Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (27,111)

Search Parameters:
Keywords = oxidative stress

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6010 KiB  
Article
Toxicity to the Male Reproductive System after Exposure to Polystyrene Nanoplastics: A Macrogenomic and Metabolomic Analysis
by Xue Zhang, Yueping Wu, Xufeng Fu, Shulan He, Liping Shi, Haiming Xu, Xiaojuan Shi, Yue Yang, Yongbin Zhu, Yanrong Wang, Hongyan Qiu, Hongmei Li and Jiangping Li
Toxics 2024, 12(8), 531; https://doi.org/10.3390/toxics12080531 (registering DOI) - 23 Jul 2024
Abstract
Nanoplastics (NPs) cause serious contamination of drinking water and potential damage to human health. This study aimed to investigate the effects of NPs with different particle sizes and concentrations on the reproductive function of male mice. In this study, free drinking water exposure [...] Read more.
Nanoplastics (NPs) cause serious contamination of drinking water and potential damage to human health. This study aimed to investigate the effects of NPs with different particle sizes and concentrations on the reproductive function of male mice. In this study, free drinking water exposure was used to expose male BALB/C mice to PS-NPs (20 nm, 200 nm, and 1000 nm) at 0.1 mg/L, 1 mg/L, and 5 mg/L for 4 months. The male reproductive function of the mice was assessed after NPs exposure, and fecal and blood samples were collected for macrogenomics and metabolomics. The results showed that PS-NPs resulted in mice with reduced testicular organ coefficients, decreased sperm quality, altered testicular tissue structure, disturbed sex hormone levels, and abnormal levels of inflammatory factors and oxidative stress. Furthermore, this study found that NP exposure affected the alteration of gut communities and metabolic pathways related to male reproduction, such as Clostridium and glutathione metabolism. Importantly, we found an effect of NP particle size on reproductive function. In the future, more attention should be paid to the smaller particle sizes of NPs. Full article
Show Figures

