for UHS because it is the thickest and most [...] Read more.
Underground hydrogen storage (UHS) is considered to solve the intermittency problem of renewable energy. A geological assessment indicated that the B unit of the Salina Group in Southern Ontario, Canada, is the most promising for UHS because it is the thickest and most regionally extensive salt rock deposit. However, the comprehensive geological knowledge of potential sites and overall salt volume for UHS remains undiscovered. This paper collected 1112 wells’ logging data to assess the geologic potential for UHS in Lambton County. The geological characteristic analysis of the B unit was conducted using high-frequency stratigraphic sequences and logging interpretation. The internal lithologies and thicknesses of the B unit were interpreted from 426 available wells. The storage capacity of the salt caverns was calculated from simplified cylinder models. The results indicate that the B unit can be subdivided into three high-frequency sequences, denoted as the SQ1, SQ2, and SQ3 subunits. SQ1 corresponds to salt–limestone, SQ2 corresponds to bedded salt rocks, and SQ3 corresponds to massive salt rocks. Well sections and thickness maps indicate that the study area can be divided into two sub-areas along the Wilikesport, Oil Spring, and Watford line. To the northwest, unit B was thicker and deeper in terms of paleo-water depth, and to the southeast, less of the B unit was deposited on the paleo-highs. The main thicknesses in SQ1, SQ2, and SQ3 range from 20 to 30 m, 25 to 35 m, and 30 to 40 m, respectively. In conclusion, the best subunit for UHS is SQ3, with a secondary target being SQ2. The main factor impacting cavern storage capacity for the SQ2 subunit is high mud content, while for SQ3, it is the meters-thick anhydrite developed towards the base of the unit. The available underground storage volume of the salt caverns in the B unit is 9.10 × 106 m3. At the standard state, the working gas volume is 557.80 × 106 m3. The favorable area for UHS is the western part surrounded by Wallaceburg, Oil Spring, and Watford. The thickness distribution of the B unit is the combined result of paleo-topography, sea-level changes, and tectonic movement in Lambton. The geological storage capacity of the salt caverns exhibits significant potential. Full article
Show Figures

Figure 1

13 pages, 3144 KiB  
Article
Functional Characterization of JcSWEET12 and JcSWEET17a from Physic Nut
by Pingzhi Wu, Youting Wu, Zhu Yu, Huawu Jiang, Guojiang Wu and Yaping Chen
Int. J. Mol. Sci. 2024, 25(15), 8183; https://doi.org/10.3390/ijms25158183 - 26 Jul 2024
Viewed by 142
Abstract
Physic nut (Jatropha curcas L.) has attracted extensive attention because of its fast growth, easy reproduction, tolerance to barren conditions, and high oil content of seeds. SWEET (Sugar Will Eventually be Exported Transporter) family genes contribute to regulating the distribution of carbohydrates [...] Read more.
Physic nut (Jatropha curcas L.) has attracted extensive attention because of its fast growth, easy reproduction, tolerance to barren conditions, and high oil content of seeds. SWEET (Sugar Will Eventually be Exported Transporter) family genes contribute to regulating the distribution of carbohydrates in plants and have great potential in improving yield and stress tolerance. In this study, we performed a functional analysis of the homology of these genes from physic nut, JcSWEET12 and JcSWEET17a. Subcellular localization indicated that the JcSWEET12 protein is localized on the plasma membrane and the JcSWEET17a protein on the vacuolar membrane. The overexpression of JcSWEET12 (OE12) and JcSWEET17a (OE17a) in Arabidopsis leads to late and early flowering, respectively, compared to the wild-type plants. The transgenic OE12 seedlings, but not OE17a, exhibit increased salt tolerance. In addition, OE12 plants attain greater plant height and greater shoot dry weight than the wild-type plants at maturity. Together, our results indicate that JcSWEET12 and JcSWEET17a play different roles in the regulation of flowering time and salt stress response, providing a novel genetic resource for future improvement in physic nut and other plants. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

