Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (95)

Search Parameters:
Keywords = paxillin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2497 KiB  
Article
Yohimbine Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation and Migration via FOXO3a Factor
by Leejin Lim, Hyeonhwa Kim, Jihye Jeong, Sung Hee Han, Young-Bob Yu and Heesang Song
Int. J. Mol. Sci. 2024, 25(13), 6899; https://doi.org/10.3390/ijms25136899 - 24 Jun 2024
Viewed by 680
Abstract
Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase [...] Read more.
Yohimbine (YHB) has been reported to possess anti-inflammatory, anticancer, and cardiac function-enhancing properties. Additionally, it has been reported to inhibit the proliferation, migration, and neointimal formation of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor (PDGF) stimulation by suppressing the phospholipase C-gamma 1 pathway. However, the transcriptional regulatory mechanism of YHB controlling the behavior of VSMCs is not fully understood. In this study, YHB downregulated the expression of cell cycle regulatory proteins, such as proliferating cell nuclear antigen (PCNA), cyclin D1, cyclin-dependent kinase 4 (CDK4), and cyclin E, by modulating the transcription factor FOXO3a in VSMCs induced by PDGF. Furthermore, YHB decreased p-38 and mTOR phosphorylation in a dose-dependent manner. Notably, YHB significantly reduced the phosphorylation at Y397 and Y925 sites of focal adhesion kinase (FAK), and this effect was greater at the Y925 site than Y397. In addition, the expression of paxillin, a FAK-associated protein known to bind to the Y925 site of FAK, was significantly reduced by YHB treatment in a dose-dependent manner. A pronounced reduction in the migration and proliferation of VSMCs was observed following co-treatment of YHB with mTOR or p38 inhibitors. In conclusion, this study shows that YHB inhibits the PDGF-induced proliferation and migration of VSMCs by regulating the transcription factor FOXO3a and the mTOR/p38/FAK signaling pathway. Therefore, YHB may be a potential therapeutic candidate for preventing and treating cardiovascular diseases such as atherosclerosis and vascular restenosis. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 3798 KiB  
Article
α-Catenin and Piezo1 Mediate Cell Mechanical Communication via Cell Adhesions
by Mingxing Ouyang, Qingyu Zhang, Yiming Zhu, Mingzhi Luo, Bing Bu and Linhong Deng
Biology 2024, 13(5), 357; https://doi.org/10.3390/biology13050357 - 19 May 2024
Viewed by 1067
Abstract
Cell-to-cell distant mechanical communication has been demonstrated using in vitro and in vivo models. However, the molecular mechanisms underlying long-range cell mechanoresponsive interactions remain to be fully elucidated. This study further examined the roles of α-Catenin and Piezo1 in traction force-induced rapid branch [...] Read more.
Cell-to-cell distant mechanical communication has been demonstrated using in vitro and in vivo models. However, the molecular mechanisms underlying long-range cell mechanoresponsive interactions remain to be fully elucidated. This study further examined the roles of α-Catenin and Piezo1 in traction force-induced rapid branch assembly of airway smooth muscle (ASM) cells on a Matrigel hydrogel containing type I collagen. Our findings demonstrated that siRNA-mediated downregulation of α-Catenin or Piezo1 expression or chemical inhibition of Piezo1 activity significantly reduced both directional cell movement and branch assembly. Regarding the role of N-cadherin in regulating branch assembly but not directional migration, our results further confirmed that siRNA-mediated downregulation of α-Catenin expression caused a marked reduction in focal adhesion formation, as assessed by focal Paxillin and Integrin α5 localization. These observations imply that mechanosensitive α-Catenin is involved in both cell–cell and cell-matrix adhesions. Additionally, Piezo1 partially localized in focal adhesions, which was inhibited by siRNA-mediated downregulation of α-Catenin expression. This result provides insights into the Piezo1-mediated mechanosensing of traction force on a hydrogel. Collectively, our findings highlight the significance of α-Catenin in the regulation of cell-matrix interactions and provide a possible interpretation of Piezo1-mediated mechanosensing activity at focal adhesions during cell–cell mechanical communication. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

