Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = panobinostat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2750 KiB  
Article
Synergistic Cytotoxicity of Histone Deacetylase and Poly-ADP Ribose Polymerase Inhibitors and Decitabine in Breast and Ovarian Cancer Cells: Implications for Novel Therapeutic Combinations
by Benigno C. Valdez, Apostolia M. Tsimberidou, Bin Yuan, Mehmet A. Baysal, Abhijit Chakraborty, Clark R. Andersen and Borje S. Andersson
Int. J. Mol. Sci. 2024, 25(17), 9241; https://doi.org/10.3390/ijms25179241 - 26 Aug 2024
Viewed by 470
Abstract
Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat [...] Read more.
Breast and ovarian cancers pose significant therapeutic challenges. We explored the synergistic cytotoxicity of histone deacetylase inhibitors (HDACis), poly(ADP-ribose) polymerase inhibitors (PARPis), and decitabine in breast (MDA-MB-231 and MCF-7) and ovarian (HEY-T30 and SKOV-3) cancer cell lines that were exposed to HDACi (panobinostat or vorinostat), PARPi (talazoparib or olaparib), decitabine, or their combinations. HDACi, PARPi, and decitabine combinations had synergistic cytotoxicity (assessed by MTT and clonogenic assays) in all cell lines (combination index < 1). Clonogenic assays confirmed the sensitivity of breast and ovarian cancer cell lines to the three-drug combinations (panobinostat, talazoparib, and decitabine; panobinostat, olaparib, and decitabine; vorinostat, talazoparib, and decitabine; vorinostat, olaparib, and decitabine). Cell proliferation was inhibited by 48–70%, and Annexin V positivity was 42–59% in all cell lines exposed to the three-drug combinations. Western blot analysis showed protein PARylation inhibition, caspase 3 and PARP1 cleavage, and c-MYC down-regulation. The three-drug combinations induced more DNA damage (increased phosphorylation of histone 2AX) than the individual drugs, impaired the DNA repair pathways, and altered the epigenetic regulation of gene expression. These results indicate that HDACi, PARPi, and decitabine combinations should be further explored in these tumor types. Further clinical validation is warranted to assess their safety and efficacy. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

29 pages, 1782 KiB  
Review
Different Strategies to Overcome Resistance to Proteasome Inhibitors—A Summary 20 Years after Their Introduction
by Paweł Tyrna, Grzegorz Procyk, Łukasz Szeleszczuk and Izabela Młynarczuk-Biały
Int. J. Mol. Sci. 2024, 25(16), 8949; https://doi.org/10.3390/ijms25168949 - 16 Aug 2024
Viewed by 508
Abstract
Proteasome inhibitors (PIs), bortezomib, carfilzomib, and ixazomib, are the first-line treatment for multiple myeloma (MM). They inhibit cytosolic protein degradation in cells, which leads to the accumulation of misfolded and malfunctioned proteins in the cytosol and endoplasmic reticulum, resulting in cell death. Despite [...] Read more.
Proteasome inhibitors (PIs), bortezomib, carfilzomib, and ixazomib, are the first-line treatment for multiple myeloma (MM). They inhibit cytosolic protein degradation in cells, which leads to the accumulation of misfolded and malfunctioned proteins in the cytosol and endoplasmic reticulum, resulting in cell death. Despite being a breakthrough in MM therapy, malignant cells develop resistance to PIs via different mechanisms. Understanding these mechanisms drives research toward new anticancer agents to overcome PI resistance. In this review, we summarize the mechanism of action of PIs and how MM cells adapt to these drugs to develop resistance. Finally, we explore these mechanisms to present strategies to interfere with PI resistance. The strategies include new inhibitors of the ubiquitin–proteasome system, drug efflux inhibitors, autophagy disruption, targeting stress response mechanisms, affecting survival and cell cycle regulators, bone marrow microenvironment modulation, and immunotherapy. We list potential pharmacological targets examined in in vitro, in vivo, and clinical studies. Some of these strategies have already provided clinicians with new anti-MM medications, such as panobinostat and selinexor. We hope that further exploration of the subject will broaden the range of therapeutic options and improve patient outcomes. Full article
(This article belongs to the Special Issue Molecular Biology of Tumor Cells: Present and Future)
Show Figures

