Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = oral swab

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1028 KiB  
Article
Susceptibility of Synanthropic Rodents (Mus musculus, Rattus norvegicus and Rattus rattus) to H5N1 Subtype High Pathogenicity Avian Influenza Viruses
by Tatsufumi Usui, Yukiko Uno, Kazuyuki Tanaka, Tsutomu Tanikawa and Tsuyoshi Yamaguchi
Pathogens 2024, 13(9), 764; https://doi.org/10.3390/pathogens13090764 - 5 Sep 2024
Viewed by 831
Abstract
Synanthropic wild rodents associated with agricultural operations may represent a risk path for transmission of high pathogenicity avian influenza viruses (HPAIVs) from wild birds to poultry birds. However, their susceptibility to HPAIVs remains unclear. In the present study, house mice (Mus musculus [...] Read more.
Synanthropic wild rodents associated with agricultural operations may represent a risk path for transmission of high pathogenicity avian influenza viruses (HPAIVs) from wild birds to poultry birds. However, their susceptibility to HPAIVs remains unclear. In the present study, house mice (Mus musculus), brown rats (Rattus norvegicus), and black rats (Rattus rattus) were experimentally exposed to H5N1 subtype HPAIVs to evaluate their vulnerability to infection. After intranasal inoculation with HA clade 2.2 and 2.3.2.1 H5N1 subtype HPAIVs, wild rodents did not show any clinical signs and survived for 10- and 12-day observation periods. Viruses were isolated from oral swabs for several days after inoculation, while little or no virus was detected in their feces or rectal swabs. In euthanized animals at 3 days post-inoculation, HPAIVs were primarily detected in respiratory tract tissues such as the nasal turbinates, trachea, and lungs. Serum HI antibodies were detected in HA clade 2.2 HPAIV-inoculated rodents. These results strongly suggest that synanthropic wild rodents are susceptible to infection of avian-origin H5N1 subtype HPAIVs and contribute to the virus ecosystem as replication-competent hosts. Detection of infectious viruses in oral swabs indicates that wild rodents exposed to HPAIVs could contaminate food, water, and the environment in poultry houses and play roles in the introduction and spread of HPAIVs in farms. Full article
(This article belongs to the Section Vaccines and Therapeutic Developments)
Show Figures

Figure 1

14 pages, 12365 KiB  
Article
In Vivo Study of Inoculation Approaches and Pathogenicity in African Swine Fever
by Qian Xu, Dongfan Li, Xiaoyu Chen, Xiaoli Liu, Hua Cao, Hui Wang, Haowei Wu, Tangyu Cheng, Wenhui Ren, Fengqin Xu, Qigai He, Xuexiang Yu and Wentao Li
Vet. Sci. 2024, 11(9), 403; https://doi.org/10.3390/vetsci11090403 - 1 Sep 2024
Viewed by 493
Abstract
African swine fever is an extremely infectious viral disease that can cause nearly 100% mortality in domestic pigs. In this study, we isolated an ASFV strain HB31A and characterized it using hemadsorption assay, immunofluorescence assay, and electron microscopy. We then performed animal experiments [...] Read more.
African swine fever is an extremely infectious viral disease that can cause nearly 100% mortality in domestic pigs. In this study, we isolated an ASFV strain HB31A and characterized it using hemadsorption assay, immunofluorescence assay, and electron microscopy. We then performed animal experiments on 20-day-old pigs through intramuscular and oronasal inoculations with HB31A. Pigs in the intramuscular group exhibited more consistent clinical disease, with an incubation period of 4.33 ± 0.47 days and a 100% mortality rate within 6.67 (±0.47) days post-inoculation (dpi). In contrast, the oronasal group experienced a longer course of disease, with an incubation period of 6.00 ± 0.82 days. Two out of three pigs in the oronasal group died at 8 and 10 dpi, while the surviving pig exhibited chronic disease and persistent infection, intermittently excreting ASFV through the oral, nasal, and rectal pathways. Virus DNA was found in oral, nasal, and rectal swabs at 1–3 dpi in the intramuscular group and at 3–5 dpi in the oronasal group. In summary, HB31A is highly lethal to domestic pigs, and field-infected pigs have the potential to develop non-lethal, chronic disease and persistent infection, with intermittent viral shedding, even when infected with a highly virulent strain. These findings offer a valuable understanding of the viral dynamics and pathogenicity of ASFV and highlight the difficulties in diagnosing, preventing, and controlling African swine fever. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Swine Viruses)
Show Figures

