Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (84,891)

Search Parameters:
Keywords = oxidation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 769 KiB  
Article
Diabetes Mellitus and Gynecological and Inflammation Disorders Increased the Risk of Pregnancy Loss in a Population Study
by Chun-Gu Cheng, Sheng-Hua Su, Wu-Chien Chien, Ryan Chen, Chi-Hsiang Chung and Chun-An Cheng
Life 2024, 14(7), 903; https://doi.org/10.3390/life14070903 (registering DOI) - 19 Jul 2024
Abstract
(1) Background: Diabetes mellitus (DM) induces oxidative stress and inflammation with negative effect on pregnancy outcomes. This study aimed to determine whether DM increases the risk of pregnancy loss and to identify other potential risk factors; (2) Methods: We identified female patients diagnosed [...] Read more.
(1) Background: Diabetes mellitus (DM) induces oxidative stress and inflammation with negative effect on pregnancy outcomes. This study aimed to determine whether DM increases the risk of pregnancy loss and to identify other potential risk factors; (2) Methods: We identified female patients diagnosed with DM from 2000–2015 in the Taiwanese National Health Insurance Research Database according to the International Classification of Diseases, Ninth Edition, Clinical Modification (ICD-9 CM) code 250. The event was pregnancy loss, defined as ICD-9 CM codes 630–639, which was tracked until 31 December 2015. The control group included 4-fold more non-DM female patients who were matched for age and disease severity. Multivariate Cox regression was employed to determine the risk factors associated with pregnancy loss; (3) Results: The hazard ratio (HR) for the risk of pregnancy loss due to DM was 1.407 (95% confidence interval: 1.099–1.801, p = 0.007), and the risk factors for older age, gynecological disorders and inflammation disorders were included. (4) Conclusions: The study concluded that women with DM have a greater risk of experiencing pregnancy loss. Healthcare providers should proactively manage and educate diabetic patients to reduce their risk of pregnancy loss. Understanding other probable risk factors can help in developing targeted interventions and support systems for women to improve pregnancy outcomes. Full article
(This article belongs to the Special Issue Obstetrics and Gynecology Medicine: Go From Bench to Bedside)
7 pages, 447 KiB  
Communication
Simulation of Modal Control of Metal Mode-Filtered Vertical-Cavity Surface-Emitting Laser
by Jingfei Mu, Yinli Zhou, Chao Chen, Xing Zhang, Jianwei Zhang, Tianjiao Liu, Zhuo Zhang, Yuehui Xu, Gaohui Yuan, Jiye Zhang, Yongqiang Ning and Lijun Wang
Sensors 2024, 24(14), 4700; https://doi.org/10.3390/s24144700 (registering DOI) - 19 Jul 2024
Abstract
In this study, a novel metal-dielectric film mode filter structure that can flexibly regulate the transverse mode inside vertical-cavity surface-emitting lasers(VCSELs)is proposed. The number, volume, and stability of transverse modes inside the VCSEL can be adjusted according to three key parameters—the oxide aperture, [...] Read more.
In this study, a novel metal-dielectric film mode filter structure that can flexibly regulate the transverse mode inside vertical-cavity surface-emitting lasers(VCSELs)is proposed. The number, volume, and stability of transverse modes inside the VCSEL can be adjusted according to three key parameters—the oxide aperture, the metal aperture, and the distance between the oxide aperture and the metal aperture—to form a flexible window, and a new parameter is defined to describe the mode identification. This study provides a complete simulation theory basis and calculation method, which is of great significance for the optical mode control in VCSELs. Full article
(This article belongs to the Section Optical Sensors)
14 pages, 29930 KiB  
Article
Improving Air Quality Prediction via Self-Supervision Masked Air Modeling
by Shuang Chen, Li He, Shinan Shen, Yan Zhang and Weichun Ma
Atmosphere 2024, 15(7), 856; https://doi.org/10.3390/atmos15070856 (registering DOI) - 19 Jul 2024
Abstract
Presently, the harm to human health created by air pollution has greatly drawn public attention, in particular, vehicle emissions including nitrogen oxides as well as particulate matter. How to predict air quality, e.g., pollutant concentration, efficiently and accurately is a core problem in [...] Read more.
