Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,169)

Search Parameters:
Keywords = phospholipase A2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1780 KiB  
Article
Inhibitory Effect of Dipeptides Containing Acidic Amino Acid Residue on Degranulation of RBL-2H3 Cells
by Kosuke Nishi, Taiki Hirakawa, Mitsumasa Izumi, Naoki Kageyama, Senri Yurue, Akari Ozaki, Yuki Toga, Momoko Ishida and Takuya Sugahara
Appl. Sci. 2024, 14(16), 7048; https://doi.org/10.3390/app14167048 - 11 Aug 2024
Viewed by 560
Abstract
Upon degranulation, basophils and mast cells secrete an array of inflammatory mediators, including histamine, which leads to not only allergic inflammation but also other inflammatory diseases. We previously reported that an aqueous extract from enzyme-treated, dried sardine inhibits the degranulation of RBL-2H3 cells [...] Read more.
Upon degranulation, basophils and mast cells secrete an array of inflammatory mediators, including histamine, which leads to not only allergic inflammation but also other inflammatory diseases. We previously reported that an aqueous extract from enzyme-treated, dried sardine inhibits the degranulation of RBL-2H3 cells and attenuates the symptoms of Japanese cedar pollinosis in mice. This study evaluated an antiallergic effect of dipeptides containing acidic amino acid residue in an antigen-induced degranulation assay using RBL-2H3 cells. The result showed that acidic amino acid residue-containing dipeptides inhibit the degranulation of RBL-2H3 cells without cytotoxicity. Additionally, L-histidyl-L-glutamic acid (His-Glu), one of the acidic amino acid residue-containing dipeptides tested in this study, inhibited calcium ionophore-induced degranulation. We also found that His-Glu suppressed microtubule reorganization in RBL-2H3 cells after antigen stimulation. His-Glu slightly, but not significantly, suppressed the elevation of cytosolic calcium ion concentration leading to degranulation. Immunoblot analysis revealed that His-Glu significantly suppressed the phosphorylation of phosphoinositide 3-kinase and Akt, but not that of Syk or phospholipase Cγ. Overall results suggest that acidic amino acid residue-containing dipeptides can be used as food ingredients with an antiallergic effect. Full article
Show Figures

Figure 1

19 pages, 2780 KiB  
Article
Comparative Analysis of Tentacle Extract and Nematocyst Venom: Toxicity, Mechanism, and Potential Intervention in the Giant Jellyfish Nemopilema nomurai
by Xiao-Yu Geng, Ming-Ke Wang, Xiao-Chuan Hou, Zeng-Fa Wang, Yi Wang, Die-Yu Zhang, Blessing Danso, Dun-Biao Wei, Zhao-Yong Shou, Liang Xiao and Ji-Shun Yang
Mar. Drugs 2024, 22(8), 362; https://doi.org/10.3390/md22080362 - 9 Aug 2024
Viewed by 406
Abstract
The giant jellyfish Nemopilema nomurai sting can cause local and systemic reactions; however, comparative analysis of the tentacle extract (TE) and nematocyst venom extract (NV), and its toxicity, mechanism, and potential intervention are still limited. This study compared venom from TE and NV [...] Read more.
The giant jellyfish Nemopilema nomurai sting can cause local and systemic reactions; however, comparative analysis of the tentacle extract (TE) and nematocyst venom extract (NV), and its toxicity, mechanism, and potential intervention are still limited. This study compared venom from TE and NV for their composition, toxicity, and efficacy in vitro and in vivo used RAW264.7 cells and ICR mice. A total of 239 and 225 toxin proteins were identified in TE and NV by proteomics, respectively. Pathological analysis revealed that TE and NV caused heart and liver damage through apoptosis, necrosis, and inflammation, while TE exhibited higher toxicity ex vivo and in vivo. Biochemical markers indicated TE and NV elevated creatine kinase, lactatedehydrogenase, and aspartate aminotransferase, with the TE group showing a more significant increase. Transcriptomics and Western blotting indicated both venoms increased cytokines expression and MAPK signaling pathways. Additionally, 1 mg/kg PACOCF3 (the phospholipase A2 inhibitor) improved survival from 16.7% to 75% in mice. Our results indicate that different extraction methods impact venom activities, tentacle autolysis preserves toxin proteins and their toxicity, and PACOCF3 is a potential antidote, which establishes a good extraction method of jellyfish venom, expands our understanding of jellyfish toxicity, mechanism, and provides a promising intervention. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Marine Toxins")
Show Figures