Figure 1

26 pages, 7080 KiB  
Article
Integrative Analysis of Multi-Omics Data to Identify Deregulated Molecular Pathways and Druggable Targets in Chronic Lymphocytic Leukemia
by Dimitra Mavridou, Konstantina Psatha and Michalis Aivaliotis
J. Pers. Med. 2024, 14(8), 831; https://doi.org/10.3390/jpm14080831 - 6 Aug 2024
Viewed by 934
Abstract
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed [...] Read more.
Chronic Lymphocytic Leukemia (CLL) is the most common B-cell malignancy in the Western world, characterized by frequent relapses despite temporary remissions. Our study integrated publicly available proteomic, transcriptomic, and patient survival datasets to identify key differences between healthy and CLL samples. We exposed approximately 1000 proteins that differentiate healthy from cancerous cells, with 608 upregulated and 415 downregulated in CLL cases. Notable upregulated proteins include YEATS2 (an epigenetic regulator), PIGR (Polymeric immunoglobulin receptor), and SNRPA (a splicing factor), which may serve as prognostic biomarkers for this disease. Key pathways implicated in CLL progression involve RNA processing, stress resistance, and immune response deficits. Furthermore, we identified three existing drugs—Bosutinib, Vorinostat, and Panobinostat—for potential further investigation in drug repurposing in CLL. We also found limited correlation between transcriptomic and proteomic data, emphasizing the importance of proteomics in understanding gene expression regulation mechanisms. This generally known disparity highlights once again that mRNA levels do not accurately predict protein abundance due to many regulatory factors, such as protein degradation, post-transcriptional modifications, and differing rates of translation. These results demonstrate the value of integrating omics data to uncover deregulated proteins and pathways in cancer and suggest new therapeutic avenues for CLL. Full article
(This article belongs to the Special Issue Advances of Precision Medicine in Oncology)
Show Figures

Figure 1

24 pages, 11916 KiB  
Article
Synergistic Efficacy of CDK4/6 Inhibitor Abemaciclib and HDAC Inhibitor Panobinostat in Pancreatic Cancer Cells
by Shraddha Bhutkar, Anjali Yadav, Himaxi Patel, Shrikant Barot, Ketan Patel and Vikas V. Dukhande
Cancers 2024, 16(15), 2713; https://doi.org/10.3390/cancers16152713 - 30 Jul 2024
Viewed by 769
Abstract
The current 5-year survival rate of pancreatic cancer is about 12%, making it one of the deadliest malignancies. The rapid metastasis, acquired drug resistance, and poor patient prognosis necessitate better therapeutic strategies for pancreatic ductal adenocarcinoma (PDAC). Multiple studies show that combining chemotherapeutics [...] Read more.
The current 5-year survival rate of pancreatic cancer is about 12%, making it one of the deadliest malignancies. The rapid metastasis, acquired drug resistance, and poor patient prognosis necessitate better therapeutic strategies for pancreatic ductal adenocarcinoma (PDAC). Multiple studies show that combining chemotherapeutics for solid tumors has been successful. Targeting two distinct emerging hallmarks, such as non-mutational epigenetic changes by panobinostat (Pan) and delayed cell cycle progression by abemaciclib (Abe), inhibits pancreatic cancer growth. HDAC and CDK4/6 inhibitors are effective but are prone to drug resistance and failure as single agents. Therefore, we hypothesized that combining Abe and Pan could synergistically and lethally affect PDAC survival and proliferation. Multiple cell-based assays, enzymatic activity experiments, and flow cytometry experiments were performed to determine the effects of Abe, Pan, and their combination on PDAC cells and human dermal fibroblasts. Western blotting was used to determine the expression of cell cycle, epigenetic, and apoptosis markers. The Abe-Pan combination exhibited excellent efficacy and produced synergistic effects, altering the expression of cell cycle proteins and epigenetic markers. Pan, alone and in combination with Abe, caused apoptosis in pancreatic cancer cells. Abe-Pan co-treatment showed relative safety in normal human dermal fibroblasts. Our novel combination treatment of Abe and Pan shows synergistic effects on PDAC cells. The combination induces apoptosis, shows relative safety, and merits further investigation due to its therapeutic potential in the treatment of PDAC. Full article
Show Figures