19 pages, 885 KiB  
Article
The Influence of Nitrogen and Sulfur Fertilization on Oil Quality and Seed Meal in Different Genotypes of Winter Oilseed Rape (Brassica napus L.)
by Stanisław Spasibionek, Franciszek Wielebski, Alina Liersch and Magdalena Walkowiak
Agriculture 2024, 14(8), 1232; https://doi.org/10.3390/agriculture14081232 - 26 Jul 2024
Viewed by 221
Abstract
Adequate nitrogen (N) and sulfur (S) fertilization of oilseed rape crops is necessary to obtain good-quality oil and post-extraction rapeseed meal. The aim of this study was to determine the effect of different doses of N fertilization (100, 160 and 220 kg ha [...] Read more.
Adequate nitrogen (N) and sulfur (S) fertilization of oilseed rape crops is necessary to obtain good-quality oil and post-extraction rapeseed meal. The aim of this study was to determine the effect of different doses of N fertilization (100, 160 and 220 kg ha−1) and S (0, 30, 60 and 90 kg ha−1) on the value of seeds of three winter oilseed rape genotypes. Two winter oilseed rape genotypes obtained by mutagenesis (cultivar Polka and breeding genotype PN440) were characterized by changed fatty acid profile. The cultivar Polka, type HO (high oleic), had a high content of oleic acid (C18:1, 78.0%) and the breeding genotype PN440, type HOLL (high-oleic and low-linolenic), had a high content of oleic acid (C18:1, 75.0%) and a low content of linolenic acid (C18:3, 3.0%). We also used the canola type of winter oilseed rape cultivar, Monolit. The analysed winter oilseed rape genotypes responded similarly to the N and S fertilization factors with regard to the content of crude fat and total protein in the seeds and the composition of fatty acids in the oil. N fertilization increased the content of glucosinolates (GLS-alkenyl, indole and total) in seeds, whereas S application decreased the content of saturated fatty acids (stearic acid-C18:0) in oil and increased the content of alkenyl and total glucosinolates (GLSs) in seeds. A significant interaction between N and S was observed for crude-fat and total-protein content. This study suggests that ensuring an adequate supply of both nitrogen and sulfur in the soil is essential for optimizing meal and oil quality in different types of winter oilseed rape cultivars. Proper management of these nutrients can lead to improved oil content and overall crop performance. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

17 pages, 15080 KiB  
Article
Increasing the Strength and Impact Toughness of Carbon Steel Using a Nanosized Eutectoid Resulting from Time-Controlled Quenching
by Michail Brykov, Dariusz Mierzwiński, Vasily Efremenko, Vasyl’ Girzhon, Vadim Shalomeev, Oleksandr V. Shyrokov, Ivan Petryshynets, Olexandr Klymov and Oleksii Kapustyan
Materials 2024, 17(15), 3696; https://doi.org/10.3390/ma17153696 - 26 Jul 2024
Viewed by 196
Abstract
High-carbon steels are normally used as tool materials. The use of such steels for construction is limited due to their increased brittleness and poor weldability. However, it appears that high-carbon steels possess certain hidden reserves for enhanced plasticity and strength if properly heat-treated. [...] Read more.
High-carbon steels are normally used as tool materials. The use of such steels for construction is limited due to their increased brittleness and poor weldability. However, it appears that high-carbon steels possess certain hidden reserves for enhanced plasticity and strength if properly heat-treated. An unconventional heat treatment was applied to carbon eutectoid steel (0.8 wt.% C) in order to increase its strength and impact toughness simultaneously. Samples for tensile and impact testing were held at 800 °C for different time ranges from 3 min to 9 min with subsequent cooling in oil. It was established that for each type of sample, an optimal holding time exists that is responsible for increased strength and high impact toughness. The hardness and microhardness levels of the surface and under-surface regions of the samples reached 390 HV after optimal heat treatment. An X-ray revealed a shift of the (211)α-peak to the lower 2-theta angles after heat treatment with the optimal holding time; this indicates an increase in carbon content in alpha solid solutions of approximately 0.12 wt.%. Thus, a nanostructured mixture of low-carbon martensite and thin cementite plates is formed in the under-surface region of carbon eutectoid steel after heat treatment, with a controlled holding time at the austenitizing temperature. Full article
Show Figures