Graphical abstract

22 pages, 3434 KiB  
Article
Antinociceptive and Anti-Inflammatory Activities of Acetonic Extract from Bougainvillea x buttiana (var. Rose)
by Gabriela Castañeda-Corral, Mayra Cedillo-Cortezano, Magdalena Aviles-Flores, Misael López-Castillo, Juan José Acevedo-Fernández and Vera L. Petricevich
Pharmaceuticals 2024, 17(8), 1037; https://doi.org/10.3390/ph17081037 - 6 Aug 2024
Viewed by 464
Abstract
Background:Bougainvillea x buttiana is an ornamental plant with antioxidant, anti-inflammatory, and cytotoxic activities, which has been traditionally used to treat respiratory diseases. This study aimed to investigate whether the acetonic extract of Bougainvillea x buttiana var. Rose (BxbRAE-100%) has analgesic and anti-inflammatory [...] Read more.
Background:Bougainvillea x buttiana is an ornamental plant with antioxidant, anti-inflammatory, and cytotoxic activities, which has been traditionally used to treat respiratory diseases. This study aimed to investigate whether the acetonic extract of Bougainvillea x buttiana var. Rose (BxbRAE-100%) has analgesic and anti-inflammatory properties and its potential action mechanisms. Methods: Analgesic and anti-inflammatory activities were evaluated using three murine pain models and two acute inflammation models. In vitro, the ability of the extract to inhibit proteolytic activity and the activities of the enzymes phospholipase A2 (PLA2) and cyclooxygenase (COX) were evaluated. In silico analysis was performed to predict the physicochemical and Absorption, distribution, metabolism, and excretion (ADME) profiles of the compounds previously identified in BxbRAE-100%. Results: In vivo BxbRAE-100% decreased the nociceptive behaviors in the writhing model, the tail immersion, and the formalin test, suggesting that the extract has the potential to relieve pain at peripheral and central levels. Additionally, topical or oral BxbRAE-100% treatment reduced dose-dependent 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation and carrageenan-induced paw edema, respectively. In vitro, BxbRAE-100% significantly inhibited proteolytic activity and PLA2, COX-1 and COX-2 activities. In silico, the compounds previously identified in BxbRAE-100% met Lipinski’s rule of five and showed adequate ADME properties. Conclusions: These results support the use of B. x buttiana in Traditional Mexican Medicine and highlight its potential for the development of new treatments for pain and inflammation. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Graphical abstract

59 pages, 2461 KiB  
Review
From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling
by Fabienne Briand-Mésange, Isabelle Gennero, Juliette Salles, Stéphanie Trudel, Lionel Dahan, Jérôme Ausseil, Bernard Payrastre, Jean-Pierre Salles and Hugues Chap
Molecules 2024, 29(15), 3694; https://doi.org/10.3390/molecules29153694 - 4 Aug 2024
Viewed by 989
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing [...] Read more.
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6–7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders. Full article
(This article belongs to the Special Issue Bioactive Lipids in Inflammatory Diseases)
Show Figures