Figure 1

13 pages, 2441 KiB  
Article
An Innovative Multi-Omics Model Integrating Latent Alignment and Attention Mechanism for Drug Response Prediction
by Hui-O Chen, Yuan-Chi Cui, Peng-Chan Lin and Jung-Hsien Chiang
J. Pers. Med. 2024, 14(7), 694; https://doi.org/10.3390/jpm14070694 - 27 Jun 2024
Viewed by 689
Abstract
By using omics, we can now examine all components of biological systems simultaneously. Deep learning-based drug prediction methods have shown promise by integrating cancer-related multi-omics data. However, the complex interaction between genes poses challenges in accurately projecting multi-omics data. In this research, we [...] Read more.
By using omics, we can now examine all components of biological systems simultaneously. Deep learning-based drug prediction methods have shown promise by integrating cancer-related multi-omics data. However, the complex interaction between genes poses challenges in accurately projecting multi-omics data. In this research, we present a predictive model for drug response that incorporates diverse types of omics data, comprising genetic mutation, copy number variation, methylation, and gene expression data. This study proposes latent alignment for information mismatch in integration, which is achieved through an attention module capturing interactions among diverse types of omics data. The latent alignment and attention modules significantly improve predictions, outperforming the baseline model, with MSE = 1.1333, F1-score = 0.5342, and AUROC = 0.5776. High accuracy was achieved in predicting drug responses for piplartine and tenovin-6, while the accuracy was comparatively lower for mitomycin-C and obatoclax. The latent alignment module exclusively outperforms the baseline model, enhancing the MSE by 0.2375, the F1-score by 4.84%, and the AUROC by 6.1%. Similarly, the attention module only improves these metrics by 0.1899, 2.88%, and 2.84%, respectively. In the interpretability case study, panobinostat exhibited the most effective predicted response, with a value of −4.895. We provide reliable insights for drug selection in personalized medicine by identifying crucial genetic factors influencing drug response. Full article
Show Figures

Figure 1

18 pages, 2267 KiB  
Article
Descriptive Analysis of Adverse Events Reported for New Multiple Myeloma Medications Using FDA Adverse Event Reporting System (FAERS) Databases from 2015 to 2022
by Marwan A. Alrasheed, Khalid A. Alamer, Mashael Albishi, Abdulrahman A. Alsuhibani, Omar A. Almohammed, Abdulrahman Alwhaibi, Abdullah N. Almajed and Jeff J. Guo
Pharmaceuticals 2024, 17(7), 815; https://doi.org/10.3390/ph17070815 - 21 Jun 2024
Viewed by 1129
Abstract
Background: New multiple myeloma (MM) medications have revolutionized the treatment landscape, but they are also associated with a range of adverse events (AEs). This study aims to provide a comprehensive overview of AEs reported for four new MM medications: daratumumab, ixazomib, elotuzumab, and [...] Read more.
Background: New multiple myeloma (MM) medications have revolutionized the treatment landscape, but they are also associated with a range of adverse events (AEs). This study aims to provide a comprehensive overview of AEs reported for four new MM medications: daratumumab, ixazomib, elotuzumab, and panobinostat. Methods: This study uses a descriptive retrospective approach to analyze the FDA Adverse Event Reporting System (FAERS) from 2015 to 2022. It includes variables like medication names, report details, patient demographics, adverse events, and reporter types. The initial dataset consists of over 3700 adverse events, which are categorized into 21 groups for clarity and comparison. Results: The FAERS database revealed 367,756 adverse events (AEs) associated with novel multiple myeloma drugs from 2015–2022. Ixazomib had the highest number of reported AEs with 206,243 reports, followed by daratumumab with 98,872 reports, then elotuzumab with 26,193 AEs. Ixazomib’s AE reports increased dramatically over the study period, rising approximately 51-fold from 1183 in 2015 to 60,835 in 2022. Of the medications studied, ixazomib also recorded the highest number of deaths (24,206), followed by daratumumab (11,624), panobinostat (7227), and elotuzumab (3349). The majority of AEs occurred in patients aged 55–64 and 65–74 years. Conclusions: Ixazomib, a new MM medication, had the highest number of AEs reported. Also, it has the highest rate of reported deaths compared to other new MM medications. Clinicians should be aware of the potential AEs associated with this medication and further research is needed to understand the reasons for the high number of AEs and to develop mitigation strategies. More attention should also be paid to the safety of new multiple myeloma medications in younger patients. Full article
Show Figures