19 pages, 9910 KiB  
Article
Quercetin Induces Mitochondrial Apoptosis and Downregulates Ganglioside GD3 Expression in Melanoma Cells
by Sang Young Seo, Won Seok Ju, Kyongtae Kim, Juhwan Kim, Jin Ok Yu, Jae-Sung Ryu, Ji-Su Kim, Hyun-A Lee, Deog-Bon Koo and Young-Kug Choo
Int. J. Mol. Sci. 2024, 25(10), 5146; https://doi.org/10.3390/ijms25105146 - 9 May 2024
Cited by 1 | Viewed by 921
Abstract
Malignant melanoma represents a form of skin cancer characterized by a bleak prognosis and heightened resistance to traditional therapies. Quercetin has demonstrated notable anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects across various cancer types. However, the intricate relationship between quercetin’s anti-cancer properties and ganglioside [...] Read more.
Malignant melanoma represents a form of skin cancer characterized by a bleak prognosis and heightened resistance to traditional therapies. Quercetin has demonstrated notable anti-carcinogenic, anti-inflammatory, anti-oxidant, and pharmacological effects across various cancer types. However, the intricate relationship between quercetin’s anti-cancer properties and ganglioside expression in melanoma remains incompletely understood. In this study, quercetin manifests specific anti-proliferative, anti-migratory, and cell-cycle arrest effects, inducing mitochondrial dysfunction and apoptosis in two melanoma cancer cell lines. This positions quercetin as a promising candidate for treating malignant melanoma. Moreover, our investigation indicates that quercetin significantly reduces the expression levels of ganglioside GD3 and its synthetic enzyme. Notably, this reduction is achieved through the inhibition of the FAK/paxillin/Akt signaling pathway, which plays a crucial role in cancer development. Taken together, our findings suggest that quercetin may be a potent anti-cancer drug candidate for the treatment of malignant melanoma. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 3842 KiB  
Article
Development of a Novel, Potent, and Selective Sialyltransferase Inhibitor for Suppressing Cancer Metastasis
by Han-En Tsai, Chia-Ling Chen, Tzu-Ting Chang, Chih-Wei Fu, Wei-Chia Chen, Ser John Lynon P. Perez, Pei-Wen Hsiao, Ming-Hong Tai and Wen-Shan Li
Int. J. Mol. Sci. 2024, 25(8), 4283; https://doi.org/10.3390/ijms25084283 - 12 Apr 2024
Viewed by 1424
Abstract
Sialyltransferase-catalyzed membrane protein and lipid glycosylation plays a vital role as one of the most abundant post-translational modifications and diversification reactions in eukaryotes. However, aberrant sialylation has been associated with cancer malignancy and metastasis. Sialyltransferases thus represent emerging targets for the development of [...] Read more.
Sialyltransferase-catalyzed membrane protein and lipid glycosylation plays a vital role as one of the most abundant post-translational modifications and diversification reactions in eukaryotes. However, aberrant sialylation has been associated with cancer malignancy and metastasis. Sialyltransferases thus represent emerging targets for the development of small molecule cancer drugs. Herein, we report the inhibitory effects of a recently discovered lithocholic acid derivative FCW393 on sialyltransferase catalytic activity, integrin sialyation, cancer-associated signal transduction, MDA-MB-231 and B16F10 cell migration and invasion, and in in vivo studies, on tumor growth, metastasis, and angiogenesis. FCW393 showed effective and selective inhibition of the sialyltransferases ST6GAL1 (IC50 = 7.8 μM) and ST3GAL3 (IC50 = 9.45 μM) relative to ST3GAL1 (IC50 > 400 μM) and ST8SIA4 (IC50 > 100 μM). FCW393 reduced integrin sialylation in breast cancer and melanoma cells dose-dependently and downregulated proteins associated with the integrin-regulated FAK/paxillin and GEF/Rho/ROCK pathways, and with the VEGF-regulated Akt/NFκB/HIF-1α pathway. FCW393 inhibited cell migration (IC50 = 2.6 μM) and invasion in in vitro experiments, and in in vivo studies of tumor-bearing mice, FCW393 reduced tumor size, angiogenesis, and metastatic potential. Based on its demonstrated selectivity, cell permeability, relatively low cytotoxicity (IC50 = 55 μM), and high efficacy, FCW393 shows promising potential as a small molecule experimental tool compound and a lead for further development of a novel cancer therapeutic. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

