Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (632)

Search Parameters:
Keywords = optical infrared sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4345 KiB  
Article
Electrical, Optical and Thermal Properties of Ge-Si-Sn-O Thin Films
by Femina Vadakepurathu and Mukti Rana
Materials 2024, 17(13), 3318; https://doi.org/10.3390/ma17133318 - 4 Jul 2024
Viewed by 358
Abstract
This work evaluates the electrical, optical and thermal properties of Sn-doped GexSi1-xOy thin films for use as microbolometer sensing materials. The films were prepared using a combination of a radio frequency (RF) magnetron and direct current (DC) sputtering [...] Read more.
This work evaluates the electrical, optical and thermal properties of Sn-doped GexSi1-xOy thin films for use as microbolometer sensing materials. The films were prepared using a combination of a radio frequency (RF) magnetron and direct current (DC) sputtering using a Kurt J Leskar Proline PVD-75 series sputtering machine. Thin films were deposited in an O2+Ar environment at a chamber pressure of 4 mTorr. The thicknesses of the thin films were varied between 300 nm–1.2 µm by varying the deposition time. The morphology and microstructure of thin films were investigated by atomic force microscope (AFM) imaging and X-ray diffraction (XRD), while the atomic composition was determined using the energy dispersive spectroscopy (EDS) function of a scanning electron microscope. The thin film with an atomic composition of Ge0.45Si0.05Sn0.15O0.35 was found to be amorphous. We used the Arrhenius relationship to determine the activation energy as well as temperature coefficient of resistance of the thin films, which were found to be 0.2529 eV and −3.26%/K, respectively. The noise voltage power spectral density (PSD) of the film was analyzed using a Primarius—9812DX noise analyzer using frequencies ranging from 2 Hz to 10 kHz. The noise voltage PSD of the film was found to be 1.76 × 10−11 V2/Hz and 2.78 × 10−14 V2/Hz at 2 Hz and 1KHz frequencies, respectively. The optical constants were determined using the ellipsometry reflection data of samples using an RC2 and infrared (IR) VASE Mark-II ellipsometer from J A Woollam. Absorption, transmission and reflection data for a wavelength range of 900 nm–5000 nm were also determined. We also determined the optical constant values such as the real and imaginary parts of refractive index (n and k, respectively) and real and imaginary part of permittivity (ε1 and ε2, respectively) for wavelength ranges between 193 nm to 35 µm. An optical band gap of 1.03 eV was determined from absorption data and using Tauc’s equation. In addition, the thermal conductivity of the film was analyzed using a Linseis thin film analyzer employing the 3ω method. The thermal conductivity of a 780 nm thick film was found to be 0.38 Wm−1K−1 at 300 K. From the data, the Ge-Si-Sn-O alloy was found to be a promising material for use as a sensing material for microbolometers. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

13 pages, 1341 KiB  
Article
Optical Bistability of Graphene Incorporated into All-Superconducting Photonic Crystals
by Qun Xiao, Jun Liu, Dong Zhao, Miaomiao Zhao and Haiyang Hu
Symmetry 2024, 16(7), 803; https://doi.org/10.3390/sym16070803 - 26 Jun 2024
Viewed by 653
Abstract
We investigated optical bistability and its temperature dependence in a composite system composed of an all-superconducting photonic crystal and graphene. The photonic crystal, constructed from two types of superconducting sheets, and which is temperature-sensitive and can greatly localize the electric field, alternately supports [...] Read more.
We investigated optical bistability and its temperature dependence in a composite system composed of an all-superconducting photonic crystal and graphene. The photonic crystal, constructed from two types of superconducting sheets, and which is temperature-sensitive and can greatly localize the electric field, alternately supports a defect mode in a cryogenic environment. Graphene is located at the strongest site in the electric field, so the third-order nonlinearity of graphene is enhanced tremendously, and, subsequently, low thresholds of optical bistability are achieved in the near-infrared region. The thresholds of optical bistability and the interval between the upper and lower thresholds decrease with the increase in environmental temperature, while the bistable thresholds increase with the addition of the incident wavelength. Furthermore, the critical threshold triggering optical bistability can be modulated by environment temperature and the periodic number of photonic crystals as well. The simulations may be found to be applicable for all temperature-sensitive optical switches or sensors in cryogenic environments. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