Figure 1

8 pages, 837 KiB  
Brief Report
Venom Ex Machina? Exploring the Potential of Cell-Free Protein Production for Venom Biodiscovery
by Anne Paas, Josephine Dresler, Lea Talmann, Andreas Vilcinskas and Tim Lüddecke
Int. J. Mol. Sci. 2024, 25(15), 8286; https://doi.org/10.3390/ijms25158286 - 29 Jul 2024
Viewed by 448
Abstract
Venoms are a complex cocktail of potent biomolecules and are present in many animal lineages. Owed to their translational potential in biomedicine, agriculture and industrial applications, they have been targeted by several biodiscovery programs in the past. That said, many venomous animals are [...] Read more.
Venoms are a complex cocktail of potent biomolecules and are present in many animal lineages. Owed to their translational potential in biomedicine, agriculture and industrial applications, they have been targeted by several biodiscovery programs in the past. That said, many venomous animals are relatively small and deliver minuscule venom yields. Thus, the most commonly employed activity-guided biodiscovery pipeline cannot be applied effectively. Cell-free protein production may represent an attractive tool to produce selected venom components at high speed and without the creation of genetically modified organisms, promising rapid and highly efficient access to biomolecules for bioactivity studies. However, these methods have only sporadically been used in venom research and their potential remains to be established. Here, we explore the ability of a prokaryote-based cell-free system to produce a range of venom toxins of different types and from various source organisms. We show that only a very limited number of toxins could be expressed in small amounts. Paired with known problems to facilitate correct folding, our preliminary investigation underpins that venom-tailored cell-free systems probably need to be developed before this technology can be employed effectively in venom biodiscovery. Full article
(This article belongs to the Special Issue Versatility of Protein Synthesis in a Test Tube)
Show Figures

Figure 1

21 pages, 4073 KiB  
Article
Globoside Is an Essential Intracellular Factor Required for Parvovirus B19 Endosomal Escape
by Jan Bieri, Corinne Suter, Oliver Caliaro, Seraina Bartetzko, Cornelia Bircher and Carlos Ros
Cells 2024, 13(15), 1254; https://doi.org/10.3390/cells13151254 - 25 Jul 2024
Viewed by 406
Abstract
Human parvovirus B19 (B19V), like most parvoviruses, possesses phospholipase A2 (PLA2) activity, which is thought to mediate endosomal escape by membrane disruption. Here, we challenge this model and find evidence for a mechanism of B19V entry mediated by the glycosphingolipid globoside without endosome [...] Read more.
Human parvovirus B19 (B19V), like most parvoviruses, possesses phospholipase A2 (PLA2) activity, which is thought to mediate endosomal escape by membrane disruption. Here, we challenge this model and find evidence for a mechanism of B19V entry mediated by the glycosphingolipid globoside without endosome disruption and retrograde transport to the Golgi. We show that B19V PLA2 activity requires specific calcium levels and pH conditions that are not optimal in endosomes. Accordingly, endosomal membrane integrity was maintained during B19V entry. Furthermore, endosomes remained intact when loaded with MS2 bacteriophage particles pseudotyped with multiple B19V PLA2 subunits, providing superior enzymatic potential compared to native B19V. In globoside knockout cells, incoming viruses are arrested in the endosomal compartment and the infection is blocked. Infection can be rescued by promoting endosomal leakage with polyethyleneimine (PEI), demonstrating the essential role of globoside in facilitating endosomal escape. Incoming virus colocalizes with Golgi markers and interfering with Golgi function blocks infection, suggesting that globoside-mediated entry involves the Golgi compartment, which provides conditions favorable for the lipolytic PLA2. Our study challenges the current model of B19V entry and identifies globoside as an essential intracellular receptor required for endosomal escape. Full article
Show Figures