Figure 1

16 pages, 6039 KiB  
Article
Unveiling Epigenetic Vulnerabilities in Triple-Negative Breast Cancer through 3D Organoid Drug Screening
by Xinxin Rao, Zhibin Qiao, Yang Yang, Yun Deng, Zhen Zhang, Xiaoli Yu and Xiaomao Guo
Pharmaceuticals 2024, 17(2), 225; https://doi.org/10.3390/ph17020225 - 8 Feb 2024
Cited by 2 | Viewed by 1918
Abstract
Triple-negative breast cancer (TNBC) poses a therapeutic challenge due to its aggressive nature and lack of targeted therapies. Epigenetic modifications contribute to TNBC tumorigenesis and drug resistance, offering potential therapeutic targets. Recent advancements in three-dimensional (3D) organoid cultures, enabling precise drug screening, hold [...] Read more.
Triple-negative breast cancer (TNBC) poses a therapeutic challenge due to its aggressive nature and lack of targeted therapies. Epigenetic modifications contribute to TNBC tumorigenesis and drug resistance, offering potential therapeutic targets. Recent advancements in three-dimensional (3D) organoid cultures, enabling precise drug screening, hold immense promise for identifying novel compounds targeting TNBC. In this study, we established two patient-derived TNBC organoids and implemented a high-throughput drug screening system using these organoids and two TNBC cell lines. Screening a library of 169 epigenetic compounds, we found that organoid-based systems offer remarkable precision in drug response assessment compared to cell-based models. The top 30 compounds showing the highest drug sensitivity in the initial screening were further assessed in a secondary screen. Four compounds, panobinostat, pacritinib, TAK-901, and JIB-04, targeting histone deacetylase, JAK/STAT, histone demethylases, and aurora kinase pathways, respectively, exhibited potent anti-tumor activity in TNBC organoids, surpassing the effect of paclitaxel. Our study highlights the potential of these novel epigenetic drugs as effective therapeutic agents for TNBC and demonstrates the valuable role of patient-derived organoids in advancing drug discovery. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

14 pages, 2405 KiB  
Article
EZH2 Inhibition Sensitizes IDH1R132H-Mutant Gliomas to Histone Deacetylase Inhibitor
by Lisa Sprinzen, Franklin Garcia, Angeliki Mela, Liang Lei, Pavan Upadhyayula, Aayushi Mahajan, Nelson Humala, Lisa Manier, Richard Caprioli, Alfredo Quiñones-Hinojosa, Patrizia Casaccia and Peter Canoll
Cells 2024, 13(3), 219; https://doi.org/10.3390/cells13030219 - 25 Jan 2024
Cited by 1 | Viewed by 1909
Abstract
Isocitrate Dehydrogenase-1 (IDH1) is commonly mutated in lower-grade diffuse gliomas. The IDH1R132H mutation is an important diagnostic tool for tumor diagnosis and prognosis; however, its role in glioma development, and its impact on response to therapy, is not fully understood. We developed a [...] Read more.
Isocitrate Dehydrogenase-1 (IDH1) is commonly mutated in lower-grade diffuse gliomas. The IDH1R132H mutation is an important diagnostic tool for tumor diagnosis and prognosis; however, its role in glioma development, and its impact on response to therapy, is not fully understood. We developed a murine model of proneural IDH1R132H-mutated glioma that shows elevated production of 2-hydroxyglutarate (2-HG) and increased trimethylation of lysine residue K27 on histone H3 (H3K27me3) compared to IDH1 wild-type tumors. We found that using Tazemetostat to inhibit the methyltransferase for H3K27, Enhancer of Zeste 2 (EZH2), reduced H3K27me3 levels and increased acetylation on H3K27. We also found that, although the histone deacetylase inhibitor (HDACi) Panobinostat was less cytotoxic in IDH1R132H-mutated cells (either isolated from murine glioma or oligodendrocyte progenitor cells infected in vitro with a retrovirus expressing IDH1R132H) compared to IDH1-wild-type cells, combination treatment with Tazemetostat is synergistic in both mutant and wild-type models. These findings indicate a novel therapeutic strategy for IDH1-mutated gliomas that targets the specific epigenetic alteration in these tumors. Full article
Show Figures