13 pages, 1300 KiB  
Communication
High-Precision Low-Cost Mid-Infrared Photoacoustic Gas Sensor Using Aspherical Beam Shaping for Rapidly Measuring Greenhouse Gases
by Qingping Hu, Yan Ai, Chaotan Sima, Yu Sun, Zhiyu Feng, Tailin Li, Chen Tong, Xiaohong Cao, Wenzhe Wang, Runze Fan, Yufeng Pan and Ping Lu
Photonics 2024, 11(7), 590; https://doi.org/10.3390/photonics11070590 - 25 Jun 2024
Viewed by 591
Abstract
A high-precision low-cost mid-infrared photoacoustic sensor for greenhouse composite gases based on aspherical beam shaping is proposed and demonstrated. The assembled optical source module and luminous characteristics of infrared source are innovatively investigated and analyzed with aspherical beam shaping. The proposed aspherical-beam-shaping-technique could [...] Read more.
A high-precision low-cost mid-infrared photoacoustic sensor for greenhouse composite gases based on aspherical beam shaping is proposed and demonstrated. The assembled optical source module and luminous characteristics of infrared source are innovatively investigated and analyzed with aspherical beam shaping. The proposed aspherical-beam-shaping-technique could effectively reduce optical loss and enhance system sensitivity, achieving an effective power utilization ratio of a radiation source of 91% and sidewall noise ratio of 8.9%. Experiments verify the 1.7 times improvement in responsivity and 50% enhancement in minimum detection limit (MDL) on average. In terms of comprehensive greenhouse gas composites and with short integration time of 1 s, MDLs of CO2, CH4, N2O, NF3, SF6, PFC-14, and HFC-134a are 73 ppb, 267 ppb, 72 ppb, 81 ppb, 14 ppb, 9 ppb and 115 ppb, respectively. Furthermore, a 48 h continuous monitoring of H2O, CO2 and CH4 in the atmosphere is conducted and verifies the performance of the gas sensor. The developed sensor allows for the rapid route of low-cost and high-precision detection of multiple greenhouse gases. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
9 pages, 3671 KiB  
Article
Chromogenic Approach for Oxygen Sensing Using Tapered Coreless Optical Fibre Coated with Methylene Blue
by Rahul Kumar and Neil Wight
Metrology 2024, 4(2), 295-303; https://doi.org/10.3390/metrology4020018 - 12 Jun 2024
Viewed by 499
Abstract
In this paper, a Methylene Blue (MB)-coated tapered coreless (TCL) optical fibre sensor is proposed and experimentally investigated for oxygen sensing in the near-infrared (NIR) wavelength range of 993.5 nm. The effect of TCL diameter and MB sol–gel coating thickness on the sensitivity [...] Read more.
In this paper, a Methylene Blue (MB)-coated tapered coreless (TCL) optical fibre sensor is proposed and experimentally investigated for oxygen sensing in the near-infrared (NIR) wavelength range of 993.5 nm. The effect of TCL diameter and MB sol–gel coating thickness on the sensitivity of the sensor was also investigated. A maximum sensitivity of 0.19 dB/O2% in the oxygen concentration range of 0–37.5% was achieved for a TCL fibre sensor with a 2 µm taper waist diameter and a 0.86 µm MB sol–gel coating thickness, with a response time of 4 min. The sensor provides reproducible results even after 7 days and is shown to be highly selective to oxygen compared to argon and ethanol at the same concentration. Full article
Show Figures