Graphical abstract

16 pages, 3406 KiB  
Article
Design, Immunogenicity and Preclinical Efficacy of the ChAdOx1.COVconsv12 Pan-Sarbecovirus T-Cell Vaccine
by Edmund G.-T. Wee, Sarah Kempster, Deborah Ferguson, Joanna Hall, Claire Ham, Susan Morris, Alison Crook, Sarah C. Gilbert, Bette Korber, Neil Almond and Tomáš Hanke
Vaccines 2024, 12(9), 965; https://doi.org/10.3390/vaccines12090965 - 26 Aug 2024
Viewed by 398
Abstract
During the COVID-19 pandemic, antibody-based vaccines targeting the SARS-CoV-2 spike glycoprotein were the focus for development because neutralizing antibodies were associated with protection against the SARS-CoV-2 infection pre-clinically and in humans. While deploying these spike-based vaccines saved millions of lives worldwide, it has [...] Read more.
During the COVID-19 pandemic, antibody-based vaccines targeting the SARS-CoV-2 spike glycoprotein were the focus for development because neutralizing antibodies were associated with protection against the SARS-CoV-2 infection pre-clinically and in humans. While deploying these spike-based vaccines saved millions of lives worldwide, it has become clear that the immunological mechanisms of protection against severe disease are multifaceted and involve non-neutralizing antibody components. Here, we describe a novel pan-sarbecovirus T-cell vaccine, ChAdOx1.COVconsv12, designed to complement and broaden the protection of spike vaccines. The vaccine immunogen COVconsv12 employs the two regions in the viral proteome most conserved among sarbecoviruses, which are delivered by replication-deficient vector ChAdOx1. It directs T cells towards epitopes shared among sarbecoviruses including evolving SARS-CoV-2 variants. Here, we show that ChAdOx1.COVconsv12 induced broad T-cell responses in the BALB/c and C57BL/6 mice. In the Syrian hamster challenge model, ChAdOx1.COVconsv12 alone did not protect against the SARS-CoV-2 infection, but when co-administered with 1/50th of the ChAdOx1 nCoV-19 spike vaccine protective dose, faster recovery and lower oral swab viral load were observed. Induction of CD8+ T cells may decrease COVID-19 severity and extend the T-cell response coverage of variants to match the known (and as yet unknown) members of the β-coronavirus family. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines: 2nd Edition)
Show Figures

Figure 1

12 pages, 2304 KiB  
Article
Rousettus aegyptiacus Fruit Bats Do Not Support Productive Replication of Cedar Virus upon Experimental Challenge
by Björn-Patrick Mohl, Sandra Diederich, Kerstin Fischer and Anne Balkema-Buschmann
Viruses 2024, 16(9), 1359; https://doi.org/10.3390/v16091359 - 26 Aug 2024
Viewed by 638
Abstract
Cedar henipavirus (CedV), which was isolated from the urine of pteropodid bats in Australia, belongs to the genus Henipavirus in the family of Paramyxoviridae. It is closely related to the Hendra virus (HeV) and Nipah virus (NiV), which have been classified at [...] Read more.
Cedar henipavirus (CedV), which was isolated from the urine of pteropodid bats in Australia, belongs to the genus Henipavirus in the family of Paramyxoviridae. It is closely related to the Hendra virus (HeV) and Nipah virus (NiV), which have been classified at the highest biosafety level (BSL4) due to their high pathogenicity for humans. Meanwhile, CedV is apathogenic for humans and animals. As such, it is often used as a model virus for the highly pathogenic henipaviruses HeV and NiV. In this study, we challenged eight Rousettus aegyptiacus fruit bats of different age groups with CedV in order to assess their age-dependent susceptibility to a CedV infection. Upon intranasal inoculation, none of the animals developed clinical signs, and only trace amounts of viral RNA were detectable at 2 days post-inoculation in the upper respiratory tract and the kidney as well as in oral and anal swab samples. Continuous monitoring of the body temperature and locomotion activity of four animals, however, indicated minor alterations in the challenged animals, which would have remained unnoticed otherwise. Full article
(This article belongs to the Special Issue Emerging Zoonotic Paramyxoviruses)
Show Figures