16 pages, 1071 KiB  
Review
Focal Adhesion’s Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction
by Simona Casarella, Federica Ferla, Dalila Di Francesco, Elena Canciani, Manuela Rizzi and Francesca Boccafoschi
Cells 2024, 13(8), 664; https://doi.org/10.3390/cells13080664 - 10 Apr 2024
Viewed by 1866
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in [...] Read more.
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli. Full article
(This article belongs to the Section Cell Motility and Adhesion)
Show Figures

Figure 1

12 pages, 1988 KiB  
Article
Dilation of Pregnant Rat Uterine Arteries with Phenols from Extra Virgin Olive Oil Is Endothelium-Dependent and Involves Calcium and Potassium Channels
by Milena Esposito, Mariacarmela Gatto, Marilyn J. Cipolla, Ira M. Bernstein and Maurizio Mandalà
Cells 2024, 13(7), 619; https://doi.org/10.3390/cells13070619 - 2 Apr 2024
Viewed by 1124
Abstract
During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there [...] Read more.
During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10−4 M) for nitric oxide synthases, ODQ (10−5 M) for guanylate cyclase, Verapamil (10−5 M) for the L-type calcium channel, Ryanodine (10−5 M) + 2-APB (3 × 10−5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10−5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE. Full article
(This article belongs to the Special Issue Signaling Pathways in Pregnancy)
Show Figures

Figure 1

14 pages, 3229 KiB  
Article
PFAS Modulate Osmotic Signaling Independent of Gravimetric Changes in the Rat Uterus
by Aaron Dixon, Evelyn G. Rowan, Allison N. Yackley and Erin P. Hines
Toxics 2024, 12(3), 170; https://doi.org/10.3390/toxics12030170 - 23 Feb 2024
Viewed by 1459
Abstract
Various PFAS have been identified as potential endocrine-disrupting chemicals due to estrogen receptor activation, impacts on puberty timing, or impacts on hormonally sensitive endpoints in fish. This study screened multiple PFAS in the rat uterotrophic assay to determine potential estrogenic effects on the [...] Read more.
Various PFAS have been identified as potential endocrine-disrupting chemicals due to estrogen receptor activation, impacts on puberty timing, or impacts on hormonally sensitive endpoints in fish. This study screened multiple PFAS in the rat uterotrophic assay to determine potential estrogenic effects on the uterus with PFAS exposure. This study also explored PFAS-dependent uterine signaling with an osmotic stress mRNA gene expression array. Briefly, Sprague–Dawley rats (26–39 days old) were ovariectomized, and uterine tissue was allowed to regress for a 3-week period of recovery. Animals were then exposed daily via oral gavage to PFAS for 4 days, and then uterine weight was determined. In contrast to the positive control estrogens, the PFAS tested (4:2, 6:2, and 8:2FTOH; perfluorooctanesulfonamide (PFOSA), perfluorononanoic acid (PFNA), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), nafion byproduct 2 (NBP2), 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8-diol) and 1H,1H,10H,10H-perfluorodecane-1,10-diol (FC10-diol)) caused no significant changes in the uterine weight. Hormonally active compounds can act as carcinogens, and because earlier rodent work has demonstrated that chronic PFOA exposure is associated with increased risk of uterine cancer, uterine mRNA gene expression was explored with an osmotic stress RT-qPCR array. PFAS exposure significantly upregulated multiple genes across the array, with PFOSA being the compound most similar to the reference estrogens (estradiol benzoate and ethinyl estradiol) in its expression pattern. Also, across all PFAS, pathway analysis revealed that the paxillin pathway, a pathway important in tumor suppressor gene SHP-2 signaling, was significantly upregulated with PFAS exposure. These results demonstrate that in vitro estrogen screens or impacts in fish may show different responses from direct impacts on mammalian uterine weight as assessed with the uterotrophic assay. This study also builds out new mechanisms that may contribute to understanding of carcinogenic changes seen in the uterus after PFAS exposure. Full article
Show Figures