Figure 1

14 pages, 4547 KiB  
Article
Molding Process Retaining Gold Nanoparticle Assembly Structures during Transfer to a Polycarbonate Surface
by Philipp Zimmermann, Daniel Schletz, Marisa Hoffmann, Patrick T. Probst, Andreas Fery and Jürgen Nagel
Polymers 2024, 16(11), 1553; https://doi.org/10.3390/polym16111553 - 31 May 2024
Viewed by 358
Abstract
The immobilization of gold nanoparticle (AuNP) linear surface assemblies on polycarbonate (PC) melt surface via molding is investigated. The order of the particle assemblies is preserved during the molding process. The assemblies on PC exhibit plasmonic coupling features and dichroic properties. The structure [...] Read more.
The immobilization of gold nanoparticle (AuNP) linear surface assemblies on polycarbonate (PC) melt surface via molding is investigated. The order of the particle assemblies is preserved during the molding process. The assemblies on PC exhibit plasmonic coupling features and dichroic properties. The structure of the assemblies is quantified based on Scanning Electron Microscopy (SEM) and image analysis data using an orientational order parameter. The transfer process from mold to melt shows high structural fidelity. The order parameter of around 0.98 reflects the orientation of the lines and remains unaffected, independent of the injection direction of the melt relative to the particle lines. This is discussed in the frame of fountain flow during injection molding. The particles were permanently fixed and withstood the injection molding process, detachment of the substrate, and extraction in boiling ethanol. The plasmonic particles coupled strongly within the dense nanoparticle lines to produce anisotropic optical properties, as quantified by dichroic ratios of 0.28 and 0.52 using ultraviolet–visible–near-infrared (UV–Vis–NIR) spectroscopy. AuNP line assemblies on a polymer surface may be a basis for plasmonic devices like surface-enhanced Raman scattering (SERS) sensors or a precursor for nanowires. Their embedding via injection molding constitutes an important link between particle-self-assembly approaches for optically functional surfaces and polymer processing techniques. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

12 pages, 6850 KiB  
Article
Temperature Dependency of Insect’s Wingbeat Frequencies: An Empirical Approach to Temperature Correction
by Topu Saha, Adrien P. Genoud, Jung H. Park and Benjamin P. Thomas
Insects 2024, 15(5), 342; https://doi.org/10.3390/insects15050342 - 10 May 2024
Viewed by 960
Abstract
This study examines the relationship between the wingbeat frequency of flying insects and ambient temperature, leveraging data from over 302,000 insect observations obtained using a near-infrared optical sensor during an eight-month field experiment. By measuring the wingbeat frequency as well as wing and [...] Read more.
This study examines the relationship between the wingbeat frequency of flying insects and ambient temperature, leveraging data from over 302,000 insect observations obtained using a near-infrared optical sensor during an eight-month field experiment. By measuring the wingbeat frequency as well as wing and body optical cross-sections of each insect in conjunction with the ambient temperature, we identified five clusters of insects and analyzed how their average wingbeat frequencies evolved over temperatures ranging from 10 °C to 38 °C. Our findings reveal a positive correlation between temperature and wingbeat frequency, with a more pronounced increase observed at higher wingbeat frequencies. Frequencies increased on average by 2.02 Hz/°C at 50 Hz, and up to 9.63 Hz/°C at 525 Hz, and a general model is proposed. This model offers a valuable tool for correcting wingbeat frequencies with temperature, enhancing the accuracy of insect clustering by optical and acoustic sensors. While this approach does not account for species-specific responses to temperature changes, our research provides a general insight, based on all species present during the field experiment, into the intricate dynamics of insect flight behavior in relation to environmental factors. Full article
(This article belongs to the Special Issue Breakthrough Technologies for Future Entomology)
Show Figures

Figure 1

16 pages, 2880 KiB  
Article
Customizable Presentation Attack Detection for Improved Resilience of Biometric Applications Using Near-Infrared Skin Detection
by Tobias Scheer, Markus Rohde, Ralph Breithaupt, Norbert Jung and Robert Lange
Sensors 2024, 24(8), 2389; https://doi.org/10.3390/s24082389 - 9 Apr 2024
Viewed by 630
Abstract
Due to their user-friendliness and reliability, biometric systems have taken a central role in everyday digital identity management for all kinds of private, financial and governmental applications with increasing security requirements. A central security aspect of unsupervised biometric authentication systems is the presentation [...] Read more.
Due to their user-friendliness and reliability, biometric systems have taken a central role in everyday digital identity management for all kinds of private, financial and governmental applications with increasing security requirements. A central security aspect of unsupervised biometric authentication systems is the presentation attack detection (PAD) mechanism, which defines the robustness to fake or altered biometric features. Artifacts like photos, artificial fingers, face masks and fake iris contact lenses are a general security threat for all biometric modalities. The Biometric Evaluation Center of the Institute of Safety and Security Research (ISF) at the University of Applied Sciences Bonn-Rhein-Sieg has specialized in the development of a near-infrared (NIR)-based contact-less detection technology that can distinguish between human skin and most artifact materials. This technology is highly adaptable and has already been successfully integrated into fingerprint scanners, face recognition devices and hand vein scanners. In this work, we introduce a cutting-edge, miniaturized near-infrared presentation attack detection (NIR-PAD) device. It includes an innovative signal processing chain and an integrated distance measurement feature to boost both reliability and resilience. We detail the device’s modular configuration and conceptual decisions, highlighting its suitability as a versatile platform for sensor fusion and seamless integration into future biometric systems. This paper elucidates the technological foundations and conceptual framework of the NIR-PAD reference platform, alongside an exploration of its potential applications and prospective enhancements. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