Figure 1

15 pages, 1997 KiB  
Article
Integrated Metagenomic and Metabolomics Profiling Reveals Key Gut Microbiota and Metabolites Associated with Weaning Stress in Piglets
by Xianrui Zheng, Liming Xu, Qingqing Tang, Kunpeng Shi, Ziyang Wang, Lisha Shi, Yueyun Ding, Zongjun Yin and Xiaodong Zhang
Genes 2024, 15(8), 970; https://doi.org/10.3390/genes15080970 (registering DOI) - 23 Jul 2024
Abstract
(1) Background: Weaning is a challenging and stressful event in the pig’s life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites [...] Read more.
(1) Background: Weaning is a challenging and stressful event in the pig’s life, which disrupts physiological balance and induces oxidative stress. Microbiota play a significant role during the weaning process in piglets. Therefore, this study aimed to investigate key gut microbiota and metabolites associated with weaning stress in piglets. (2) Methods: A total of ten newborn piglet littermates were randomly assigned to two groups: S (suckling normally) and W (weaned at 21 d; all euthanized at 23 d). Specimens of the cecum were dehydrated with ethanol, cleared with xylene, embedded in paraffin, and cut into 4 mm thick serial sections. After deparaffinization, the sections were stained with hematoxylin and eosin (H&E) for morphometric analysis. Cecal metagenomic and liver LC-MS-based metabolomics were employed in this study. Statistical comparisons were performed by a two-tailed Student’s t-test, and p < 0.05 indicated statistical significance. (3) Results: The results showed that weaning led to intestinal morphological damage in piglets. The intestinal villi of suckling piglets were intact, closely arranged in an orderly manner, and finger-shaped, with clear contours of columnar epithelial cells. In contrast, the intestines of weaned piglets showed villous atrophy and shedding, as well as mucosal bleeding. Metagenomics and metabolomics analyses showed significant differences in composition and function between suckling and weaned piglets. The W piglets showed a decrease and increase in the relative abundance of Bacteroidetes and Proteobacteria (p < 0.05), respectively. The core cecal flora in W piglets were Campylobacter and Clostridium, while those in S piglets were Prevotella and Lactobacillus. At the phylum level, the relative abundance of Bacteroidetes significantly decreased (p < 0.05) in weaned piglets, while Proteobacteria significantly increased (p < 0.05). Significant inter-group differences were observed in pathways and glycoside hydrolases in databases, such as the KEGG and CAZymes, including fructose and mannose metabolism, salmonella infection, antifolate resistance, GH135, GH16, GH32, and GH84. We identified 757 differential metabolites between the groups through metabolomic analyses—350 upregulated and 407 downregulated (screened in positive ion mode). In negative ion mode, 541 differential metabolites were identified, with 270 upregulated and 271 downregulated. Major differential metabolites included glycerophospholipids, histidine, nitrogen metabolism, glycine, serine, threonine, β-alanine, and primary bile acid biosynthesis. The significant differences in glycine, serine, and threonine metabolites may be potentially related to dysbiosis caused by weaning stress. Taken together, the identification of microbiome and metabolome signatures of suckling and weaned piglets has paved the way for developing health-promoting nutritional strategies, focusing on enhancing bacterial metabolite production in early life stages. Full article
(This article belongs to the Special Issue Advances in Pig Genetics and Breeding)
15 pages, 15619 KiB  
Article
A Global Identification of Protein Disulfide Isomerases from ‘duli’ Pear (Pyrus betulaefolia) and Their Expression Profiles under Salt Stress
by Hao Zhang, Yuyue Zhang, Kexin Cui, Chang Liu, Mengya Chen, Yufan Fu, Zhenjie Li, Hui Ma, Haixia Zhang, Baoxiu Qi and Jianfeng Xu
Genes 2024, 15(8), 968; https://doi.org/10.3390/genes15080968 (registering DOI) - 23 Jul 2024
Abstract
Protein disulfide isomerases (PDIs) and PDI-like proteins catalyze the oxidation and reduction in protein disulfide bonds, inhibit aggregation of misfolded proteins, and participate in isomerization and abiotic stress responses. The wild type ‘duli’ pear (Pyrus betulaefolia) is an important rootstock commonly [...] Read more.
Protein disulfide isomerases (PDIs) and PDI-like proteins catalyze the oxidation and reduction in protein disulfide bonds, inhibit aggregation of misfolded proteins, and participate in isomerization and abiotic stress responses. The wild type ‘duli’ pear (Pyrus betulaefolia) is an important rootstock commonly used for commercial pear tree grafting in northern China. In this study, we identified 24 PDI genes, named PbPDIs, from the genome of ‘duli’ pear. With 12 homologous gene pairs, these 24 PbPDIs distribute on 12 of its 17 chromosomes. Phylogenetic analysis placed the 24 PbPDIs into four clades and eleven groups. Collinearity analysis of the PDIs between P. betulaefolia, Arabidopsis thaliana, and Oryza sativa revealed that the PbPDIs of ‘duli’ pear show a strong collinear relationship with those from Arabidopsis, a dicot; but a weak collinear relationship with those from rice, a monocot. Quantitative RT-PCR analysis showed that most of the PbPDIs were upregulated by salt stress. Identification and expression analysis of ‘duli’ pear PbPDIs under salt stress conditions could provide useful information for further research in order to generate salt-resistant rootstock for pear grafting in the future. Full article