Graphical abstract

13 pages, 3539 KiB  
Article
EphA2- and HDAC-Targeted Combination Therapy in Endometrial Cancer
by Robiya Joseph, Santosh K. Dasari, Sujanitha Umamaheswaran, Lingegowda S. Mangala, Emine Bayraktar, Cristian Rodriguez-Aguayo, Yutuan Wu, Nghi Nguyen, Reid T. Powell, Mary Sobieski, Yuan Liu, Mark Seungwook Kim, Sara Corvigno, Katherine Foster, Pahul Hanjra, Thanh Chung Vu, Mamur A. Chowdhury, Paola Amero, Clifford Stephan, Gabriel Lopez-Berestein, Shannon N. Westin and Anil K. Soodadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2024, 25(2), 1278; https://doi.org/10.3390/ijms25021278 - 20 Jan 2024
Cited by 2 | Viewed by 1689
Abstract
Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had [...] Read more.
Endometrial cancer is the most frequent malignant tumor of the female reproductive tract but lacks effective therapy. EphA2, a receptor tyrosine kinase, is overexpressed by various cancers including endometrial cancer and is associated with poor clinical outcomes. In preclinical models, EphA2-targeted drugs had modest efficacy. To discover potential synergistic partners for EphA2-targeted drugs, we performed a high-throughput drug screen and identified panobinostat, a histone deacetylase inhibitor, as a candidate. We hypothesized that combination therapy with an EphA2 inhibitor and panobinostat leads to synergistic cell death. Indeed, we found that the combination enhanced DNA damage, increased apoptosis, and decreased clonogenic survival in Ishikawa and Hec1A endometrial cancer cells and significantly reduced tumor burden in mouse models of endometrial carcinoma. Upon RNA sequencing, the combination was associated with downregulation of cell survival pathways, including senescence, cyclins, and cell cycle regulators. The Axl-PI3K-Akt-mTOR pathway was also decreased by combination therapy. Together, our results highlight EphA2 and histone deacetylase as promising therapeutic targets for endometrial cancer. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 5964 KiB  
Article
Ancistrocladinium A Induces Apoptosis in Proteasome Inhibitor-Resistant Multiple Myeloma Cells: A Promising Therapeutic Agent Candidate
by Daniela Brünnert, Raina Seupel, Pankaj Goyal, Matthias Bach, Heike Schraud, Stefanie Kirner, Eva Köster, Doris Feineis, Ralf C. Bargou, Andreas Schlosser, Gerhard Bringmann and Manik Chatterjee
Pharmaceuticals 2023, 16(8), 1181; https://doi.org/10.3390/ph16081181 - 18 Aug 2023
Cited by 2 | Viewed by 1983
Abstract
The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma [...] Read more.
The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent. Full article
(This article belongs to the Special Issue Drug Candidates for the Treatment of Multiple Myeloma)
Show Figures

Figure 1

27 pages, 7603 KiB  
Article
The Effects of Natural Epigenetic Therapies in 3D Ovarian Cancer and Patient-Derived Tumor Explants: New Avenues in Regulating the Cancer Secretome
by Rebeca Kelly, Diego Aviles, Catriona Krisulevicz, Krystal Hunter, Lauren Krill, David Warshal and Olga Ostrovsky
Biomolecules 2023, 13(7), 1066; https://doi.org/10.3390/biom13071066 - 1 Jul 2023
Cited by 2 | Viewed by 1801
Abstract
High mortality rates in ovarian cancer have been linked to recurrence, metastasis, and chemoresistant disease, which are known to involve not only genetic changes but also epigenetic aberrations. In ovarian cancer, adipose-derived stem cells from the omentum (O-ASCs) play a crucial role in [...] Read more.
High mortality rates in ovarian cancer have been linked to recurrence, metastasis, and chemoresistant disease, which are known to involve not only genetic changes but also epigenetic aberrations. In ovarian cancer, adipose-derived stem cells from the omentum (O-ASCs) play a crucial role in supporting the tumor and its tumorigenic microenvironment, further propagating epigenetic abnormalities and dissemination of the disease. Epigallocatechin gallate (EGCG), a DNA methyltransferase inhibitor derived from green tea, and Indole-3-carbinol (I3C), a histone deacetylase inhibitor from cruciferous vegetables, carry promising effects in reprograming aberrant epigenetic modifications in cancer. Therefore, we demonstrate the action of these diet-derived compounds in suppressing the growth of 3D ovarian cancer spheroids or organoids as well as post-treatment cancer recovery through proliferation, migration, invasion, and colony formation assays when compared to the synthetic epigenetic compound Panobinostat with or without standard chemotherapy. Finally, given the regulatory role of the secretome in growth, metastasis, chemoresistance, and relapse of disease, we demonstrate that natural epigenetic compounds can regulate the secretion of protumorigenic growth factors, cytokines, extracellular matrix components, and immunoregulatory markers in human ovarian cancer specimens. While further studies are needed, our results suggest that these treatments could be considered in the future as adjuncts to standard chemotherapy, improving efficiency and patient outcomes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