Figure 1

20 pages, 1983 KiB  
Review
Recent Progress in Multifunctional Stimuli-Responsive Combinational Drug Delivery Systems for the Treatment of Biofilm-Forming Bacterial Infections
by Davoodbasha MubarakAli, Kandasamy Saravanakumar, Archchana Ganeshalingam, Sugavaneswaran Siva Santosh, Shanali De Silva, Jung Up Park, Chang-Min Lee, Su-Hyeon Cho, Song-Rae Kim, Namki Cho, Gobika Thiripuranathar and SeonJu Park
Pharmaceutics 2024, 16(8), 976; https://doi.org/10.3390/pharmaceutics16080976 - 24 Jul 2024
Viewed by 591
Abstract
Drug-resistant infectious diseases pose a substantial challenge and threat to medical regimens. While adaptive laboratory evolution provides foresight for encountering such situations, it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for overcoming these hurdles. Multi-stimuli responsive DDSs are particularly [...] Read more.
Drug-resistant infectious diseases pose a substantial challenge and threat to medical regimens. While adaptive laboratory evolution provides foresight for encountering such situations, it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for overcoming these hurdles. Multi-stimuli responsive DDSs are particularly effective due to their reduced background leakage and targeted drug delivery to specific host sites for pathogen elimination. Bacterial infections create an acidic state in the microenvironment (pH: 5.0–5.5), which differs from normal physiological conditions (pH: 7.4). Infected areas are characterized by the overexpression of hyaluronidase, gelatinase, phospholipase, and other virulence factors. Consequently, several effective stimuli-responsive DDSs have been developed to target bacterial pathogens. Additionally, biofilms, structured communities of bacteria encased in a self-produced polymeric matrix, pose a significant challenge by conferring resistance to conventional antimicrobial treatments. Recent advancements in nano-drug delivery systems (nDDSs) show promise in enhancing antimicrobial efficacy by improving drug absorption and targeting within the biofilm matrix. nDDSs can deliver antimicrobials directly to the biofilm, facilitating more effective eradication of these resilient bacterial communities. Herein, this review examines challenges in DDS development, focusing on enhancing antibacterial activity and eradicating biofilms without adverse effects. Furthermore, advances in immune system modulation and photothermal therapy are discussed as future directions for the treatment of bacterial diseases. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems, 2nd Edition)
Show Figures

Graphical abstract

15 pages, 2994 KiB  
Article
Venomics of Scorpion Ananteris platnicki (Lourenço, 1993), a New World Buthid That Inhabits Costa Rica and Panama
by Cecilia Díaz, Bruno Lomonte, Arturo Chang-Castillo, Fabián Bonilla, Adriana Alfaro-Chinchilla, Felipe Triana, Diego Angulo, Julián Fernández and Mahmood Sasa
Toxins 2024, 16(8), 327; https://doi.org/10.3390/toxins16080327 - 23 Jul 2024
Viewed by 519
Abstract
Ananteris is a scorpion genus that inhabits dry and seasonal areas of South and Central America. It is located in a distinctive morpho-group of Buthids, the ‘Ananteris group’, which also includes species distributed in the Old World. Because of the lack of [...] Read more.
Ananteris is a scorpion genus that inhabits dry and seasonal areas of South and Central America. It is located in a distinctive morpho-group of Buthids, the ‘Ananteris group’, which also includes species distributed in the Old World. Because of the lack of information on venom composition, the study of Ananteris species could have biological and medical relevance. We conducted a venomics analysis of Ananteris platnicki, a tiny scorpion that inhabits Panama and Costa Rica, which shows the presence of putative toxins targeting ion channels, as well as proteins with similarity to hyaluronidases, proteinases, phospholipases A2, members of the CAP-domain family, and hemocyanins, among others. Venom proteolytic and hyaluronidase activities were corroborated. The determination of the primary sequences carried out by mass spectrometry evidences that several peptides are similar to the toxins present in venoms from Old World scorpion genera such as Mesobuthus, Lychas, and Isometrus, but others present in Tityus and Centruroides toxins. Even when this venom displays the characteristic protein families found in all Buthids, with a predominance of putative Na+-channel toxins and proteinases, some identified partial sequences are not common in venoms of the New World species, suggesting its differentiation into a distinctive group separated from other Buthids. Full article
Show Figures