Figure 1

17 pages, 2691 KiB  
Article
The BK Channel Limits the Pro-Inflammatory Activity of Macrophages
by Yihe Chen, Nikita Markov, Lea Gigon, Aref Hosseini, Shida Yousefi, Darko Stojkov and Hans-Uwe Simon
Cells 2024, 13(4), 322; https://doi.org/10.3390/cells13040322 - 9 Feb 2024
Viewed by 1244
Abstract
Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating [...] Read more.
Macrophages play a crucial role in the innate immune response, serving as key effector cells in the defense against pathogens. Although the role of the large-conductance voltage and calcium-activated potassium channel, also known as the KCa1.1 or BK channel, in regulating neurotransmitter release and smooth muscle contraction is well known, its potential involvement in immune regulation remains unclear. We employed BK-knockout macrophages and noted that the absence of a BK channel promotes the polarization of macrophages towards a pro-inflammatory phenotype known as M1 macrophages. Specifically, the absence of the BK channel resulted in a significant increase in the secretion of the pro-inflammatory cytokine IL-6 and enhanced the activity of extracellular signal-regulated kinases 1 and 2 (Erk1/2 kinases), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the transcription factor ATF-1 within M1 macrophages. Additionally, the lack of the BK channel promoted the activation of the AIM2 inflammasome without affecting the activation of the NLRC4 and NLRP3 inflammasomes. To further investigate the role of the BK channel in regulating AIM2 inflammasome activation, we utilized BK channel inhibitors, such as paxilline and iberiotoxin, along with the BK channel activator NS-11021. Pharmacological inactivation of the BK channel increased, and its stimulation inhibited IL-1β production following AIM2 inflammasome activation in wild-type macrophages. Moreover, wild-type macrophages displayed increased calcium influx when activated with the AIM2 inflammasome, whereas BK-knockout macrophages did not due to the impaired extracellular calcium influx upon activation. Furthermore, under conditions of a calcium-free medium, IL-1β production following AIM2 inflammasome activation was increased in both wild-type and BK-knockout macrophages. This suggests that the BK channel is required for the influx of extracellular calcium in macrophages, thus limiting AIM2 inflammasome activation. In summary, our study reveals a regulatory role of the BK channel in macrophages under inflammatory conditions. Full article
(This article belongs to the Special Issue Macrophage Activation and Regulation)
Show Figures

Figure 1

26 pages, 1552 KiB  
Review
Role of c-Src in Carcinogenesis and Drug Resistance
by Lukmon Raji, Angelina Tetteh and A. R. M. Ruhul Amin
Cancers 2024, 16(1), 32; https://doi.org/10.3390/cancers16010032 - 20 Dec 2023
Cited by 6 | Viewed by 2376
Abstract
The aberrant transformation of normal cells into cancer cells, known as carcinogenesis, is a complex process involving numerous genetic and molecular alterations in response to innate and environmental stimuli. The Src family kinases (SFK) are key components of signaling pathways implicated in carcinogenesis, [...] Read more.
The aberrant transformation of normal cells into cancer cells, known as carcinogenesis, is a complex process involving numerous genetic and molecular alterations in response to innate and environmental stimuli. The Src family kinases (SFK) are key components of signaling pathways implicated in carcinogenesis, with c-Src and its oncogenic counterpart v-Src often playing a significant role. The discovery of c-Src represents a compelling narrative highlighting groundbreaking discoveries and valuable insights into the molecular mechanisms underlying carcinogenesis. Upon oncogenic activation, c-Src activates multiple downstream signaling pathways, including the PI3K-AKT pathway, the Ras-MAPK pathway, the JAK-STAT3 pathway, and the FAK/Paxillin pathway, which are important for cell proliferation, survival, migration, invasion, metastasis, and drug resistance. In this review, we delve into the discovery of c-Src and v-Src, the structure of c-Src, and the molecular mechanisms that activate c-Src. We also focus on the various signaling pathways that c-Src employs to promote oncogenesis and resistance to chemotherapy drugs as well as molecularly targeted agents. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