30 pages, 1436 KiB  
Review
Indole Antitumor Agents in Nanotechnology Formulations: An Overview
by Eleonora Russo, Carola Grondona, Chiara Brullo, Andrea Spallarossa, Carla Villa and Bruno Tasso
Pharmaceutics 2023, 15(7), 1815; https://doi.org/10.3390/pharmaceutics15071815 - 25 Jun 2023
Cited by 3 | Viewed by 1827
Abstract
The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives [...] Read more.
The indole heterocycle represents one of the most important scaffolds in medicinal chemistry and is shared among a number of drugs clinically used in different therapeutic areas. Due to its varied biological activities, high unique chemical properties and significant pharmacological behaviors, indole derivatives have drawn considerable interest in the last decade as antitumor agents active against different types of cancers. The research of novel antiproliferative drugs endowed with enhanced efficacy and reduced toxicity led to the approval by U.S. Food and Drug Administration of the indole-based anticancer agents Sunitinib, Nintedanib, Osimertinib, Panobinostat, Alectinib and Anlotinib. Additionally, new drug delivery systems have been developed to protect the active principle from degradation and to direct the drug to the specific site for clinical use, thus reducing its toxicity. In the present work is an updated review of the recently approved indole-based anti-cancer agents and the nanotechnology systems developed for their delivery. Full article
(This article belongs to the Special Issue Novel Anticancer Strategies (Volume II))
Show Figures

Figure 1

15 pages, 2180 KiB  
Article
Bone Marrow Microenvironment-Induced Chemoprotection in KMT2A Rearranged Pediatric AML Is Overcome by Azacitidine–Panobinostat Combination
by Kara M. Lehner, Anilkumar Gopalakrishnapillai, Edward Anders Kolb and Sonali P. Barwe
Cancers 2023, 15(12), 3112; https://doi.org/10.3390/cancers15123112 - 8 Jun 2023
Cited by 1 | Viewed by 1791
Abstract
Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a [...] Read more.
Advances in therapies of pediatric acute myeloid leukemia (AML) have been minimal in recent decades. Although 82% of patients will have an initial remission after intensive therapy, approximately 40% will relapse. KMT2A is the most common chromosomal translocation in AML and has a poor prognosis resulting in high relapse rates and low chemotherapy efficacy. Novel targeted approaches are needed to increase sensitivity to chemotherapy. Recent studies have shown how interactions within the bone marrow (BM) microenvironment help AML cells evade chemotherapy and contribute to relapse by promoting leukemic blast survival. This study investigates how DNA hypomethylating agent azacitidine and histone deacetylase inhibitor panobinostat synergistically overcome BM niche-induced chemoprotection modulated by stromal, endothelial, and mesenchymal stem cells and the extracellular matrix (ECM). We show that direct contact between AML cells and BM components mediates chemoprotection. We demonstrate that azacitidine and panobinostat synergistically sensitize MV4;11 cells and KMT2A rearranged pediatric patient-derived xenograft lines to cytarabine in multicell coculture. Treatment with the epigenetic drug combination reduced leukemic cell association with multicell monolayer and ECM in vitro and increased mobilization of leukemic cells from the BM in vivo. Finally, we show that pretreatment with the epigenetic drug combination improves the efficacy of chemotherapy in vivo. Full article
(This article belongs to the Special Issue Microenvironment of Leukemia)
Show Figures