(This article belongs to the Special Issue Abiotic Stress in Plants: Molecular Genetics and Genomics)
31 pages, 1151 KiB  
Review
The Anticancer Effects and Therapeutic Potential of Kaempferol in Triple-Negative Breast Cancer
by Sukhmandeep Kaur, Patricia Mendonca and Karam F. A. Soliman
Nutrients 2024, 16(15), 2392; https://doi.org/10.3390/nu16152392 (registering DOI) - 23 Jul 2024
Viewed by 49
Abstract
Breast cancer is the second-leading cause of cancer death among women in the United States. Triple-negative breast cancer (TNBC), a subtype of breast cancer, is an aggressive phenotype that lacks estrogen (ER), progesterone (PR), and human epidermal growth (HER-2) receptors, which is challenging [...] Read more.
Breast cancer is the second-leading cause of cancer death among women in the United States. Triple-negative breast cancer (TNBC), a subtype of breast cancer, is an aggressive phenotype that lacks estrogen (ER), progesterone (PR), and human epidermal growth (HER-2) receptors, which is challenging to treat with standardized hormonal therapy. Kaempferol is a natural flavonoid with antioxidant, anti-inflammatory, neuroprotective, and anticancer effects. Besides anti-tumorigenic, antiproliferative, and apoptotic effects, kaempferol protects non-cancerous cells. Kaempferol showed anti-breast cancer effects by inducing DNA damage and increasing caspase 3, caspase 9, and pAMT expression, modifying ROS production by Nrf2 modulation, inducing apoptosis by increasing cleaved PARP and Bax and downregulating Bcl-2 expression, inducing cell cycle arrest at the G2/M phase; inhibiting immune evasion by modulating the JAK-STAT3 pathway; and inhibiting the angiogenic and metastatic potential of tumors by downregulating MMP-3 and MMP-9 levels. Kaempferol holds promise for boosting the efficacy of anticancer agents, complementing their effects, or reversing developed chemoresistance. Exploring novel TNBC molecular targets with kaempferol could elucidate its mechanisms and identify strategies to overcome limitations for clinical application. This review summarizes the latest research on kaempferol’s potential as an anti-TNBC agent, highlighting promising but underexplored molecular pathways and delivery challenges that warrant further investigation to achieve successful clinical translation. Full article
(This article belongs to the Special Issue Anticancer Activities of Dietary Phytochemicals)
14 pages, 521 KiB  
Article
Influence of Long-Term Soccer Training on the Fatty Acid Profile of the Platelet Membrane and Intra-Platelet Antioxidant Vitamins
by Víctor Toro-Román, Jesús Siquier-Coll, Ignacio Bartolomé, Marcos Maynar-Mariño and Francisco J. Grijota
Nutrients 2024, 16(15), 2391; https://doi.org/10.3390/nu16152391 (registering DOI) - 23 Jul 2024
Viewed by 55
Abstract
This research aimed to study the long-term effects of soccer training on platelet membrane fatty acid levels and antioxidant vitamins. Forty-four subjects divided into soccer players (SP; n = 22; 20.86 ± 0.36 years) and a control group (CG; n = 22; 21.23 [...] Read more.
This research aimed to study the long-term effects of soccer training on platelet membrane fatty acid levels and antioxidant vitamins. Forty-four subjects divided into soccer players (SP; n = 22; 20.86 ± 0.36 years) and a control group (CG; n = 22; 21.23 ± 0.49 years) participated in the study. The fatty acids of the platelet membrane, the rates of desaturation, lipid peroxidation indexes and intra-platelet levels of vitamins C and E were assessed. SP obtained lower values in polyunsaturated fatty acids 18:3:3 (alpha-linolenic acid), 20:5:3 (eicosapentaenoic acid) and 22:6:3 (docosahexaenoic acid) (p < 0.05). The desaturation index ∆5 was higher in SP (p < 0.05), and they had a higher lipid peroxidation index 20:4:6 (arachidonic acid)/16:0 (palmitic acid) (p < 0.05). Vitamin E and C platelet values were also higher in SP (p < 0.01). There were positive correlations in the ω6/ω3 index (p < 0.05), desaturation index ∆5 (p < 0.05), lipid peroxidation index 20:4:6/16:0 and intra-platelet vitamins E and C (p < 0.01) with the level of physical activity. In addition, there were inverse correlations in fatty acids 24:0 (lignoceric acid), 16:1 (palmitoleic acid), 20:3:6 (eicosadienoic acid) and 18:3:3 (alpha-linolenic acid) (p < 0.05) depending on the degree of physical activity. Regular long-term soccer training could modify the concentration of fatty acids such as 24:0, 16:1, 18:6, 20:3:6, 18:3:3:3, 20:5:3, 26:6:3 and ω3 PUFAs in the platelet membrane. Full article
61 pages, 6577 KiB  
Review
High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders
by Mohammad Vikas Ashraf, Sajid Khan, Surya Misri, Kailash S. Gaira, Sandeep Rawat, Balwant Rawat, M. A. Hannan Khan, Ali Asghar Shah, Mohd Asgher and Shoeb Ahmad
Pharmaceuticals 2024, 17(8), 975; https://doi.org/10.3390/ph17080975 (registering DOI) - 23 Jul 2024
Viewed by 57
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, [...] Read more.
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches. Full article
20 pages, 2879 KiB  
Article
Evaluating the Role of Susceptibility Inducing Cofactors and of Acetaminophen in the Etiology of Autism Spectrum Disorder
by John P. Jones, Lauren Williamson, Zacharoula Konsoula, Rachel Anderson, Kathryn J. Reissner and William Parker
Life 2024, 14(8), 918; https://doi.org/10.3390/life14080918 (registering DOI) - 23 Jul 2024
Viewed by 82
Abstract