Presently, the harm to human health created by air pollution has greatly drawn public attention, in particular, vehicle emissions including nitrogen oxides as well as particulate matter. How to predict air quality, e.g., pollutant concentration, efficiently and accurately is a core problem in environmental research. Developing a robust air quality predictive model has become an increasingly important task, holding practical significance in the formulation of effective control policies. Recently, deep learning has progressed significantly in air quality prediction. In this paper, we go one step further and present a neat scheme of masked autoencoders, termed as masked air modeling (MAM), for sequence data self-supervised learning, which addresses the challenges posed by missing data. Specifically, the front end of our pipeline integrates a WRF-CAMx numerical model, which can simulate the process of emission, diffusion, transformation, and removal of pollutants based on atmospheric physics and chemical reactions. Then, the predicted results of WRF-CAMx are concatenated into a time series, and fed into an asymmetric Transformer-based encoder–decoder architecture for pre-training via random masking. Finally, we fine-tune an additional regression network, based on the pre-trained encoder, to predict ozone (O3) concentration. Coupling these two designs enables us to consider the atmospheric physics and chemical reactions of pollutants while inheriting the long-range dependency modeling capabilities of the Transformer. The experimental results indicated that our approach effectively enhances the WRF-CAMx model’s predictive capabilities and outperforms pure supervised network solutions. Overall, using advanced self-supervision approaches, our work provides a novel perspective for further improving air quality forecasting, which allows us to increase the smartness and resilience of the air prediction systems. This is due to the fact that accurate prediction of air pollutant concentrations is essential for detecting pollution events and implementing effective response strategies, thereby promoting environmentally sustainable development. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
32 pages, 5115 KiB  
Article
Day/Night Power Generator Station: A New Power Generation Approach for Lunar and Martian Space Exploration
by Thomas F. Arciuolo, Miad Faezipour and Xingguo Xiong
Electronics 2024, 13(14), 2859; https://doi.org/10.3390/electronics13142859 - 19 Jul 2024
Viewed by 43
Abstract
In the not-too-distant future, humans will return to the Moon and step foot for the first time on Mars. Eventually, humanity will colonize these celestial bodies, where living and working will be commonplace. Energy is fundamental to all life. The energy that people [...] Read more.
In the not-too-distant future, humans will return to the Moon and step foot for the first time on Mars. Eventually, humanity will colonize these celestial bodies, where living and working will be commonplace. Energy is fundamental to all life. The energy that people use to sustain themselves on Earth, and in particular on these other worlds, is the integrated, safe production of electrical power, day and night. This paper proposes a radically new solution to this problem: Solar Tracking by day and a Solar Rechargeable Calcium Oxide Chemical Thermoelectric Reactor by night. Called the “Robotic End Effector for Lunar and Martian Geological Exploration of Space” (REEGES) Day/Night Power Generator Station, this form of thermoelectric power generation is mathematically modeled, simulation is performed, and a concept model design is demonstrated in this paper. The results of the presented simulation show the maximum total system output capability is 9.89 V, 6.66 A, and 65.9 W, with an operating time of up to 12 h, through a scalable design. This research provides instructions to the Space Research Community on a complete and novel development methodology for creating fully customized, configurable, safe, and reliable solar/thermoelectric day/night power generators, specifically meant for use on the Moon and Mars, using the Proportional-Integral-Derivative++ (PID++) Humanoid Motion Control Algorithm for its operation on a computationally lightweight microcontroller. Full article
(This article belongs to the Special Issue Feature Papers in Circuit and Signal Processing)
18 pages, 3342 KiB  
Article
Rice Growth and Leaf Physiology in Response to Four Levels of Continuous Drought Stress in Southern China
by Wenlong Zhang, Hong Shi, Shuo Cai, Qiaoling Guo, Yulong Dai, Haiyuan Wang, Shaoyuan Wan and Yizhe Yuan
Agronomy 2024, 14(7), 1579; https://doi.org/10.3390/agronomy14071579 - 19 Jul 2024
Viewed by 74
Abstract
Exploring the growth and physiological response mechanisms of rice under continuous drought stress circumstances can provide a significant scientific foundation and technological assistance for meeting drought difficulties, improving drought resistance and rice (Oryza sativa L.) output, and ensuring food security. In this [...] Read more.