33 pages, 13700 KiB  
Review
Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures
by Sneha Verma, Akhilesh Kumar Pathak and B. M. Azizur Rahman
Micromachines 2024, 15(4), 502; https://doi.org/10.3390/mi15040502 - 6 Apr 2024
Cited by 1 | Viewed by 985
Abstract
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light–matter interactions. Metals, semiconductors, and 2D materials [...] Read more.
Surface plasmons, continuous and cumulative electron vibrations confined to metal-dielectric interfaces, play a pivotal role in aggregating optical fields and energies on nanostructures. This confinement exploits the intrinsic subwavelength nature of their spatial profile, significantly enhancing light–matter interactions. Metals, semiconductors, and 2D materials exhibit plasmonic resonances at diverse wavelengths, spanning from ultraviolet (UV) to far infrared, dictated by their unique properties and structures. Surface plasmons offer a platform for various light–matter interaction mechanisms, capitalizing on the orders-of-magnitude enhancement of the electromagnetic field within plasmonic structures. This enhancement has been substantiated through theoretical, computational, and experimental studies. In this comprehensive review, we delve into the plasmon-enhanced processes on metallic and metamaterial-based sensors, considering factors such as geometrical influences, resonating wavelengths, chemical properties, and computational methods. Our exploration extends to practical applications, encompassing localized surface plasmon resonance (LSPR)-based planar waveguides, polymer-based biochip sensors, and LSPR-based fiber sensors. Ultimately, we aim to provide insights and guidelines for the development of next-generation, high-performance plasmonic technological devices. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

16 pages, 3421 KiB  
Article
Non-Invasive Alcohol Concentration Measurement Using a Spectroscopic Module: Outlook for the Development of a Drunk Driving Prevention System
by Yechan Cho, Wonjune Lee, Heock Sin, Suseong Oh, Kyo Chang Choi and Jae-Hoon Jun
Sensors 2024, 24(7), 2252; https://doi.org/10.3390/s24072252 - 1 Apr 2024
Viewed by 1095
Abstract
Alcohol acts as a central nervous system depressant and falls under the category of psychoactive drugs. It has the potential to impair vital bodily functions, including cognitive alertness, muscle coordination, and induce fatigue. Taking the wheel after consuming alcohol can lead to delayed [...] Read more.
Alcohol acts as a central nervous system depressant and falls under the category of psychoactive drugs. It has the potential to impair vital bodily functions, including cognitive alertness, muscle coordination, and induce fatigue. Taking the wheel after consuming alcohol can lead to delayed responses in emergency situations and increases the likelihood of collisions with obstacles or suddenly appearing objects. Statistically, drivers under the influence of alcohol are seven times more likely to cause accidents compared to sober individuals. Various techniques and methods for alcohol measurement have been developed. The widely used breathalyzer, which requires direct contact with the mouth, raises concerns about hygiene. Methods like chromatography require skilled examiners, while semiconductor sensors exhibit instability in sensitivity over measurement time and has a short lifespan, posing structural challenges. Non-dispersive infrared analyzers face structural limitations, and in-vehicle air detection methods are susceptible to external influences, necessitating periodic calibration. Despite existing research and technologies, there remain several limitations, including sensitivity to external factors such as temperature, humidity, hygiene consideration, and the requirement for periodic calibration. Hence, there is a demand for a novel technology that can address these shortcomings. This study delved into the near-infrared wavelength range to investigate optimal wavelengths for non-invasively measuring blood alcohol concentration. Furthermore, we conducted an analysis of the optical characteristics of biological substances, integrated these data into a mathematical model, and demonstrated that alcohol concentration can be accurately sensed using the first-order modeling equation at the optimal wavelength. The goal is to minimize user infection and hygiene issues through a non-destructive and non-invasive method, while applying a compact spectrometer sensor suitable for button-type ignition devices in vehicles. Anticipated applications of this study encompass diverse industrial sectors, including the development of non-invasive ignition button-based alcohol prevention systems, surgeon’s alcohol consumption status in the operating room, screening heavy equipment operators for alcohol use, and detecting alcohol use in close proximity to hazardous machinery within factories. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