Figure 1

7 pages, 1991 KiB  
Case Report
Application of Metagenomics Sequencing in a Patient with Dementia: A New Case Report
by Maria Minelli, Federico Anaclerio, Dario Calisi, Marco Onofrj, Ivana Antonucci, Valentina Gatta and Liborio Stuppia
Genes 2024, 15(8), 1089; https://doi.org/10.3390/genes15081089 - 18 Aug 2024
Viewed by 523
Abstract
(1) Background: The study of the microbiome is crucial for its role in major systemic diseases, in particular the oral and gut microbiota. In recent years, the study of microorganisms correlated, for example, with neurodegenerative disease has increased the prospect of a possible [...] Read more.
(1) Background: The study of the microbiome is crucial for its role in major systemic diseases, in particular the oral and gut microbiota. In recent years, the study of microorganisms correlated, for example, with neurodegenerative disease has increased the prospect of a possible link between gut microbiota and the brain. Here, we report a new case concerning a patient who was initially evaluated genetically for dementia and late-onset dyskinesia, and later tested with 16S metagenomics sequencing. (2) Methods: Starting from a buccal swab, we extracted bacterial DNA and then we performed NGS metagenomics sequencing based on the amplification of the hypervariable regions of the 16S rRNA gene in bacteria. (3) Results: The sequencing revealed the presence of the Spirochaetes phylum, a pathogenic bacterium generally known to be capable of migrating to the Central Nervous System. (4) Conclusions: Oral infections, as our results suggest, could be possible contributing factors to various neurodegenerative conditions. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

14 pages, 1292 KiB  
Article
The Effects of Aspirin Intervention on Inflammation-Associated Lingual Bacteria: A Pilot Study from a Randomized Clinical Trial
by Guillaume C. Onyeaghala, Shweta Sharma, Mosunmoluwa Oyenuga, Christopher M. Staley, Ginger L. Milne, Ryan T. Demmer, Aasma Shaukat, Bharat Thyagarajan, Robert J. Straka, Timothy R. Church and Anna E. Prizment
Microorganisms 2024, 12(8), 1609; https://doi.org/10.3390/microorganisms12081609 - 7 Aug 2024
Viewed by 566
Abstract
Several bacterial taxa enriched in inflammatory bowel diseases and colorectal cancer (CRC) are found in the oral cavity. We conducted a pilot study nested within a six-week aspirin intervention in a randomized placebo-controlled trial to test their response to aspirin intervention. Fifty healthy [...] Read more.
Several bacterial taxa enriched in inflammatory bowel diseases and colorectal cancer (CRC) are found in the oral cavity. We conducted a pilot study nested within a six-week aspirin intervention in a randomized placebo-controlled trial to test their response to aspirin intervention. Fifty healthy subjects, 50–75 years old, were randomized to receive 325 mg aspirin (n = 30) or placebo (n = 20) orally once daily for six weeks. Oral tongue swabs were collected at baseline and week six. We estimated the association between aspirin use and the temporal changes in the relative abundance of pre-specified genus level taxa from pre- to post-treatment. The temporal change in relative abundance differed for eight genus level taxa between the aspirin and placebo groups. In the aspirin group, there were significant increases in the relative abundances of Neisseria, Streptococcus, Actinomyces, and Rothia and significant decreases in Prevotella, Veillonella, Fusobacterium, and Porphyromonas relative to placebo. The log ratio of Neisseria to Fusobacterium declined more in the aspirin group than placebo, signaling a potential marker associated with aspirin intervention. These preliminary findings should be validated using metagenomic sequencing and may guide future studies on the role of aspirin on taxa in various oral ecological niches. Full article
(This article belongs to the Special Issue Gut Microbiome in Homeostasis and Disease, 2nd Edition)
Show Figures