Exploring the growth and physiological response mechanisms of rice under continuous drought stress circumstances can provide a significant scientific foundation and technological assistance for meeting drought difficulties, improving drought resistance and rice (Oryza sativa L.) output, and ensuring food security. In this study, a rice field experiment was conducted under a rain shelter with five different treatments set up: P1 (drought stress from tillering stage), P2 (drought stress from jointing–booting stage), P3 (drought stress from heading–flowering stage), P4 (drought stress from grain filling stage), and CK (adequate water management throughout the growth stage). Continuous drought stress from different growth stages with four levels (mild, medium, moderate, and severe). The results showed that the effects of different drought stress treatments on rice growth varied significantly. Compared with the CK treatment, plant height was reduced by 12.10%, 8.14%, 3.83%, and 1.06% in the P1, P2, P3, and P4 treatments, respectively, and the number of tillers was reduced by 23.83%, 18.91%, 13.47%, and 8.68%, respectively. With the increase in drought stress levels, SPAD values and Rubisco activity of rice leaf continued to decrease; SOD activity showed a decreasing trend, but the decreasing trend of POD and CAT activities was not significant, while MDA content showed an increasing trend. For yield components, continuous drought stress significantly reduced spike length of rice by an average of 3.5%, effective number of spikes by 18.9%, thousand grain weight by 3.7%, grain number per spike by 11.6%, and fruiting rate by 1.8%, respectively, compared to CK treatments during the growth period. In general, continuous drought stress during the early growth period affected the effective spike number and the grain number per spike. Continuous drought stress after the grain filling stage had the least effect on yield (17.62% of yield reduction), and water use efficiency (1.76 kg m−3) was much higher than other treatments. These researchers’ findings provide insight into how rice physiology and growth react to continuous drought stress, which is significant for agricultural operations. Full article
18 pages, 1916 KiB  
Article
The Effect of Combustion Phase According to the Premixed Ethanol Ratio Based on the Same Total Lower Heating Value on the Formation and Oxidation of Exhaust Emissions in a Reactivity-Controlled Compression Ignition Engine
by Se-Hun Min and Hyun-Kyu Suh
Fire 2024, 7(7), 258; https://doi.org/10.3390/fire7070258 - 19 Jul 2024
Viewed by 67
Abstract
A compression ignition engine generates power by using the auto-ignition characteristics of fuel injected into the cylinder. Although it has high fuel efficiency, it discharges a lot of exhaust emissions such as NOX and PM. Therefore, there is much ongoing research aiming [...] Read more.