Figure 1

14 pages, 3317 KiB  
Article
Supercritical CO2 Extraction of Natural Compounds from Capuchin (Tropaeolum majus) Leaves and Seeds
by Gabriel Corrêa, Michel Rubens dos Reis Souza, Eduardo Soares Nascimento, Thiago Rodrigues Bjerk, José Eduardo Goncalves, Cristiane Mengue Feniman Moritz, Otávio Akira Sakai, Erivaldo Antônio da Silva, Renivaldo José dos Santos, Edson Antônio da Silva, Lucio Cardozo-Filho, Andreia Fatima Zanette and Leandro Ferreira-Pinto
Processes 2024, 12(8), 1566; https://doi.org/10.3390/pr12081566 - 26 Jul 2024
Viewed by 227
Abstract
This study investigated the supercritical CO2 extraction of oils from capuchin (Tropaeolum majus) seeds (4.34% moisture content) and leaves (5.26% moisture content) and analyzed the effects of varying temperature and pressure conditions. The extraction yields were 3% for the seeds [...] Read more.
This study investigated the supercritical CO2 extraction of oils from capuchin (Tropaeolum majus) seeds (4.34% moisture content) and leaves (5.26% moisture content) and analyzed the effects of varying temperature and pressure conditions. The extraction yields were 3% for the seeds and 2% for the leaves. The seed extracts were rich in oleic, linoleic, and palmitic fatty acids, whereas the leaf extracts contained a high concentration of octacosanol (73.37%). Kinetic analysis revealed distinct mass transfer mechanisms during extraction, and the Sovová model effectively described the extraction kinetics, showing good agreement with experimental data (ADD% < 4%). An analysis of variance (ANOVA) demonstrated the impact of temperature and pressure on the yields, with temperature being the most influential factor. The experimental conditions ranged from 22 to 28 MPa and from 313.15 to 333.15 K. This study contributes to the understanding of capuchin oil extraction and its potential applications in various fields, owing to the presence of bioactive compounds. Full article
(This article belongs to the Special Issue Advanced Technologies for Vegetable Oil Extraction)
Show Figures

Figure 1

15 pages, 6640 KiB  
Article
Establishment of a Steatosis Model in LMH Cells, Chicken Embryo Hepatocytes, and Liver Tissues Based on a Mixture of Sodium Oleate and Palmitic Acid
by Wuchao Zhuang, Ziwei Chen, Xin Shu, Jilong Zhang, Runbang Zhu, Manman Shen, Jianfei Chen and Xiaotong Zheng
Animals 2024, 14(15), 2173; https://doi.org/10.3390/ani14152173 - 26 Jul 2024
Viewed by 199
Abstract
Research on hepatic steatosis in animal husbandry has been a prominent area of study. Developing an appropriate in vitro cellular steatosis model is crucial for comprehensively investigating the mechanisms involved in liver lipid deposition in poultry and for identifying potential interventions to address [...] Read more.
Research on hepatic steatosis in animal husbandry has been a prominent area of study. Developing an appropriate in vitro cellular steatosis model is crucial for comprehensively investigating the mechanisms involved in liver lipid deposition in poultry and for identifying potential interventions to address abnormalities in lipid metabolism. The research on the methods of in vitro liver steatosis in chickens, particularly the effects of different fat mixtures, is still lacking. In this study, LMH cells were utilized to investigate the effects of OA, SO, PA, SP, and their pairwise combinations on steatosis development, with the aim of identifying the optimal conditions for inducing steatosis. Analysis of triglyceride (TG) content in LMH cells revealed that OA and SP had limited efficacy in increasing TG content, while a combination of SO and PA in a 1:2 ratio exhibited the highest TG content. Moreover, Oil Red O staining results in LMH cells demonstrated that the combination treatment had a more pronounced induction effect compared to 0.375 mM SO. Additionally, RNA-seq analysis showed that 0.375 mM SO significantly influenced the expression of genes associated with fatty acid metabolism compared to the control group, whereas the combination of SO and PA led to an enrichment of key GO terms associated with programmed cell death. These findings suggest that varying conditions of cellular steatosis could lead to distinct disruptions in gene expression. The optimal conditions for inducing steatosis in LMH cells were also tested on chicken embryonic liver cells and embryos. TG detection and Oil Red O staining assays showed that the combination of SO and PA successfully induced steatosis. However, the gene expression pattern differed from that of LMH cells. This study lays the foundations for further investigations into avian hepatic steatosis. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