16 pages, 10406 KiB  
Article
Extraciliary OFD1 Is Involved in Melanocyte Survival through Cell Adhesion to ECM via Paxillin
by Nan-Hyung Kim, Chang Hoon Lee and Ai-Young Lee
Int. J. Mol. Sci. 2023, 24(24), 17528; https://doi.org/10.3390/ijms242417528 - 15 Dec 2023
Viewed by 896
Abstract
Primary cilia play a significant role in influencing cell fate, including apoptosis in multiple cell types. In the lesional epidermis of vitiligo patients, a reduced number of ciliated cells was observed. Our study also revealed a downregulation of oral–facial digital syndrome type 1 [...] Read more.
Primary cilia play a significant role in influencing cell fate, including apoptosis in multiple cell types. In the lesional epidermis of vitiligo patients, a reduced number of ciliated cells was observed. Our study also revealed a downregulation of oral–facial digital syndrome type 1 (OFD1) in the affected skin of vitiligo patients. However, it remains unknown whether primary cilia are involved in the control of melanocyte apoptosis. While both intraflagellar transport 88 (IFT88) and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L) are associated with ciliogenesis in melanocytes, only the knockdown of OFD1, but not IFT88 and RPGRIP1L, resulted in increased melanocyte apoptosis. OFD1 knockdown led to a decrease in the expression of proteins involved in cell–extracellular matrix (ECM) interactions, including paxillin. The OFD1 amino acid residues 601-1012 interacted with paxillin, while the amino acid residues 1-601 were associated with ciliogenesis, suggesting that the OFD1 domains responsible for paxillin binding are distinct from those involved in ciliogenesis. OFD1 knockdown, but not IFT88 knockdown, inhibited melanocyte adhesion to the ECM, a defect that was restored by paxillin overexpression. In summary, our findings indicate that the downregulation of OFD1 induces melanocyte apoptosis, independent of any impairment in ciliogenesis, by reducing melanocyte adhesion to the ECM via paxillin. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

18 pages, 3615 KiB  
Article
Fyn-Mediated Paxillin Tyrosine 31 Phosphorylation Regulates Migration and Invasion of Breast Cancer Cells
by Ying Zhang, Huanyu Zheng, Ming Xu, Noriko Maeda, Ryouichi Tsunedomi, Hiroko Kishi, Hiroaki Nagano and Sei Kobayashi
Int. J. Mol. Sci. 2023, 24(21), 15980; https://doi.org/10.3390/ijms242115980 - 5 Nov 2023
Cited by 2 | Viewed by 1289
Abstract
Metastasis is the leading cause of death in breast cancer patients due to the lack of effective therapies. Elevated levels of paxillin expression have been observed in various cancer types, with tyrosine phosphorylation shown to play a critical role in driving cancer cell [...] Read more.
Metastasis is the leading cause of death in breast cancer patients due to the lack of effective therapies. Elevated levels of paxillin expression have been observed in various cancer types, with tyrosine phosphorylation shown to play a critical role in driving cancer cell migration. However, the specific impact of the distinct tyrosine phosphorylation events of paxillin in the progression of breast cancer remains to be fully elucidated. Here, we found that paxillin overexpression in breast cancer tissue is associated with a patient’s poor prognosis. Paxillin knockdown inhibited the migration and invasion of breast cancer cells. Furthermore, the phosphorylation of paxillin tyrosine residue 31 (Tyr31) was significantly increased upon the TGF-β1-induced migration and invasion of breast cancer cells. Inhibiting Fyn activity or silencing Fyn decreases paxillin Tyr31 phosphorylation. The wild-type and constitutively active Fyn directly phosphorylate paxillin Tyr31 in an in vitro system, indicating that Fyn directly phosphorylates paxillin Tyr31. Additionally, the non-phosphorylatable mutant of paxillin at Tyr31 reduces actin stress fiber formation, migration, and invasion of breast cancer cells. Taken together, our results provide direct evidence that Fyn-mediated paxillin Tyr31 phosphorylation is required for breast cancer migration and invasion, suggesting that targeting paxillin Tyr31 phosphorylation could be a potential therapeutic strategy for mitigating breast cancer metastasis. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Breast Cancer: Toward Advanced Therapy)
Show Figures