A compression ignition engine generates power by using the auto-ignition characteristics of fuel injected into the cylinder. Although it has high fuel efficiency, it discharges a lot of exhaust emissions such as NOX and PM. Therefore, there is much ongoing research aiming to reduce the exhaust emissions by using the technologies applied in this regard, such as PCCI, HCCI, etc. However, these methods still discharge large exhaust emissions. The RCCI method, which combines the spark ignition method and compression ignition method, is attracting attention. So, in this work, the objective of this study is to numerically investigate the effect of combustion phase according to the premixed ethanol ratio based on the same total heating value in-cylinder by changing the initial air composition on the formation and oxidation of exhaust emissions in the RCCI engine. The heating value of the premixed ethanol ratio varied from 0% to 40% based on the same total lower heating value in-cylinder in steps of 10%. It was assumed that the ethanol introduced into the cylinder through the premixing chamber was evaporated, and the initial air composition in the cylinder was changed and set. It was revealed that when the premixed ratio based on the same total lower heating value was increased, the introduced fuel amount into the crevice volume with advancing the start of energizing timing was decreased, which increased the peak cylinder pressure. In addition, the ignition delay was also longer due to the low cylinder temperature by the evaporation latent heat of the ethanol, which reduced the compression loss, so the IMEP value was increased. The rich equivalence ratio had a narrow distribution in the cylinder, which caused a reduction in cylinder temperature, so the NO formation amount was reduced. The ISCO value increased the increase in premixed ethanol ratio based on the same total lower heating value in-cylinder because the flame propagation of ethanol by combustion of diesel did not work well, and the CO formed by combustion was slowly oxidized due to the cylinder’s low temperature as a result of the evaporation latent heat of ethanol. From these results, the optimal operating conditions for simultaneously reducing the exhaust emissions and improving the combustion performance were judged such that the start of energizing timing was BTDC 23 deg, and the premixed ethanol ratio based on the same total lower heating value in-cylinder was 40%. Full article
(This article belongs to the Special Issue Ignition Mechanism and Advanced Combustion Technology)
22 pages, 1436 KiB  
Article
Assessing PM2.5 Dynamics and Source Contributions in Southwestern China: Insights from Winter Haze Analysis
by Hui Guan, Ziyun Chen, Jing Tian and Huayun Xiao
Atmosphere 2024, 15(7), 855; https://doi.org/10.3390/atmos15070855 - 19 Jul 2024
Viewed by 66
Abstract
Despite enhancements in pollution control measures in southwestern China, detailed assessments of PM2.5 dynamics following the implementation of the Clean Air Action remain limited. This study explores the PM2.5 concentrations and their chemical compositions during the winter haze period of 2017 [...] Read more.
Despite enhancements in pollution control measures in southwestern China, detailed assessments of PM2.5 dynamics following the implementation of the Clean Air Action remain limited. This study explores the PM2.5 concentrations and their chemical compositions during the winter haze period of 2017 across four major urban centers—Chengdu, Chongqing, Guiyang, and Kunming. Significant variability in mean PM2.5 concentrations was observed: Chengdu (71.8 μg m−3) and Chongqing (53.3 μg m−3) recorded the highest levels, substantially exceeding national air quality standards, while Guiyang and Kunming reported lower concentrations, suggestive of comparatively milder pollution. The analysis revealed that sulfate, nitrate, and ammonium (collectively referred to as SNA) constituted a substantial portion of the PM2.5 mass—47.2% in Chengdu, 62.2% in Chongqing, 59.9% in Guiyang, and 32.0% in Kunming—highlighting the critical role of secondary aerosol formation. The ratio of NO3/SO42− and nitrogen oxidation ratio to sulfur oxidation ratio (NOR/SOR) indicate a significant transformation of NO2 under conditions of heavy pollution, with nitrate formation playing an increasingly central role in the haze dynamics, particularly in Chengdu and Chongqing. Utilizing PMF for source apportionment, in Chengdu, vehicle emissions were the predominant contributor, accounting for 33.1%. Chongqing showed a similar profile, with secondary aerosols constituting 36%, followed closely by vehicle emissions. In contrast, Guiyang’s PM2.5 burden was heavily influenced by coal combustion, which contributed 46.3%, reflecting the city’s strong industrial base. Kunming presented a more balanced source distribution. Back trajectory analysis further confirmed the regional transport of pollutants, illustrating the complex interplay between local and distant sources. These insights underscore the need for tailored, region-specific air quality management strategies in southwestern China, thereby enhancing our understanding of the multifaceted sources and dynamics of PM2.5 pollution amidst ongoing urban and industrial development. Full article
(This article belongs to the Special Issue Air Pollution in China (3rd Edition))
11 pages, 857 KiB  
Article
Hydrogen-Rich Gas Enhanced Sprint-Interval Performance: Metabolomic Insights into Underlying Mechanisms
by Gengxin Dong, Haiyan Liu, Yunji Chen, Dapeng Bao, Wentao Xu and Junhong Zhou
Nutrients 2024, 16(14), 2341; https://doi.org/10.3390/nu16142341 - 19 Jul 2024
Viewed by 86
Abstract
(1) Background: The diversity of blood biomarkers used to assess the metabolic mechanisms of hydrogen limits a comprehensive understanding of its effects on improving exercise performance. This study evaluated the impact of hydrogen-rich gas (HRG) on metabolites following sprint-interval exercise using metabolomics approaches, [...] Read more.