14 pages, 3712 KiB  
Article
Theoretical Evaluation of Fluorinated Resazurin Derivatives for In Vivo Applications
by Amílcar Duque-Prata, Carlos Serpa and Pedro J. S. B. Caridade
Molecules 2024, 29(7), 1507; https://doi.org/10.3390/molecules29071507 - 28 Mar 2024
Viewed by 616
Abstract
Primarily owing to the pronounced fluorescence exhibited by its reduced form, resazurin (also known as alamarBlue®) is widely employed as a redox sensor to assess cell viability in in vitrostudies. In an effort to broaden its applicability for in vivo studies, [...] Read more.
Primarily owing to the pronounced fluorescence exhibited by its reduced form, resazurin (also known as alamarBlue®) is widely employed as a redox sensor to assess cell viability in in vitrostudies. In an effort to broaden its applicability for in vivo studies, molecular adjustments are necessary to align optical properties with the near-infrared imaging window while preserving redox properties. This study delves into the theoretical characterisation of a set of fluorinated resazurin derivatives proposed by Kachur et al., 2015 examining the influence of fluorination on structural and electrochemical properties. Assuming that the conductor-like polarisable continuum model mimics the solvent effect, the density functional level of theory combining M06-2X/6-311G* was used to calculate the redox potentials. Furthermore, (TD-)DFT calculations were performed with PBE0/def2-TZVP to evaluate nucleophilic characteristics, transition states for fluorination, relative energies, and fluorescence spectra. With the aim of exploring the potential of resazurin fluorinated derivatives as redox sensors tailored for in vivo applications, acid–base properties and partition coefficients were calculated. The theoretical characterisation has demonstrated its potential for designing novel molecules based on fundamental principles. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

16 pages, 2205 KiB  
Article
Structure–Property Relationships in PVDF/SrTiO3/CNT Nanocomposites for Optoelectronic and Solar Cell Applications
by Taha Abdel Mohaymen Taha, Sultan Saud Alanazi, Karam S. El-Nasser, Alhulw H. Alshammari and Ali Ismael
Polymers 2024, 16(6), 736; https://doi.org/10.3390/polym16060736 - 7 Mar 2024
Cited by 5 | Viewed by 1067
Abstract
The optical properties of polyvinylidene fluoride (PVDF) polymer nanocomposite films incorporating SrTiO3/carbon nanotubes (CNTs) as nanofillers are investigated. PVDF/SrTiO3/CNTs films were prepared by the solution casting technique. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) [...] Read more.
The optical properties of polyvinylidene fluoride (PVDF) polymer nanocomposite films incorporating SrTiO3/carbon nanotubes (CNTs) as nanofillers are investigated. PVDF/SrTiO3/CNTs films were prepared by the solution casting technique. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) analyses confirmed the incorporation of SrTiO3/CNTs into the PVDF matrix. The addition of nanofillers influenced the crystalline structure, morphology, and optical properties of the films. SEM images showed spherulite morphology, which is a spherical aggregate of crystalline polymer chains. The addition of a SrTiO3/CNTs nanofiller modified the polymer’s electronic structure, causing a variation in the energy gap. The addition of SrTiO3/CNTs at 0.1 wt% increased the band gap, refractive index, and nonlinear optical properties of the PVDF films. These improvements indicate the potential of these nanocomposite films in optoelectronic applications such as solar cells, image sensors, and organic light-emitting diodes. Full article
(This article belongs to the Special Issue Advances in Multifunctional Polymer-Based Nanocomposites II)
Show Figures