Figure 1

28 pages, 7140 KiB  
Article
Potential Biomarkers Associated with Prognosis and Trastuzumab Response in HER2+ Breast Cancer
by Ana Carla Castro-Guijarro, Angel Matias Sanchez and Marina Inés Flamini
Cancers 2023, 15(17), 4374; https://doi.org/10.3390/cancers15174374 - 1 Sep 2023
Cited by 2 | Viewed by 2065
Abstract
Breast cancer (BC) is the most common malignancy among women worldwide. Around 15–25% of BC overexpress the human epidermal growth factor receptor 2 (HER2), which is associated with a worse prognosis and shortened disease-free survival. Therefore, anti-HER2 therapies have been developed, such as [...] Read more.
Breast cancer (BC) is the most common malignancy among women worldwide. Around 15–25% of BC overexpress the human epidermal growth factor receptor 2 (HER2), which is associated with a worse prognosis and shortened disease-free survival. Therefore, anti-HER2 therapies have been developed, such as monoclonal antibodies (trastuzumab, Tz), antibody–drug conjugates (ado-trastuzumab emtansine, T-DM1), and pharmacological inhibitors of tyrosine kinase activity (lapatinib, Lp). Although Tz, the standard treatment, has significantly improved the prognosis of patients, resistance still affects a significant population of women and is currently a major challenge in clinical oncology. Therefore, this study aims to identify potential biomarkers to predict disease progression (prognostic markers) and the efficacy of Tz treatment (predictive markers) in patients with HER2+ BC. We hypothesize that proteins involved in cell motility are implicated in Tz-resistance. We aim to identify alterations in Tz-resistant cells to guide more efficient oncologic decisions. By bioinformatics, we selected candidate proteins and determined how their expression, localization, and the process they modulate were affected by anti-HER2 treatments. Next, using HER2+ BC patients’ data, we assessed these proteins as prognostic and predictive biomarkers. Finally, using Tz-resistant cells, we evaluated their roles in Tz response. We identified deregulated genes associated with cell motility in Tz/T-DM1-resistant vs. -sensitive cells. We showed that Tz, T-DM1, and Lp decrease cell viability, and their effect is enhanced in combinations. We determined synergism between Tz/T-DM1 and Lp, making possible a dose reduction of each drug to achieve the same therapeutic effect. We found that combinations (Tz/T-DM1 + Lp) efficiently inhibit cell adhesion and migration. Furthermore, we demonstrated the induction of FAK nuclear and cortactin peri-nuclear localization after T-DM1, Lp, and Tz/T-DM1 + Lp treatments. In parallel, we observed that combined treatments downregulate proteins essential for metastatic dissemination, such as SRC, FAK, and paxillin. We found that low vinculin (VCL) and cortactin (CTTN) mRNA expression predicts favorable survival rates and has diagnostic value to discriminate between Tz-sensible and Tz-resistant HER2+ BC patients. Finally, we confirmed that vinculin and cortactin are overexpressed in Tz-resistance cells, SKBR3-RTz. Moreover, we found that Tz plus FAK/paxillin/cortactin-silencing reduced cell adhesion/migration capacity in Tz-sensitive and -resistant cells. In conclusion, we demonstrate that combined therapies are encouraging since low doses of Tz/T-DM1 + Lp inhibit metastatic processes by downregulating critical protein expression and affecting its subcellular localization. We propose that vinculin and cortactin might contribute to Tz-sensibility/resistance in BC cells. Finally, we identify potential prognostic and predictive biomarkers that are promising for personalized BC management that would allow efficient patient selection in order to mitigate resistance and maximize the safety and efficacy of anti-HER2 therapies. Full article
(This article belongs to the Section Cancer Biomarkers)
Show Figures