More than 20 previously reported lines of independent evidence from clinical observations, studies in laboratory animal models, pharmacokinetic considerations, and numerous temporal and spatial associations indicate that numerous genetic and environmental factors leading to inflammation and oxidative stress confer vulnerability to the aberrant [...] Read more.
More than 20 previously reported lines of independent evidence from clinical observations, studies in laboratory animal models, pharmacokinetic considerations, and numerous temporal and spatial associations indicate that numerous genetic and environmental factors leading to inflammation and oxidative stress confer vulnerability to the aberrant metabolism of acetaminophen during early development, leading to autism spectrum disorder (ASD). Contrary to this conclusion, multivariate analyses of cohort data adjusting for inflammation-associated factors have tended to show little to no risk of acetaminophen use for neurodevelopment. To resolve this discrepancy, here we use in silico methods to create an ideal (virtual) population of 120,000 individuals in which 50% of all cases of virtual ASD are induced by oxidative stress-associated cofactors and acetaminophen use. We demonstrate that Cox regression analysis of this ideal dataset shows little to no risk of acetaminophen use if the cofactors that create aberrant metabolism of acetaminophen are adjusted for in the analysis. Further, under-reporting of acetaminophen use is shown to be a considerable problem for this analysis, leading to large and erroneously low calculated risks of acetaminophen use. In addition, we argue that factors that impart susceptibility to acetaminophen-induced injury, and propensity for acetaminophen use itself, can be shared between the prepartum, peripartum, and postpartum periods, creating additional difficulty in the analysis of existing datasets to determine risks of acetaminophen exposure for neurodevelopment during a specific time frame. It is concluded that risks of acetaminophen use for neurodevelopment obtained from multivariate analysis of cohort data depend on underlying assumptions in the analyses, and that other evidence, both abundant and robust, demonstrate the critical role of acetaminophen in the etiology of ASD. Full article
(This article belongs to the Section Pharmaceutical Science)
41 pages, 4668 KiB  
Review
Neuroprotective Benefits of Rosmarinus officinalis and Its Bioactives against Alzheimer’s and Parkinson’s Diseases
by Danai Kosmopoulou, Maria-Parthena Lafara, Theodora Adamantidi, Anna Ofrydopoulou, Andreas M. Grabrucker and Alexandros Tsoupras
Appl. Sci. 2024, 14(15), 6417; https://doi.org/10.3390/app14156417 (registering DOI) - 23 Jul 2024
Viewed by 161
Abstract
Neurodegenerative disorders (NDs) are conditions marked by progressively escalating inflammation that leads to the degeneration of neuronal structure and function. There is an increasing interest in natural compounds, especially those from pharmaceutical plants, with neuroprotective properties as part of potential therapeutic interventions. Thus, [...] Read more.
Neurodegenerative disorders (NDs) are conditions marked by progressively escalating inflammation that leads to the degeneration of neuronal structure and function. There is an increasing interest in natural compounds, especially those from pharmaceutical plants, with neuroprotective properties as part of potential therapeutic interventions. Thus, the rich bioactive content of the perennial herb rosemary (Rosmarinus officinalis) is thoroughly reviewed in this article, with an emphasis on its pleiotropic pharmacological properties, including its antioxidant, anti-inflammatory, and neuroprotective health-promoting effects. In addition, a comprehensive analysis of the existing scientific literature on the potential use of rosemary and its bioactive constituents in treating neurodegenerative disorders was also conducted. Rosemary and its bioactives’ chemical properties and neuroprotective mechanisms are discussed, focusing on their ability to mitigate oxidative stress, reduce inflammation, and modulate neurotransmitter activity. The role of rosemary in enhancing cognitive function, attenuating neuronal apoptosis, and promoting neurogenesis is outlined. Key bioactive components, such as rosmarinic acid and carnosic acid, are also highlighted for their neuroprotective act. The promising outcomes of the conducted pre-clinical studies or clinical trials confirm the efficacy of rosemary in preventing or alleviating Alzheimer’s and Parkinson’s diseases both in vitro (in cells) and in vivo (in animal models of NDs). From this perspective, the applications of rosemary’s bio-functional compounds and extracts in the food, cosmetics, and pharmaceutical sectors are also presented; in the latter, we discuss their use against neurodegenerative disorders, either alone or as adjuvant therapies. This paper critically evaluates these studies’ methodological approaches and outcomes, providing insights into the current state of the clinical research and identifying potential avenues for future investigation. All findings presented herein contribute to the growing body of literature and support the exploration of natural compounds as promising candidates for novel applications and neuroprotective interventions, paving the way for more applied scientific research. Full article
(This article belongs to the Special Issue Plant-Based Compounds or Extractions for Medical Applications)
Show Figures