Figure 1

15 pages, 2344 KiB  
Article
A Validated Method for the Simultaneous Determination of Oxytocin and Cortisol in Human Saliva
by Elisa Polledri, Rosa Mercadante, Laura Campo and Silvia Fustinoni
Separations 2024, 11(8), 240; https://doi.org/10.3390/separations11080240 - 6 Aug 2024
Viewed by 436
Abstract
Oxytocin and cortisol (OXY and CORT) are hormones related to stress, cognitive, and social behaviors. Their detection is relevant to epidemiological studies aimed at investigating the effects of stressor factors on human life. The aim of this study was to develop and validate [...] Read more.
Oxytocin and cortisol (OXY and CORT) are hormones related to stress, cognitive, and social behaviors. Their detection is relevant to epidemiological studies aimed at investigating the effects of stressor factors on human life. The aim of this study was to develop and validate an assay for the measurement of OXY and CORT in saliva samples using liquid chromatography/tandem mass spectrometry (LC-MS/MS) in the presence of deuterated analogs. A 500 mL aliquot of oral fluid, obtained by the centrifugation of a chewed swab, was purified by solid-phase extraction. Analytes were then separated using C18 reversed-phase chromatography, subjected to positive electrospray ionization, and then quantified using a triple-quadrupole mass detector in multiple-reaction monitoring mode. The limits of quantification and the linear dynamic ranges were 2.0 × 10−3 and 0.5 nmol/L, and up to 1.0 × 10−1 and 20 nmol/L for OXY and CORT, respectively. Inter- and intra-run precision, expressed as relative standard deviation, was <7%, and accuracy was within 93–104% of the theoretical concentrations. The evaluation of matrix effects showed that the use of internal standards controlled sources of bias. The high sensitivity of the method allowed the quantification of OXY and CORT in the salivary samples of both adults and children: levels of CORT ranged from 0.6 to 18.5 nmol/L, while OXY levels were two orders of magnitude lower (from 1.7 × 10−3 to 1.1 × 10−2 nmol/L). To our knowledge, this is the first method that can analyze, in the same chromatographic run, both hormones in saliva samples. Full article
(This article belongs to the Section Bioanalysis/Clinical Analysis)
Show Figures

Figure 1

15 pages, 2026 KiB  
Article
Salivary Transcriptome and Mitochondrial Analysis of Autism Spectrum Disorder Children Compared to Healthy Controls
by Mark Cannon, Ryan Toma, Sri Ganeshan, Emmery de Jesus Alvarez Varela, Momchilo Vuyisich and Guruduth Banavar
NeuroSci 2024, 5(3), 276-290; https://doi.org/10.3390/neurosci5030022 - 6 Aug 2024
Viewed by 1237
Abstract
Autism rates have been reported to be increasing rapidly in industrialized societies. The pathology most often combines neurological symptoms associated with language and social impairments with gastrointestinal symptoms. This study aimed to measure differences in oral metatranscriptome and mitochondrial health between ASD children [...] Read more.
Autism rates have been reported to be increasing rapidly in industrialized societies. The pathology most often combines neurological symptoms associated with language and social impairments with gastrointestinal symptoms. This study aimed to measure differences in oral metatranscriptome and mitochondrial health between ASD children and neurotypical USA and Colombia (“Blue Zone”) children. In addition, this study aimed to determine whether using prebiotics and probiotics would change the oral microbiome and mitochondrial health of ASD children. Buccal swabs and saliva samples were obtained from 30 autistic individuals (USA) at three intervals: prior to intervention, post-prebiotic, and post-probiotic. In addition, a subject component who were neurotypical, which included individuals from the USA (30) and Colombia (30), had buccal swabbing and salivary sampling performed for metatranscriptomic and mitochondrial comparison. Significant differences were observed in the temporal data, demonstrating shifts that interventions with probiotics and polyols may have precipitated. Particular bacterial strains were significantly more prevalent in the autism group, including a strain that reduced neurotransmitter levels via enzymatic degradation. This supports the hypothesis that the microbiome may influence the occurrence and degree of autism. Verbal skills increased in six of the 30 ASD subjects following xylitol and three more after probiotic supplementation, according to both parental reports and the subjects’ healthcare providers. Full article
Show Figures