(1) Background: The diversity of blood biomarkers used to assess the metabolic mechanisms of hydrogen limits a comprehensive understanding of its effects on improving exercise performance. This study evaluated the impact of hydrogen-rich gas (HRG) on metabolites following sprint-interval exercise using metabolomics approaches, aiming to elucidate its underlying mechanisms of action. (2) Methods: Ten healthy adult males participated in the Wingate Sprint-interval test (SIT) following 60 min of HRG or placebo (air) inhalation. Venous blood samples were collected for metabolomic analysis both before and after gas inhalation and subsequent to completing the SIT. (3) Results: Compared with the placebo, HRG inhalation significantly improved mean power, fatigue index, and time to peak for the fourth sprint and significantly reduced the attenuation values of peak power, mean power, and time to peak between the first and fourth. Metabolomic analysis highlighted the significant upregulation of acetylcarnitine, propionyl-L-carnitine, hypoxanthine, and xanthine upon HRG inhalation, with enrichment pathway analysis suggesting that HRG may foster fat mobilization by enhancing coenzyme A synthesis, promoting glycerophospholipid metabolism, and suppressing insulin levels. (4) Conclusions: Inhaling HRG before an SIT enhances end-stage anaerobic sprint capabilities and mitigates fatigue. Metabolomic analysis suggests that HRG may enhance ATP recovery during interval stages by accelerating fat oxidation, providing increased energy replenishment for late-stage sprints. Full article
(This article belongs to the Section Sports Nutrition)
Show Figures

Figure 1

16 pages, 936 KiB  
Article
The Ubiquity of the Reaction of the Labile Iron Pool That Attenuates Peroxynitrite-Dependent Oxidation Intracellularly
by Gabriel Simonetti da Silva, Maria Beatriz Braghetto Hernandes and José Carlos Toledo Junior
Biomolecules 2024, 14(7), 871; https://doi.org/10.3390/biom14070871 - 19 Jul 2024
Viewed by 86
Abstract
Although the labile iron pool (LIP) biochemical identity remains a topic of debate, it serves as a universal homeostatically regulated and essential cellular iron source. The LIP plays crucial cellular roles, being the source of iron that is loaded into nascent apo-iron proteins, [...] Read more.