Figure 1

20 pages, 3058 KiB  
Review
Strategies to Re-Sensitize Castration-Resistant Prostate Cancer to Antiandrogen Therapy
by Belén Congregado Ruiz, Inés Rivero Belenchón, Guillermo Lendínez Cano and Rafael Antonio Medina López
Biomedicines 2023, 11(4), 1105; https://doi.org/10.3390/biomedicines11041105 - 6 Apr 2023
Cited by 1 | Viewed by 3537
Abstract
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor [...] Read more.
Since prostate cancer (PCa) was described as androgen-dependent, the androgen receptor (AR) has become the mainstay of its systemic treatment: androgen deprivation therapy (ADT). Although, through recent years, more potent drugs have been incorporated, this chronic AR signaling inhibition inevitably led the tumor to an incurable phase of castration resistance. However, in the castration-resistant status, PCa cells remain highly dependent on the AR signaling axis, and proof of it is that many men with castration-resistant prostate cancer (CRPC) still respond to newer-generation AR signaling inhibitors (ARSis). Nevertheless, this response is limited in time, and soon, the tumor develops adaptive mechanisms that make it again nonresponsive to these treatments. For this reason, researchers are focused on searching for new alternatives to control these nonresponsive tumors, such as: (1) drugs with a different mechanism of action, (2) combination therapies to boost synergies, and (3) agents or strategies to resensitize tumors to previously addressed targets. Taking advantage of the wide variety of mechanisms that promote persistent or reactivated AR signaling in CRPC, many drugs explore this last interesting behavior. In this article, we will review those strategies and drugs that are able to resensitize cancer cells to previously used treatments through the use of “hinge” treatments with the objective of obtaining an oncological benefit. Some examples are: bipolar androgen therapy (BAT) and drugs such as indomethacin, niclosamide, lapatinib, panobinostat, clomipramine, metformin, and antisense oligonucleotides. All of them have shown, in addition to an inhibitory effect on PCa, the rewarding ability to overcome acquired resistance to antiandrogenic agents in CRPC, resensitizing the tumor cells to previously used ARSis. Full article
(This article belongs to the Special Issue Prostate Cancer: From Pathology to Novel Therapeutic Approaches)
Show Figures

Figure 1

21 pages, 3054 KiB  
Article
Drug Resistance in Medulloblastoma Is Driven by YB-1, ABCB1 and a Seven-Gene Drug Signature
by Louisa Taylor, Philippa K. Wade, James E. C. Johnson, Macha Aldighieri, Sonia Morlando, Gianpiero Di Leva, Ian D. Kerr and Beth Coyle
Cancers 2023, 15(4), 1086; https://doi.org/10.3390/cancers15041086 - 8 Feb 2023
Cited by 6 | Viewed by 2857
Abstract
Therapy resistance represents an unmet challenge in the treatment of medulloblastoma. Accordingly, the identification of targets that mark drug-resistant cell populations, or drive the proliferation of resistant cells, may improve treatment strategies. To address this, we undertook a targeted approach focused on the [...] Read more.
Therapy resistance represents an unmet challenge in the treatment of medulloblastoma. Accordingly, the identification of targets that mark drug-resistant cell populations, or drive the proliferation of resistant cells, may improve treatment strategies. To address this, we undertook a targeted approach focused on the multi-functional transcription factor YB-1. Genetic knockdown of YB-1 in Group 3 medulloblastoma cell lines diminished cell invasion in 3D in vitro assays and increased sensitivity to standard-of-care chemotherapeutic vincristine and anti-cancer agents panobinostat and JQ1. For vincristine, this occurred in part by YB-1-mediated transcriptional regulation of multi-drug resistance gene ABCB1, as determined by chromatin immunoprecipitation. Whole transcriptome sequencing of YB-1 knockdown cells identified a role for YB-1 in the regulation of tumourigenic processes, including lipid metabolism, cell death and survival and MYC and mTOR pathways. Stable cisplatin- and vincristine-tolerant Group 3 and SHH cell lines were generated to identify additional mechanisms driving resistance to standard-of-care medulloblastoma therapy. Next-generation sequencing revealed a vastly different transcriptomic landscape following chronic drug exposure, including a drug-tolerant seven-gene expression signature, common to all sequenced drug-tolerant cell lines, representing therapeutically targetable genes implicated in the acquisition of drug tolerance. Our findings provide significant insight into mechanisms and genes underlying therapy resistance in medulloblastoma. Full article
(This article belongs to the Special Issue Pediatric Cancer Biology: Basic and Translational Implications)
Show Figures

Figure 1

Back to TopTop