Figure 1

10 pages, 225 KiB  
Communication
Postmortem Sampling in Piglet Populations: Unveiling Specimens Accuracy for Porcine Reproductive and Respiratory Syndrome Detection
by Mariana Kikuti, Claudio Marcello Melini, Xiaomei Yue, Marie Culhane and Cesar A. Corzo
Pathogens 2024, 13(8), 649; https://doi.org/10.3390/pathogens13080649 - 2 Aug 2024
Viewed by 693
Abstract
Specimens collected from dead pigs are a welfare-friendly and cost-effective active surveillance. This study aimed to evaluate the accuracy of different postmortem specimens from dead piglets for disease detection, using PRRSV as an example. Three farrow-to-wean farms undergoing PRRSV elimination were conveniently selected. [...] Read more.
Specimens collected from dead pigs are a welfare-friendly and cost-effective active surveillance. This study aimed to evaluate the accuracy of different postmortem specimens from dead piglets for disease detection, using PRRSV as an example. Three farrow-to-wean farms undergoing PRRSV elimination were conveniently selected. Samples were collected at approximately 8- and 20-weeks post-outbreak. Postmortem specimens included nasal (NS), oral (OS), and rectal (RS) swabs, tongue-tip fluids (TTF), superficial inguinal lymph nodes (SIL), and intracardiac blood. These were tested individually for PRRSV by RT-PCR. Sensitivity, specificity, negative and positive predictive values, and agreement of postmortem specimens were calculated using intracardiac sera as the gold standard. OS and SIL had the best overall performance, with sensitivities of 94.6–100%, specificities of 83.9–85.1%, and negative predictive values of 97.3–100%. TTF had high sensitivity (92.2%) but low specificity (53.9%) and positive predictive value (48.3%). While challenges in meeting sampling targets due to variable pre-weaning mortality were noted, PRRS was detected in all postmortem specimens. OS and NS showed promising results for disease monitoring, though TTF, despite their sensitivity, had lower specificity, making them less suitable for individual infection assessment but useful for assessing environmental contamination. Full article
17 pages, 4591 KiB  
Article
Effects of Mint Oils on the Human Oral Microbiome: A Pilot Study
by Samar M. Abdelrahman, Manar El Samak, Lamis M. F. El-Baz, Amro M. S. Hanora, Prabodh Satyal and Noura S. Dosoky
Microorganisms 2024, 12(8), 1538; https://doi.org/10.3390/microorganisms12081538 - 27 Jul 2024
Viewed by 959
Abstract
The oral microbiome is a diverse and complex ecosystem essential for maintaining oral and systemic health. Our study is the first to define the oral microbial community in Egyptian young adults and investigate the effects of natural antimicrobials on the oral microbiome. SuperMint [...] Read more.
The oral microbiome is a diverse and complex ecosystem essential for maintaining oral and systemic health. Our study is the first to define the oral microbial community in Egyptian young adults and investigate the effects of natural antimicrobials on the oral microbiome. SuperMint (SM) is a proprietary blend of peppermint, Japanese mint, bergamot mint, and spearmint essential oils encapsulated in a tiny soft beadlet. This work aimed to evaluate the effects of SM beadlets on the oral microbiome. This study recruited twenty healthy participants. A baseline investigation of the oral microbiome of the selected participants was performed by collecting saliva and swab samples before treatment. Treatment included chewing four SM beadlets twice a day for 7 days, and then, post-administration saliva and swab samples were collected at the end of treatment. The oral microbiome samples were analyzed by the high-throughput amplicon sequencing of 16S rRNA gene fragments, and the community composition was determined. The results showed that the abundance of some microbial genera and families decreased after using SM, including Prevotella, Streptococcus, Neisseria, and Haemophilus. However, some genera showed inconsistent patterns. We also found that the subject’s gender and SM usage were significantly associated with diverse microbial composition. The results suggest that SM treatment decreased the abundance of several bacteria associated with halitosis and periodontal diseases, such as Actinomyces and Streptococcus. Furthermore, Corynebacterium species increased and Streptococcus decreased after SM usage. More research is needed to fully understand the antimicrobial effects of mint oils and their potential applications in maintaining good oral health. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