Figure 1

18 pages, 5312 KiB  
Article
A Novel Strategy for Glioblastoma Treatment by Natural Bioactive Molecules Showed a Highly Effective Anti-Cancer Potential
by Alessandro Giammona, Mauro Commisso, Marcella Bonanomi, Sofia Remedia, Linda Avesani, Danilo Porro, Daniela Gaglio, Gloria Bertoli and Alessia Lo Dico
Nutrients 2024, 16(15), 2389; https://doi.org/10.3390/nu16152389 (registering DOI) - 23 Jul 2024
Viewed by 58
Abstract
Glioblastoma (GBM) is a severe form of brain tumor that has a high fatality rate. It grows aggressively and most of the time results in resistance to traditional treatments like chemo- and radiotherapy and surgery. Biodiversity, beyond representing a big resource for [...] Read more.
Glioblastoma (GBM) is a severe form of brain tumor that has a high fatality rate. It grows aggressively and most of the time results in resistance to traditional treatments like chemo- and radiotherapy and surgery. Biodiversity, beyond representing a big resource for human well-being, provides several natural compounds that have shown great potential as anticancer drugs. Many of them are being extensively researched and significantly slow GBM progression by reducing the proliferation rate, migration, and inflammation and also by modulating oxidative stress. Here, the use of some natural compounds, such as Allium lusitanicum, Succisa pratensis, and Dianthus superbus, was explored to tackle GBM; they showed their impact on cell number reduction, which was partially given by cell cycle quiescence. Furthermore, a reduced cell migration ability was reported, accomplished by morphological cytoskeleton changes, which even highlighted a mesenchymal–epithelial transition. Furthermore, metabolic studies showed an induced cell oxidative stress modulation and a massive metabolic rearrangement. Therefore, a new therapeutic option was suggested to overcome the limitations of conventional treatments and thereby improve patient outcomes. Full article
(This article belongs to the Special Issue Bioactive Ingredients in Plants Related to Human Health)
Show Figures

Figure 1

29 pages, 7019 KiB  
Review
Role of Myeloperoxidase, Oxidative Stress, and Inflammation in Bronchopulmonary Dysplasia
by Tzong-Jin Wu, Xigang Jing, Michelle Teng, Kirkwood A. Pritchard, Billy W. Day, Stephen Naylor and Ru-Jeng Teng
Antioxidants 2024, 13(8), 889; https://doi.org/10.3390/antiox13080889 (registering DOI) - 23 Jul 2024
Viewed by 101
Abstract
Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient [...] Read more.
Bronchopulmonary dysplasia (BPD) is a lung complication of premature births. The leading causes of BPD are oxidative stress (OS) from oxygen treatment, infection or inflammation, and mechanical ventilation. OS activates alveolar myeloid cells with subsequent myeloperoxidase (MPO)-mediated OS. Premature human neonates lack sufficient antioxidative capacity and are susceptible to OS. Unopposed OS elicits inflammation, endoplasmic reticulum (ER) stress, and cellular senescence, culminating in a BPD phenotype. Poor nutrition, patent ductus arteriosus, and infection further aggravate OS. BPD survivors frequently suffer from reactive airway disease, neurodevelopmental deficits, and inadequate exercise performance and are prone to developing early-onset chronic obstructive pulmonary disease. Rats and mice are commonly used to study BPD, as they are born at the saccular stage, comparable to human neonates at 22–36 weeks of gestation. The alveolar stage in rats and mice starts at the postnatal age of 5 days. Because of their well-established antioxidative capacities, a higher oxygen concentration (hyperoxia, HOX) is required to elicit OS lung damage in rats and mice. Neutrophil infiltration and ER stress occur shortly after HOX, while cellular senescence is seen later. Studies have shown that MPO plays a critical role in the process. A novel tripeptide, N-acetyl-lysyltyrosylcysteine amide (KYC), a reversible MPO inhibitor, attenuates BPD effectively. In contrast, the irreversible MPO inhibitor—AZD4831—failed to provide similar efficacy. Interestingly, KYC cannot offer its effectiveness without the existence of MPO. We review the mechanisms by which this anti-MPO agent attenuates BPD. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