Although the labile iron pool (LIP) biochemical identity remains a topic of debate, it serves as a universal homeostatically regulated and essential cellular iron source. The LIP plays crucial cellular roles, being the source of iron that is loaded into nascent apo-iron proteins, a process akin to protein post-translational modification, and implicated in the programmed cell death mechanism known as ferroptosis. The LIP is also recognized for its reactivity with chelators, nitric oxide, and peroxides. Our recent investigations in a macrophage cell line revealed a reaction of the LIP with the oxidant peroxynitrite. In contrast to the LIP’s pro-oxidant interaction with hydrogen peroxide, this reaction is rapid and attenuates the peroxynitrite oxidative impact. In this study, we demonstrate the existence and antioxidant characteristic of the LIP and peroxynitrite reaction in various cell types. Beyond its potential role as a ubiquitous complementary or substitute protection system against peroxynitrite for cells, the LIP and peroxynitrite reaction may influence cellular iron homeostasis and ferroptosis by changing the LIP redox state and LIP binding properties and reactivity. Full article
(This article belongs to the Section Chemical Biology)
13 pages, 3433 KiB  
Article
Heated Aeration for Nitrite-Oxidizing Bacteria (NOB) Control in Anammox-Integrated Membrane-Aerated Biofilm Reactors (MABR)
by Natalia Shiu, Hui Guo and Younggy Kim
Environments 2024, 11(7), 155; https://doi.org/10.3390/environments11070155 - 19 Jul 2024
Viewed by 95
Abstract
Nutrient removal in conventional wastewater treatment systems is expensive due to the high aeration costs. An alternative method for effective and sustainable nitrogen removal in wastewater treatment is anaerobic ammonium oxidation (Anammox) implemented with other innovative technologies, such as membrane-aerated biofilm reactors (MABRs). [...] Read more.
Nutrient removal in conventional wastewater treatment systems is expensive due to the high aeration costs. An alternative method for effective and sustainable nitrogen removal in wastewater treatment is anaerobic ammonium oxidation (Anammox) implemented with other innovative technologies, such as membrane-aerated biofilm reactors (MABRs). A major challenge associated with the Anammox process is effective control of nitrite-oxidizing bacteria (NOB). High temperature operation in wastewater treatment systems can promote Anammox bacterial growth and inhibit NOB activity. This research aims to investigate the feasibility of integrating Anammox processes with a lab-scale MABR and to examine the effects of high temperature aeration supplied to MABR systems on Anammox bacterial growth and NOB suppression. Experimental results indicate that the membrane’s air permeability was a critical parameter for the successful operation of Anammox-integrated MABR systems due to its influence on the system’s dissolved oxygen concentration (0.41 ± 0.39 mg O2/L). The ammonia removal by AOB and Anammox bacteria was determined to be 7.53 mg N/L·d (76.5%) and 2.12 mg N/L·d (23.5%), respectively. High temperature aeration in MABRs with the Anammox process shows a promising potential for improving energy consumption and sustainable nitrogen removal in wastewater treatment systems. Full article
Show Figures

Graphical abstract

14 pages, 1032 KiB  
Article
Metabolic Shift in Porcine Spermatozoa during Sperm Capacitation-Induced Zinc Flux
by Tyler Weide, Kayla Mills, Ian Shofner, Matthew W. Breitzman and Karl Kerns
Int. J. Mol. Sci. 2024, 25(14), 7919; https://doi.org/10.3390/ijms25147919 - 19 Jul 2024
Viewed by 159
Abstract
Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes [...] Read more.
Mammalian spermatozoa rely on glycolysis and mitochondrial oxidative phosphorylation for energy leading up to fertilization. Sperm capacitation involves a series of well-regulated biochemical steps that are necessary to give spermatozoa the ability to fertilize the oocyte. Additionally, zinc ion (Zn2+) fluxes have recently been shown to occur during mammalian sperm capacitation. Semen from seven commercial boars was collected and analyzed using image-based flow cytometry before, after, and with the inclusion of 2 mM Zn2+ containing in vitro capacitation (IVC) media. Metabolites were extracted and analyzed via Gas Chromatography-Mass Spectrometry (GC-MS), identifying 175 metabolites, with 79 differentially abundant across treatments (p < 0.05). Non-capacitated samples showed high levels of respiration-associated metabolites including glucose, fructose, citric acid, and pyruvic acid. After 4 h IVC, these metabolites significantly decreased, while phosphate, lactic acid, and glucitol increased (p < 0.05). With zinc inclusion, we observed an increase in metabolites such as lactic acid, glucitol, glucose, fructose, myo-inositol, citric acid, and succinic acid, while saturated fatty acids including palmitic, dodecanoic, and myristic acid decreased compared to 4 h IVC, indicating regulatory shifts in metabolic pathways and fatty acid composition during capacitation. These findings underscore the importance of metabolic changes in improving artificial insemination and fertility treatments in livestock and humans. Full article
16 pages, 1678 KiB  
Article
Direct Epoxidation of Hexafluoropropene Using Molecular Oxygen over Cu-Impregnated HZSM-5 Zeolites
by Jie-Ming Huang, Jingning Guo, Chengmiao Xu, An Su, Ke-Jun Wu and Chao-Hong He
Processes 2024, 12(7), 1520; https://doi.org/10.3390/pr12071520 - 19 Jul 2024
Viewed by 96
Abstract
This study explores a novel method of directly epoxidizing hexafluoropropene with molecular oxygen under gaseous conditions using a Cu/HZSM-5 catalytic system (Cu/HZ). An in-depth investigation was conducted on the catalytic performance of Cu-based catalysts on various supports and Cu/HZ catalysts prepared under different [...] Read more.