Figure 1

18 pages, 6734 KiB  
Article
Development of an Optical Sensor Using a Molecularly Imprinted Polymer as a Selective Extracting Agent for the Direct Quantification of Tartrazine in Real Water Samples
by Gerson A. Ruiz-Córdova, Jaime Vega-Chacón, Maria del Pilar Taboada Sotomayor, Juan C. Tuesta, Sabir Khan and Gino Picasso
Polymers 2024, 16(6), 733; https://doi.org/10.3390/polym16060733 - 7 Mar 2024
Viewed by 795
Abstract
This study presents a new optical sensor for tartrazine (TAR) quantification developed using a molecularly imprinted polymer (MIP) as the recognition element, with optical fiber serving as the supporting substrate. The fiber surface was functionalized with 3-(trimethoxysilyl)propyl methacrylate (MPS), and the fiber was [...] Read more.
This study presents a new optical sensor for tartrazine (TAR) quantification developed using a molecularly imprinted polymer (MIP) as the recognition element, with optical fiber serving as the supporting substrate. The fiber surface was functionalized with 3-(trimethoxysilyl)propyl methacrylate (MPS), and the fiber was coated with MIP using the precipitation polymerization method. The analysis of MIP immobilization on the functionalized optical fiber (FF) was conducted through the use of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Experimental parameters, such as contact time and fiber length, were adjusted in order to obtain the highest sensitive response signal for the functionalized optical fiber (FF-MIP). The fiber sensor, FF-MIP, exhibited a relatively higher response signal for tartrazine compared to other interfering dyes. The rapid and total desorption of the analyte from FF-MIP allowed the immediate reemployment of FF-MIP, which also presented an acceptable repeatability for the reflectance signal. The imprinting factors for the studied dyes were between 0.112 and 0.936 in front of TAR, 1.405, and selectivity factors were between 1.501 and 12.545, confirming the sensor selectivity. The FF-MIP sensor was successfully applied for tartrazine quantification in real water samples, where it yielded satisfactory results comparable to those of the HPLC reference method. Full article
(This article belongs to the Special Issue Polymer-Based Sensors and Actuators)
Show Figures

Graphical abstract

17 pages, 10836 KiB  
Article
Design of Mantis-Shrimp-Inspired Multifunctional Imaging Sensors with Simultaneous Spectrum and Polarization Detection Capability at a Wide Waveband
by Tianxin Wang, Shuai Wang, Bo Gao, Chenxi Li and Weixing Yu
Sensors 2024, 24(5), 1689; https://doi.org/10.3390/s24051689 - 6 Mar 2024
Viewed by 808
Abstract
The remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp’s unique visual [...] Read more.
The remarkable light perception abilities of the mantis shrimp, which span a broad spectrum ranging from 300 nm to 720 nm and include the detection of polarized light, serve as the inspiration for our exploration. Drawing insights from the mantis shrimp’s unique visual system, we propose the design of a multifunctional imaging sensor capable of concurrently detecting spectrum and polarization across a wide waveband. This sensor is able to show spectral imaging capability through the utilization of a 16-channel multi-waveband Fabry–Pérot (FP) resonator filter array. The design incorporates a composite thin film structure comprising metal and dielectric layers as the reflector of the resonant cavity. The resulting metal–dielectric composite film FP resonator extends the operating bandwidth to cover both visible and infrared regions, specifically spanning a broader range from 450 nm to 900 nm. Furthermore, within this operational bandwidth, the metal–dielectric composite film FP resonator demonstrates an average peak transmittance exceeding 60%, representing a notable improvement over the metallic resonator. Additionally, aluminum-based metallic grating arrays are incorporated beneath the FP filter array to capture polarization information. This innovative approach enables the simultaneous acquisition of spectrum and polarization information using a single sensor device. The outcomes of this research hold promise for advancing the development of high-performance, multifunctional optical sensors, thereby unlocking new possibilities in the field of optical information acquisition. Full article
(This article belongs to the Special Issue Nature Inspired Engineering: Biomimetic Sensors)
Show Figures