12 pages, 1773 KiB  
Article
The Development of a Multivalent Capripoxvirus-Vectored Vaccine Candidate to Protect against Sheeppox, Goatpox, Peste des Petits Ruminants, and Rift Valley Fever
by Hani Boshra, Graham A. D. Blyth, Thang Truong, Andrea Kroeker, Pravesh Kara, Arshad Mather, David Wallace and Shawn Babiuk
Vaccines 2024, 12(7), 805; https://doi.org/10.3390/vaccines12070805 - 20 Jul 2024
Viewed by 2196
Abstract
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy [...] Read more.
Capripoxviruses are the causative agents of sheeppox, goatpox, and lumpy skin disease (LSD) in cattle, which cause economic losses to the livestock industry in Africa and Asia. Capripoxviruses are currently controlled using several live attenuated vaccines. It was previously demonstrated that a lumpy skin disease virus (LSDV) field isolate from Warmbaths (WB) South Africa, ORF 005 (IL-10) gene-deleted virus (LSDV WB005KO), was able to protect sheep and goats against sheeppox and goatpox. Subsequently, genes encoding the protective antigens for peste des petits ruminants (PPR) and Rift Valley fever (RVF) viruses have been inserted in the LSDV WB005KO construct in three different antigen forms (native, secreted, and fusion). These three multivalent vaccine candidates were evaluated for protection against PPR using a single immunization of 104 TCID50 in sheep. The vaccine candidates with the native and secreted antigens protected sheep against PPR clinical disease and decreased viral shedding, as detected using real-time RT-PCR in oral and nasal swabs. An anamnestic antibody response, measured using PPR virus-neutralizing antibody response production, was observed in sheep following infection. The vaccine candidates with the antigens expressed in their native form were evaluated for protection against RVF using a single immunization with doses of 104 or 105 TCID50 in sheep and goats. Following RVF virus infection, sheep and goats were protected against clinical disease and no viremia was detected in serum compared to control animals, where viremia was detected one day following infection. Sheep and goats developed RVFV-neutralizing antibodies prior to infection, and the antibody responses increased following infection. These results demonstrate that an LSD virus-vectored vaccine candidate can be used in sheep and goats to protect against multiple viral infections. Full article
(This article belongs to the Special Issue Animal Virus Infection, Immunity and Vaccines)
Show Figures