7 pages, 258 KiB  
Proceeding Paper
Bioactive Potential of Milk Thistle (Sylibum marianum) Seeds and Applicability of Its Edible Oil in Food Processing
by Anis Chikhoune, Aicha Ghazi and Fahima Adjadj
Biol. Life Sci. Forum 2024, 36(1), 2; https://doi.org/10.3390/blsf2024036002 - 26 Jul 2024
Viewed by 96
Abstract
This study aims to explore the potential of Algerian milk thistle (Silybum marianum) seeds for food application. Solid–liquid extraction and Soxhlet extraction methods were employed to obtain both aqueous and fatty fractions using different solvents. Spectrophotometry was used to assess the [...] Read more.
This study aims to explore the potential of Algerian milk thistle (Silybum marianum) seeds for food application. Solid–liquid extraction and Soxhlet extraction methods were employed to obtain both aqueous and fatty fractions using different solvents. Spectrophotometry was used to assess the content of bioactive compounds and pigments, while gas chromatography–mass spectrometry (GC-MS) analyzed the fatty acid composition. Additionally, the oxidative stability of the plant oil was evaluated using the Rancimat test. The results indicated a moisture content of 0.779% and a plant oil extraction yield of 0.278%. The polyphenol content in the oil was measured at 142.66 mg/100 g. The choice of solvent significantly impacted the content of bioactive compounds, with the highest values observed in the 80% methanol extract for total polyphenols, the aqueous extract for total flavonoids, and the ethanol extract for reducing power. Furthermore, the present study quantified pigments including chlorophyll, carotenoids, anthocyanins, and carotenoids. GC-MS analysis revealed a diverse range of fatty acids typical of edible oils, including essential fatty acids from the ω3, ω6, and ω9 series. The Rancimat test indicated an oxidation resistance of 14.65 h. Overall, the findings suggest that Silybum marianum holds promise as an edible oil source rich in antioxidants, micronutrients, and essential fatty acids. Full article
13 pages, 18172 KiB  
Article
Genome-Wide Association and RNA-Seq Analyses Reveal a Potential Candidate Gene Related to Oil Content in Soybean Seeds
by Hongchang Jia, Dezhi Han, Xiaofei Yan, Lei Zhang, Jili Liang and Wencheng Lu
Int. J. Mol. Sci. 2024, 25(15), 8134; https://doi.org/10.3390/ijms25158134 - 25 Jul 2024
Viewed by 378
Abstract
Soybean is a crucial crop globally, serving as a significant source of unsaturated fatty acids and protein in the human diet. However, further enhancements are required for the related genes that regulate soybean oil synthesis. In this study, 155 soybean germplasms were cultivated [...] Read more.
Soybean is a crucial crop globally, serving as a significant source of unsaturated fatty acids and protein in the human diet. However, further enhancements are required for the related genes that regulate soybean oil synthesis. In this study, 155 soybean germplasms were cultivated under three different environmental conditions, followed by phenotypic identification and genome-wide association analysis using simplified sequencing data. Genome-wide association analysis was performed using SLAF-seq data. A total of 36 QTLs were significantly associated with oil content (−log10(p) > 3). Out of the 36 QTLs associated with oil content, 27 exhibited genetic overlap with previously reported QTLs related to oil traits. Further transcriptome sequencing was performed on extreme high–low oil soybean varieties. Combined with transcriptome expression data, 22 candidate genes were identified (|log2FC| ≥ 3). Further haplotype analysis of the potential candidate genes showed that three potential candidate genes had excellent haplotypes, including Glyma.03G186200, Glyma.09G099500, and Glyma.18G248900. The identified loci harboring beneficial alleles and candidate genes likely contribute significantly to the molecular network’s underlying marker-assisted selection (MAS) and oil content. Full article
Show Figures

Figure 1

Back to TopTop