18 pages, 3086 KiB  
Review
Salidroside: A Promising Agent in Bone Metabolism Modulation
by Piotr Wojdasiewicz, Stanisław Brodacki, Ewa Cieślicka, Paweł Turczyn, Łukasz A. Poniatowski, Weronika Ławniczak, Mieszko Olczak, Elżbieta U. Stolarczyk, Edyta Wróbel, Agnieszka Mikulska, Anna Lach-Gruba, Beata Żuk, Katarzyna Romanowska-Próchnicka and Dariusz Szukiewicz
Nutrients 2024, 16(15), 2387; https://doi.org/10.3390/nu16152387 (registering DOI) - 23 Jul 2024
Viewed by 143
Abstract
Rhodiola rosea, a long-lived herbaceous plant from the Crassulaceae group, contains the active compound salidroside, recognized as an adaptogen with significant therapeutic potential for bone metabolism. Salidroside promotes osteoblast proliferation and differentiation by activating critical signaling pathways, including bone morphogenetic protein-2 and [...] Read more.
Rhodiola rosea, a long-lived herbaceous plant from the Crassulaceae group, contains the active compound salidroside, recognized as an adaptogen with significant therapeutic potential for bone metabolism. Salidroside promotes osteoblast proliferation and differentiation by activating critical signaling pathways, including bone morphogenetic protein-2 and adenosine monophosphate-activated protein kinase, essential for bone formation and growth. It enhances osteogenic activity by increasing alkaline phosphatase activity and mineralization markers, while upregulating key regulatory proteins including runt-related transcription factor 2 and osterix. Additionally, salidroside facilitates angiogenesis via the hypoxia-inducible factor 1-alpha and vascular endothelial growth factor pathway, crucial for coupling bone development with vascular support. Its antioxidant properties offer protection against bone loss by reducing oxidative stress and promoting osteogenic differentiation through the nuclear factor erythroid 2-related factor 2 pathway. Salidroside has the capability to counteract the negative effects of glucocorticoids on bone cells and prevents steroid-induced osteonecrosis. Additionally, it exhibits multifaceted anti-inflammatory actions, notably through the inhibition of tumor necrosis factor-alpha and interleukin-6 expression, while enhancing the expression of interleukin-10. This publication presents a comprehensive review of the literature on the impact of salidroside on various aspects of bone tissue metabolism, emphasizing its potential role in the prevention and treatment of osteoporosis and other diseases affecting bone physiology. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

21 pages, 23140 KiB  
Article
The Impairment of Endothelial Autophagy Accelerates Renal Senescence by Ferroptosis and NLRP3 Inflammasome Signaling Pathways with the Disruption of Endothelial Barrier
by Jin Won Kim, Sun Ah Nam, Eun-Sil Koh, Hyung Wook Kim, Sua Kim, Jin Ju Woo and Yong Kyun Kim
Antioxidants 2024, 13(8), 886; https://doi.org/10.3390/antiox13080886 (registering DOI) - 23 Jul 2024
Viewed by 85
Abstract
Autophagy is a cellular process that degrades damaged cytoplasmic components and regulates cell death. The homeostasis of endothelial cells (ECs) is crucial for the preservation of glomerular structure and function in aging. Here, we investigated the precise mechanisms of endothelial autophagy in renal [...] Read more.
Autophagy is a cellular process that degrades damaged cytoplasmic components and regulates cell death. The homeostasis of endothelial cells (ECs) is crucial for the preservation of glomerular structure and function in aging. Here, we investigated the precise mechanisms of endothelial autophagy in renal aging. The genetic deletion of Atg7 in the ECs of Atg7flox/flox;Tie2-Cre mice accelerated aging-related glomerulopathy and tubulointerstitial fibrosis. The EC-specific Atg7 deletion in aging mice induced the detachment of EC with the disruption of glomerular basement membrane (GBM) assembly and increased podocyte loss resulting in microalbuminuria. A Transwell co-culture system of ECs and kidney organoids showed that the iron and oxidative stress induce the disruption of the endothelial barrier and increase vascular permeability, which was accelerated by the inhibition of autophagy. This resulted in the leakage of iron through the endothelial barrier into kidney organoids and increased oxidative stress, which led to ferroptotic cell death. The ferritin accumulation was increased in the kidneys of the EC-specific Atg7-deficient aging mice and upregulated the NLRP3 inflammasome signaling pathway. The pharmacologic inhibition of ferroptosis with liproxstatin-1 recovered the disrupted endothelial barrier and reversed the decreased expression of GPX4, as well as NLRP3 and IL-1β, in endothelial autophagy-deficient aged mice, which attenuated aging-related renal injury including the apoptosis of renal cells, abnormal structures of GBM, and tubulointerstitial fibrosis. Our data showed that endothelial autophagy is essential for the maintenance of the endothelial barrier during renal aging and the impairment of endothelial autophagy accelerates renal senescence by ferroptosis and NLRP3 inflammasome signaling pathways. These processes may be attractive therapeutic targets to reduce cellular injury from renal aging. Full article
Show Figures