Figure 1

19 pages, 2830 KiB  
Review
Dielectric Waveguide-Based Sensors with Enhanced Evanescent Field: Unveiling the Dynamic Interaction with the Ambient Medium for Biosensing and Gas-Sensing Applications—A Review
by Muhammad A. Butt
Photonics 2024, 11(3), 198; https://doi.org/10.3390/photonics11030198 - 23 Feb 2024
Cited by 1 | Viewed by 1193
Abstract
Photonic sensors utilize light–matter interaction to detect physical parameters accurately and efficiently. They exploit the interaction between photons and matter, with light propagating through an optical waveguide, creating an evanescent field beyond its surface. This field interacts with the surrounding medium, enabling the [...] Read more.
Photonic sensors utilize light–matter interaction to detect physical parameters accurately and efficiently. They exploit the interaction between photons and matter, with light propagating through an optical waveguide, creating an evanescent field beyond its surface. This field interacts with the surrounding medium, enabling the sensitive detection of changes in the refractive index or nearby substances. By modulating light properties like intensity, wavelength, or phase, these sensors detect target substances or environmental changes. Advancements in this technology enhance sensitivity, selectivity, and miniaturization, making photonic sensors invaluable across industries. Their ability to facilitate sensitive, non-intrusive, and remote monitoring fosters the development of smart, connected systems. This overview delves into the material platforms and waveguide structures crucial for developing highly sensitive photonic devices tailored for gas and biosensing applications. It is emphasized that both the material platform and waveguide geometry significantly impact the sensitivity of these devices. For instance, utilizing a slot waveguide geometry on silicon-on-insulator substrates not only enhances sensitivity but also reduces the device’s footprint. This configuration proves particularly promising for applications in biosensing and gas sensing due to its superior performance characteristics. Full article
(This article belongs to the Special Issue Silicon Photonics Devices and Integrated Circuits)
Show Figures

Figure 1

28 pages, 24992 KiB  
Article
The Potential of Using SDGSAT-1 TIS Data to Identify Industrial Heat Sources in the Beijing–Tianjin–Hebei Region
by Yanmei Xie, Caihong Ma, Yindi Zhao, Dongmei Yan, Bo Cheng, Xiaolin Hou, Hongyu Chen, Bihong Fu and Guangtong Wan
Remote Sens. 2024, 16(5), 768; https://doi.org/10.3390/rs16050768 - 22 Feb 2024
Cited by 1 | Viewed by 961
Abstract
It is crucial to detect and classify industrial heat sources for sustainable industrial development. Sustainable Development Science Satellite 1 (SDGSAT-1) thermal infrared spectrometer (TIS) data were first introduced for detecting industrial heat source production areas to address the difficulty in identifying factories with [...] Read more.
It is crucial to detect and classify industrial heat sources for sustainable industrial development. Sustainable Development Science Satellite 1 (SDGSAT-1) thermal infrared spectrometer (TIS) data were first introduced for detecting industrial heat source production areas to address the difficulty in identifying factories with low combustion temperatures and small scales. In this study, a new industrial heat source identification and classification model using SDGSAT-1 TIS and Landsat 8/9 Operational Land Imager (OLI) data was proposed to improve the accuracy and granularity of industrial heat source recognition. First, multiple features (thermal and optical features) were extracted using SDGSAT-1 TIS and Landsat 8/9 OLI data. Second, an industrial heat source identification model based on a support vector machine (SVM) and multiple features was constructed. Then, industrial heat sources were generated and verified based on the topological correlation between the identification results of the production areas and Google Earth images. Finally, the industrial heat sources were classified into six categories based on point-of-interest (POI) data. The new model was applied to the Beijing–Tianjin–Hebei (BTH) region of China. The results showed the following: (1) Multiple features enhance the differentiation and identification accuracy between industrial heat source production areas and the background. (2) Compared to active-fire-point (ACF) data (375 m) and Landsat 8/9 thermal infrared sensor (TIRS) data (100 m), nighttime SDGSAT-1 TIS data (30 m) facilitate the more accurate detection of industrial heat source production areas. (3) Greater than 2~6 times more industrial heat sources were detected in the BTH region using our model than were reported by Ma and Liu. Some industrial heat sources with low heat emissions and small areas (53 thermal power plants) were detected for the first time using TIS data. (4) The production areas of cement plants exhibited the highest brightness temperatures, reaching 301.78 K, while thermal power plants exhibited the lowest brightness temperatures, averaging 277.31 K. The production areas and operational statuses of factories could be more accurately identified and monitored with the proposed approach than with previous methods. A new way to estimate the thermal and air pollution emissions of industrial enterprises is presented. Full article
(This article belongs to the Special Issue Advances in Thermal Infrared Remote Sensing II)
Show Figures

Figure 1

Back to TopTop