This study explores a novel method of directly epoxidizing hexafluoropropene with molecular oxygen under gaseous conditions using a Cu/HZSM-5 catalytic system (Cu/HZ). An in-depth investigation was conducted on the catalytic performance of Cu-based catalysts on various supports and Cu/HZ catalysts prepared under different conditions. Cu/HZ catalysts exhibited better catalytic performance than other porous medium-supported Cu catalysts for the epoxidation of hexafluoropropene by molecular oxygen. The highest propylene oxide yield of 35.6% was achieved over the Cu/HZ catalyst prepared under conditions of 350 °C with a Cu loading of 1 wt%. By applying characterization techniques including XRD, BET, NH3-TPD, and XPS to different catalyst samples, the relationship between the interaction of Cu2+ and HZSM-5 and the reactivity of the catalyst was studied, thereby elucidating the influence of calcination temperature and loading on the reactivity. Finally, we further proposed the possible mechanism of how isolated Cu2+ and acid sites improve catalytic performance. Full article
24 pages, 960 KiB  
Review
A Comprehensive Review of Surface Ozone Variations in Several Indian Hotspots
by K. A. Keerthi Lakshmi, T. Nishanth, M. K. Satheesh Kumar and K. T. Valsaraj
Atmosphere 2024, 15(7), 852; https://doi.org/10.3390/atmos15070852 - 19 Jul 2024
Viewed by 77
Abstract
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately [...] Read more.
Ozone at ground level (O3) is an air pollutant that is formed from primary precursor gases like nitrogen oxides (NOx) and volatile organic compounds (VOCs). It plays a significant role as a precursor to highly reactive hydroxyl (OH) radicals, which ultimately influence the lifespan of various gases in the atmosphere. The elevated surface O3 levels resulting from anthropogenic activities have detrimental effects on both human health and agricultural productivity. This paper provides a comprehensive analysis of the variations in surface O3 levels across various regions in the Indian subcontinent, focusing on both spatial and temporal changes. The study is based on an in-depth review of literature spanning the last thirty years in India. Based on the findings of the latest study, the spatial distribution of surface O3 indicates a rise of approximately 50–70 ppbv during the summer and pre-monsoon periods in the northern region and Indo-Gangetic Plain. Moreover, elevated levels of surface O3 (40–70 ppbv) are observed during the pre-monsoon/summer season in the western, southern, and peninsular Indian regions. The investigation also underscores the ground-based observations of diurnal and seasonal alterations in surface O3 levels at two separate sites (rural and urban) in Kannur district, located in southern India, over a duration of nine years starting from January 2016. The O3 concentration exhibits an increasing trend of 7.91% (rural site) and 5.41% (urban site), ascribed to the rise in vehicular and industrial operations. This review also presents a succinct summary of O3 fluctuations during solar eclipses and nocturnal firework displays in the subcontinent. Full article
(This article belongs to the Special Issue Measurement and Variability of Atmospheric Ozone)
19 pages, 616 KiB  
Article
The Impact of Weight Loss on Inflammation, Oxidative Stress, and Mitochondrial Function in Subjects with Obesity
by Neus Bosch-Sierra, Carmen Grau-del Valle, Jonathan Hermenejildo, Alberto Hermo-Argibay, Juan Diego Salazar, Marta Garrido, Beatriz Navajas-Porras, Guillermo Sáez, Carlos Morillas and Celia Bañuls
Antioxidants 2024, 13(7), 870; https://doi.org/10.3390/antiox13070870 - 19 Jul 2024
Viewed by 78
Abstract
Inflammation, oxidative stress, and mitochondrial function are implicated in the development of obesity and its comorbidities. The purpose of this study was to assess the impact of weight loss through calorie restriction on the metabolic profile, inflammatory and oxidative stress parameters, and mitochondrial [...] Read more.