Figure 1

18 pages, 1988 KiB  
Article
Chemical Composition, Antioxidant, and Cytotoxic Effects of Senna rugosa Leaf and Root Extracts on Human Leukemia Cell Lines
by Cintia Miranda dos Santos, Debora da Silva Baldivia, David Tsuyoshi Hiramatsu de Castro, José Tarciso de Giffoni Carvalho, Alex Santos Oliveira, Paola dos Santos da Rocha, Jaqueline Ferreira Campos, Sikiru Olaitan Balogun, Caio Fernando Ramalho de Oliveira, Denise Brentan da Silva, Carlos Alexandre Carollo, Kely de Picoli Souza and Edson Lucas dos Santos
Pharmaceuticals 2024, 17(8), 974; https://doi.org/10.3390/ph17080974 (registering DOI) - 23 Jul 2024
Viewed by 152
Abstract
Senna rugosa is a species found in the Cerrado and used in folk medicine as a vermifuge and in the treatment of poisonous snakebites accidents. In this work, we identified the main secondary metabolites present in ethanolic extracts of the leaves (ELSR) and [...] Read more.
Senna rugosa is a species found in the Cerrado and used in folk medicine as a vermifuge and in the treatment of poisonous snakebites accidents. In this work, we identified the main secondary metabolites present in ethanolic extracts of the leaves (ELSR) and roots (ERSR) of S. rugosa and evaluated the potential cytoprotective effect against cellular macromolecular damage, as well as the cytotoxic properties of the extracts on the K562 and Jurkat leukemic cell lines. The identification of metabolites was carried out by liquid chromatography coupled with mass spectrometry. The antioxidant activities were investigated by direct ABTS•+ and DPPH radical scavenging methods, protection against oxidative damage in proteins, and DNA. Cytotoxic properties were investigated against healthy cells, isolated from human peripheral blood (PBMC) and leukemic cell lines. The leaf extracts contained catechin, rutin, epigallocatechin derivatives, kaempferol glycosides, luteolin, and dimeric and trimeric procyanidins, while the root extract profile showed obtusichromoneside derivatives, 2-methoxystypandrone, stilbene derivatives, naphthopyranones, and flavanone derivatives. The extracts showed antioxidant activity, with an IC50 of 4.86 ± 0.51 μg/mL and 8.33 ± 0.90 μg/mL in the ABTS assay for ELSR and ERSR, respectively. Furthermore, in the DPPH assay, the IC50 was 19.98 ± 1.96 μg/mL for ELSR and 13.37 ± 1.05 μg/mL for ERSR. The extracts protected macromolecules against oxidative damage at concentrations of 5 μg/mL. The cytotoxicity test against leukemic strains was observed after 24 and 48 h of treatment. After 48 h, results against the K562 cell line demonstrate an IC50 of 242.54 ± 2.38 μg/mL and 223.00 ± 2.34 μg/mL for ELSR and ERSR, respectively. While against the Jurkat cell line, these extracts showed an IC50 of 171.45 ± 2.25 μg/mL and 189.30 ± 2.27 μg/mL, respectively. The results pertaining to PBMC viability demonstrated that the extracts showed selectivity for the leukemic cell lines. Together, our results reveal that the leaves and roots of S. rugosa have completely distinct and complex chemical compositions and expand their significant pharmacological potential in oxidative stress and leukemia conditions. Full article
(This article belongs to the Special Issue Exploring Natural Products with Antioxidant and Anticancer Properties)
Show Figures