Figure 1

13 pages, 3245 KiB  
Article
Evaluation of Paxillin Expression in Epithelial Dysplasia, Oral Squamous Cell Carcinoma, Lichen Planus with and without Dysplasia, and Hyperkeratosis: A Retrospective Cross-Sectional Study
by Seyedeh Sara Aghili, Razieh Zare and Alireza Jahangirnia
Diagnostics 2023, 13(15), 2476; https://doi.org/10.3390/diagnostics13152476 - 25 Jul 2023
Cited by 4 | Viewed by 1157
Abstract
Background: Paxillin is a cytoskeletal protein involved in the pathogenesis of several types of cancers. However, the roles of paxillin in epithelial dysplasia (ED), oral squamous cell carcinoma (OSCC), oral lichen planus with dysplasia (OLPD), hyperkeratosis (HK), and oral lichen planus (OLP) have [...] Read more.
Background: Paxillin is a cytoskeletal protein involved in the pathogenesis of several types of cancers. However, the roles of paxillin in epithelial dysplasia (ED), oral squamous cell carcinoma (OSCC), oral lichen planus with dysplasia (OLPD), hyperkeratosis (HK), and oral lichen planus (OLP) have remained unnoticed in the literature. This study aimed to evaluate its attainable functions in the pathogenesis and malignant transformation of potentially malignant oral epithelium and benign lesions. Methods: In this retrospective cross-sectional study, paxillin expression was investigated in 99 tissue samples, including 18 cases of OSCC, 21 ED, 23 OLP, 21 OLPD, and 16 cases of HK. The tissue sections also underwent immunohistochemical paxillin staining using 3,3-diaminobenzidine (DAB) chromogen. The intensity, location, and percentage of staining were examined across all groups. Data were analyzed using the Shapiro–Wilk test, ANOVA, Pearson chi-square, Kruskal–Wallis, and Dunn’s post hoc test. Results: The cytoplasmic percentage and intensity staining of Paxillin expression were evident in the central/suprabasal and basal/peripheral layers of all the obtained samples. The final staining score was significantly higher in OSCC and dysplasia compared to HK and OLP (p = 0.004). It was found that paxillin expression is associated with the grade of dysplastic samples (p < 0.001). Conclusion: The present study provides evidence that paxillin may be involved in the pathogenesis of OSCC and the development and progression of dysplastic tissue, since the paxillin expression was higher than that of HK and OLP. Full article
(This article belongs to the Special Issue Diagnosis and Management of Dental Diseases)
Show Figures

Figure 1

18 pages, 3473 KiB  
Article
A VEGFB-Based Peptidomimetic Inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK Signaling and Elicits Apoptotic, Antiangiogenic, and Antitumor Activities
by Mohadeseh Namjoo, Hossein Ghafouri, Elham Assareh, Amir Reza Aref, Ebrahim Mostafavi, Ali Hamrahi Mohsen, Saeed Balalaie, Sylvain Broussy and S. Mohsen Asghari
Pharmaceuticals 2023, 16(6), 906; https://doi.org/10.3390/ph16060906 - 20 Jun 2023
Cited by 7 | Viewed by 2185
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear [...] Read more.
Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3, respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In 4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade. The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1 and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that binding regions shared by VEGF family members may be important in developing novel pan-VEGFR inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases. Full article
Show Figures

Figure 1

17 pages, 6457 KiB  
Article
Cdk4 Regulates Glioblastoma Cell Invasion and Stemness and Is Target of a Notch Inhibitor Plus Resveratrol Combined Treatment
by Francesca Giordano, Maria D’Amico, Francesca Ida Montalto, Rocco Malivindi, Adele Chimento, Francesca Luisa Conforti, Vincenzo Pezzi, Maria Luisa Panno, Sebastiano Andò and Francesca De Amicis
Int. J. Mol. Sci. 2023, 24(12), 10094; https://doi.org/10.3390/ijms241210094 - 13 Jun 2023
Cited by 5 | Viewed by 1873
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by [...] Read more.
Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by the abnormal activation of a number of signaling pathways. In this study, we found that in GBM cells, treatment with low toxicity doses of the γ-secretase inhibitor RO4929097 (GSI), blocking the Notch pathway activity, in combination with resveratrol (RSV) was able to reverse the basal mesenchymal phenotype to an epithelial-like phenotype, affecting invasion and stemness interplay. The mechanism was dependent on cyclin D1 and cyclin-dependent kinase (CDK4), leading to a reduction of paxillin (Pxn) phosphorylation. Consequently, we discovered the reduced interaction of Pxn with vinculin (Vcl), which, during cell migration, transmits the intracellular forces to the extracellular matrix. The exogenous expression of a constitutively active Cdk4 mutant prevented the RSV + GSI inhibitory effects in GBM cell motility/invasion and augmented the expression of stemness-specific markers, as well as the neurosphere sizes/forming abilities in untreated cells. In conclusion, we propose that Cdk4 is an important regulator of GBM stem-like phenotypes and invasive capacity, highlighting how the combined treatment of Notch inhibitors and RSV could be prospectively implemented in the novel therapeutic strategies to target Cdk4 for these aggressive brain tumors. Full article
(This article belongs to the Special Issue Notch Signaling in Health and Disease)
Show Figures

Figure 1

Back to TopTop