Inflammation, oxidative stress, and mitochondrial function are implicated in the development of obesity and its comorbidities. The purpose of this study was to assess the impact of weight loss through calorie restriction on the metabolic profile, inflammatory and oxidative stress parameters, and mitochondrial respiration in an obese population. A total of 109 subjects underwent two cycles of a very low-calorie diet alternated with a low-calorie diet (24 weeks). We analyzed biochemical and inflammatory parameters in serum, as well as oxidative stress markers, mRNA antioxidant gene expression, and mitochondrial respiration in peripheral blood mononuclear cells (PBMCs). After the intervention, there was an improvement in both insulin resistance and lipid profiles, including cholesterol subfractions. Weight loss produced a significant reduction in mitochondrial ROSs content and an increase in glutathione levels, coupled with an enhancement in the mRNA expression of antioxidant systems (SOD1, GSR, and CAT). In addition, a significant improvement in basal oxygen consumption, maximal respiration, and ATP production was observed. These findings demonstrate that moderate weight loss can improve insulin resistance, lipid profiles and subfractions, inflammatory and oxidative stress parameters, and mitochondrial respiration. Therefore, we can affirm that dietary intervention can simultaneously achieve significant weight loss and improve metabolic profile and mitochondrial function in obesity. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
12 pages, 1826 KiB  
Communication
Raman Study of Novel Nanostructured WO3 Thin Films Grown by Spray Deposition
by Andreea Gabriela Marina Popescu, Ioan Valentin Tudose, Cosmin Romanitan, Marian Popescu, Marina Manica, Paul Schiopu, Marian Vladescu, Mirela Petruta Suchea and Cristina Pachiu
Nanomaterials 2024, 14(14), 1227; https://doi.org/10.3390/nano14141227 - 19 Jul 2024
Viewed by 106
Abstract
The present communication reports on the effect of the sprayed solution volume variation (as a thickness variation element) on the detailed Raman spectroscopy for WO3 thin films with different thicknesses grown from precursor solutions with two different concentrations. Walls-like structured monoclinic WO [...] Read more.
The present communication reports on the effect of the sprayed solution volume variation (as a thickness variation element) on the detailed Raman spectroscopy for WO3 thin films with different thicknesses grown from precursor solutions with two different concentrations. Walls-like structured monoclinic WO3 thin films were obtained by the spray deposition method for further integration in gas sensors. A detailed analysis of the two series of samples shows that the increase in thickness strongly affects the films’ morphology, while their crystalline structure is only slightly affected. The Raman analysis contributes to refining the structural feature clarifications. It was observed that, for 0.05 M precursor concentration series, thinner films (lower volume) show less intense peaks, indicating more defects and lower crystallinity, while thicker films (higher volume) exhibit sharper and more intense peaks, suggesting improved crystallinity and structural order. For higher precursor concentration 0.1 M series, films at higher precursor concentrations show overall more intense and sharper peaks across all thicknesses, indicating higher crystallinity and fewer defects. Differences in peak intensity and presence reflect variations in film morphology and structural properties due to increased precursor concentration. Further studies are ongoing. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

Back to TopTop