Figure 1

27 pages, 1535 KiB  
Review
Sustainable Strategy to Boost Legume Growth under Salinity and Drought Stress in Semi-Arid and Arid Regions
by Roukaya Ben Gaied, Clarisse Brígido, Imed Sbissi and Mohamed Tarhouni
Soil Syst. 2024, 8(3), 84; https://doi.org/10.3390/soilsystems8030084 (registering DOI) - 23 Jul 2024
Viewed by 205
Abstract
The escalating risks of drought and salinization due to climate change and anthropogenic activities are a major global concern. Rhizobium–legume (herb or tree) symbiosis is proposed as an ideal solution for improving soil fertility and rehabilitating arid lands, representing a crucial direction for [...] Read more.
The escalating risks of drought and salinization due to climate change and anthropogenic activities are a major global concern. Rhizobium–legume (herb or tree) symbiosis is proposed as an ideal solution for improving soil fertility and rehabilitating arid lands, representing a crucial direction for future research. Consequently, several studies have focused on enhancing legume tolerance to drought and salinity stresses using various techniques, including molecular-based approaches. These methods, however, are costly, time-consuming, and cause some environmental issues. The multiplicity of beneficial effects of soil microorganisms, particularly plant growth-promoting bacteria (PGPB) or plant-associated microbiomes, can play a crucial role in enhancing legume performance and productivity under harsh environmental conditions in arid zones. PGPB can act directly or indirectly through advanced mechanisms to increase plant water uptake, reduce ion toxicity, and induce plant resilience to osmotic and oxidative stress. For example, rhizobia in symbiosis with legumes can enhance legume growth not only by fixing nitrogen but also by solubilizing phosphates and producing phytohormones, among other mechanisms. This underscores the need to further strengthen research and its application in modern agriculture. In this review, we provide a comprehensive description of the challenges faced by nitrogen-fixing leguminous plants in arid and semi-arid environments, particularly drought and salinity. We highlight the potential benefits of legume–rhizobium symbiosis combined with other PGPB to establish more sustainable agricultural practices in these regions using legume–rhizobium–PGPB partnerships. Full article
(This article belongs to the Special Issue Crop Response to Soil and Water Salinity)
Show Figures

Figure 1

15 pages, 10668 KiB  
Article
Ganoderma lucidum Polysaccharide Peptide Alleviates Cyclophosphamide-Induced Male Reproductive Injury by Reducing Oxidative Stress and Apoptosis
by Hang Zhang, Nannan Li, Yukun Zhang, Yue Xu, Feng Lu, Dongmei Lin, Shuqian Lin, Min Li and Baoxue Yang
Biomedicines 2024, 12(8), 1632; https://doi.org/10.3390/biomedicines12081632 (registering DOI) - 23 Jul 2024
Viewed by 160
Abstract
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to [...] Read more.
Chemotherapy is an important factor leading to male infertility. It is crucial to discover safe and effective treatments to prevent male reproductive injury caused by chemotherapy. The Ganoderma lucidum polysaccharide peptide (GLPP) has multiple pharmacological activities. The purpose of this study was to determine whether GLPP could protect the male sperm production from chemotherapeutic injury using a mouse model, with testicular damage induced by cyclophosphamide (CP). CP (50 mg/kg/day) was injected intraperitoneally into male ICR mice gavaged with different doses of GLPP at certain spermatogenic stages. The experimental results showed that GLPP alleviated the CP-induced reduction in reproductive organ coefficients and sperm parameters and reduced the morphological damage of testicular tissues in a dose-dependent manner. GLPP significantly improved the reproductive index, sperm-related parameters, sex hormone levels, and histological testis architecture at different spermatogenic stages. Furthermore, GLPP significantly increased superoxide dismutase (SOD), glutathione (GSH), catalase (CAT), Nrf2, and HO-1, and decreased malondialdehyde (MDA) and Keap-1 in the testicular tissue, indicating reduced oxidative stress. In addition, GLPP limited CP-induced apoptosis via a reduction in Bax expression and increase in Bcl-2 expression. This study suggests that GLPP plays a protective role in spermatogenesis by reducing chemotherapeutic injury and might be developed into drug for male patients receiving chemotherapy. Full article
(This article belongs to the Section Drug Discovery, Development and Delivery)
Show Figures

Figure 1

Back to TopTop