Figure 1

7 pages, 244 KiB  
Brief Report
The Oral Cavity—Another Reservoir of Antimicrobial-Resistant Staphylococcus aureus?
by Marek Chmielewski, Oliwia Załachowska, Dominika Komandera, Adrian Albert, Maria Wierzbowska, Ewa Kwapisz, Marta Katkowska, Alina Gębska and Katarzyna Garbacz
Antibiotics 2024, 13(7), 649; https://doi.org/10.3390/antibiotics13070649 - 14 Jul 2024
Viewed by 839
Abstract
Staphylococcus aureus is one of the most common potentially pathogenic bacteria that may asymptomatically colonize many sites of healthy carriers. Non-nasal carriage, especially in the oral cavity, and its role in transmitting antimicrobial-resistant S. aureus strains in the healthcare community, is poorly understood. [...] Read more.
Staphylococcus aureus is one of the most common potentially pathogenic bacteria that may asymptomatically colonize many sites of healthy carriers. Non-nasal carriage, especially in the oral cavity, and its role in transmitting antimicrobial-resistant S. aureus strains in the healthcare community, is poorly understood. This study aimed to assess the prevalence and antimicrobial susceptibility of S. aureus in both oral and nasal cavities among preclinical dentistry students. A total of 264 oral and nasal swabs were taken from 132 participants, and all specimens were cultured using standard diagnostic procedures and antimicrobial susceptibility testing (EUCAST). The prevalence of S. aureus exclusively in the nasal (11.4%) or oral (9.1%) cavity was comparable, while concurrent oral and nasal carriage was present in 27.3% of participants. Although antibiotic resistance rates observed in both oral and nasal isolates were similar (ranging from 2.7% to 95.5%), 16.7% of carriers exhibited distinct antibiotic resistance profiles between oral and nasal isolates. Three (2.7%) methicillin-resistant S. aureus (MRSA) were isolated from the mouth and nose but multidrug resistance (27.3%) was more frequent in the oral than in the nasal isolates: 34% and 21.1%, respectively. This study demonstrated that preclinical dentistry students have a similar rate of oral S. aureus carriage as the nasal carriage rate, and that the oral cavity can be colonized by antimicrobial-resistant strains that do not originate from the nose. Consequently, the oral cavity seems to be an unjustly overlooked body site in screening for S. aureus carriage. Full article
17 pages, 2061 KiB  
Article
Molecular Genetic Analysis of Perioperative Colonization by Infection-Related Microorganisms in Patients Receiving Intraoral Microvascular Grafts
by Henriette Louise Moellmann, Katharina Kommer, Nadia Karnatz, Klaus Pfeffer, Birgit Henrich and Majeed Rana
J. Clin. Med. 2024, 13(14), 4103; https://doi.org/10.3390/jcm13144103 - 13 Jul 2024
Viewed by 749
Abstract
Background/Objectives: In oral and maxillofacial surgery, the reconstruction of defects often involves the transfer of skin tissue into the oral cavity utilizing microvascular grafts. This study investigates postoperative changes in microbial colonization following intraoral microvascular transplantation, as well as potential influencing factors. [...] Read more.
Background/Objectives: In oral and maxillofacial surgery, the reconstruction of defects often involves the transfer of skin tissue into the oral cavity utilizing microvascular grafts. This study investigates postoperative changes in microbial colonization following intraoral microvascular transplantation, as well as potential influencing factors. Methods: In 37 patients undergoing intraoral reconstructions, pre- and postoperative swabs were taken from the donor and recipient regions to quantify the seven selected marker bacteria using TaqMan PCRs. Patient-specific factors and clinical data were also recorded. Results: The infection-associated Acinetobacter baumannii tended to decrease postoperatively, while the infectious pathogens Pseudomonas aeruginosa, Enterococcus faecalis and the family of Enterobacteriaceae showed a postoperative increase without being directly associated with a clinical infection. Streptococcus mitis showed a significant postoperative decrease on buccal mucosa and increase on the graft surface (oral dysbiosis) and was significantly reduced or displaced by other bacteria (e.g., Mycoplasma salivarium, positive selection) when treated with ampicillin/sulbactam. Conclusions: The cutaneous microbiome of the graft adapts to the local intraoral environment. Postoperative shifts in oral bacterial colonization and an increase in infection-relevant bacteria were observed. These perioperative changes in colonization are also influenced by the administration of ampicillin/sulbactam. Consequently, single doses of antibiotics appear to be more beneficial compared to longer-term preventive use. Full article
Show Figures

Figure 1

14 pages, 1945 KiB  
Article
Whole-Genome Deep Sequencing of the Healthy Adult Nasal Microbiome
by Mark Cannon, Gustavo Ferrer, Mari Tesch and Matthew Schipma
Microorganisms 2024, 12(7), 1407; https://doi.org/10.3390/microorganisms12071407 - 12 Jul 2024
Viewed by 1607
Abstract
This study aimed to determine shifts in microbial populations regarding richness and diversity from the daily use of a popular over-the-counter nasal spray. In addition, the finding of nasal commensal bacterial species that overlap with the oral microbiome may prove to be potential [...] Read more.
This study aimed to determine shifts in microbial populations regarding richness and diversity from the daily use of a popular over-the-counter nasal spray. In addition, the finding of nasal commensal bacterial species that overlap with the oral microbiome may prove to be potential probiotics for the “gateway microbiomes”. Nasal swab samples were obtained before and after using the most popular over-the-counter (OTC) nasal spray in 10 participants aged 18–48. All participants were healthy volunteers with no significant medical histories. The participants were randomly assigned a number by randomizing software and consisted of five men and five women. The sampling consisted of placing a nasal swab atraumatically into the nasal cavity. The samples were preserved and sent to Northwestern University Sequencing Center for whole-genome deep sequencing. After 21 days of OTC nasal spray use twice daily, the participants returned for further nasal microbiome sampling. The microbial analysis included all bacteria, archaea, viruses, molds, and yeasts via deep sequencing for species analysis. The Northwestern University Sequencing Center utilized artificial intelligence analysis to determine shifts in species and strains following nasal spray use that resulted in changes in diversity and richness. Full article
(This article belongs to the Special Issue Bioinformatics and Omic Data Analysis in Microbial Research)
Show Figures

Figure 1

13 pages, 2810 KiB  
Article
Buccal Swab Samples from Japanese Brown Cattle Fed with Limonite Reveal Altered Rumen Microbiome
by Kentaro Harakawa, Shinpei Kawarai, Kirill Kryukov, So Nakagawa, Shigeharu Moriya and Kazuhiko Imakawa
Animals 2024, 14(13), 1968; https://doi.org/10.3390/ani14131968 - 3 Jul 2024
Viewed by 694
Abstract
The areas of the Mount Aso grasslands in Kumamoto, Japan, are the primary location for the breeding of the Kumamoto strain of Japanese Brown cattle (JBRK). Although Aso limonite, deposited by volcanic ash and magma, has been commonly fed to pregnant JBRK in [...] Read more.
The areas of the Mount Aso grasslands in Kumamoto, Japan, are the primary location for the breeding of the Kumamoto strain of Japanese Brown cattle (JBRK). Although Aso limonite, deposited by volcanic ash and magma, has been commonly fed to pregnant JBRK in this area, the mechanisms of its salutary effects on pregnant JBRK have not yet been elucidated. Approximately 100 days before the expected day of calf delivery, seven JBRK (four supplemented with limonite and three controls without limonite) were assigned to this study, from which a buccal swab was collected at the highest rumination every 30 days for 90 days. DNA extracted from these swabs was then analyzed using a 16S rRNA gene amplicon sequence analysis. Statistically significant differences between the two groups were discovered through beta-diversity analysis, though results from alpha-diversity analysis were inconclusive. The microbiota identified were classified into six clusters, and three of the main clusters were core-rumen bacteria, primarily cellulose digestion in cluster 1, oral bacteria in cluster 2, and non-core-rumen bacteria in cluster 3. In the limonite group, core-rumen bacteria decreased while non-core-rumen bacteria increased, suggesting that limonite feeding alters rumen microbiota, particularly activation of non-core-rumen microbiota. Full article
Show Figures

Figure 1

Back to TopTop