Figure 1

16 pages, 2880 KiB  
Article
Tumoral Malignancy Decreases Coupled with Higher ROS and Lipid Peroxidation in HCT116 Colon Cancer Cells upon Loss of PRDX6
by Daniel J. Lagal, Antonio M. Montes-Osuna, Alberto Ortiz-Olivencia, Candela Arribas-Parejas, Ángel Ortiz-Alcántara, Cristina Pescuezo-Castillo, José Antonio Bárcena, Carmen Alicia Padilla and Raquel Requejo-Aguilar
Antioxidants 2024, 13(7), 881; https://doi.org/10.3390/antiox13070881 - 22 Jul 2024
Viewed by 673
Abstract
Peroxiredoxin 6 (PRDX6) is an atypical member of the peroxiredoxin family that presents not only peroxidase but also phospholipase A2 and lysophosphatidylcholine acyl transferase activities able to act on lipid hydroperoxides of cell membranes. It has been associated with the proliferation and invasive [...] Read more.
Peroxiredoxin 6 (PRDX6) is an atypical member of the peroxiredoxin family that presents not only peroxidase but also phospholipase A2 and lysophosphatidylcholine acyl transferase activities able to act on lipid hydroperoxides of cell membranes. It has been associated with the proliferation and invasive capacity of different tumoral cells including colorectal cancer cells, although the effect of its removal in these cells has not been yet studied. Here, using CRISPR/Cas9 technology, we constructed an HCT116 colorectal cancer cell line knockout for PRDX6 to study whether the mechanisms described for other cancer cells in terms of proliferation, migration, and invasiveness also apply in this tumoral cell line. HCT116 cells lacking PRDX6 showed increased ROS and lipid peroxidation, a decrease in the antioxidant response regulator NRF2, mitochondrial dysfunction, and increased sensitivity to ferroptosis. All these alterations lead to a decrease in proliferation, migration, and invasiveness in these cells. Furthermore, the reduced migratory and invasive capacity of HCT116 cancer cells is consistent with the observed cadherin switch and decrease in pro-invasive proteins such as MMPs. Therefore, the mechanism behind the effects of loss of PRDX6 in HCT116 cells could differ from that in HepG2 cells which is coherent with the fact that the correlation of PRDX6 expression with patient survival is different in hepatocellular carcinomas. Nonetheless, our results point to this protein as a good therapeutic target also for colorectal cancer. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Graphical abstract

13 pages, 1279 KiB  
Review
Melatonin as a Circadian Marker for Plasmodium Rhythms
by Bárbara K. M. Dias, Abhinab Mohanty and Célia R. S. Garcia
Int. J. Mol. Sci. 2024, 25(14), 7815; https://doi.org/10.3390/ijms25147815 - 17 Jul 2024
Viewed by 478
Abstract
Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the [...] Read more.
Plasmodium, a digenetic parasite, requires a host and a vector for its life cycle completion. Most Plasmodium species display circadian rhythmicity during their intraerythrocytic cycle within the host, aiding in immune evasion. This rhythmicity, however, diminishes in in vitro cultures, highlighting the importance of host-derived signals for synchronizing the parasite’s asexual cycle. Studies indicate a species–specific internal clock in Plasmodium, dependent on these host signals. Melatonin, a hormone the pineal gland produces under circadian regulation, impacts various physiological functions and is extensively reviewed as the primary circadian marker affecting parasite rhythms. Research suggests that melatonin facilitates synchronization through the PLC-IP3 signaling pathway, activating phospholipase C, which triggers intracellular calcium release and gene expression modulation. This evidence strongly supports the role of melatonin as a key circadian marker for parasite synchronization, presenting new possibilities for targeting the melatonin pathway when developing novel therapeutic approaches. Full article
(This article belongs to the Special Issue Molecular Advances in Circadian Rhythm and Metabolism)
Show Figures

Graphical abstract

13 pages, 618 KiB  
Article
Novel Plasma Biomarkers Associated with Future Peripheral Atherosclerotic Disease and Abdominal Aortic Aneurysm—Insights from Contemporary Prospective Studies from the Malmö Diet and Cancer Study
by Stefan Acosta, Shahab Fatemi, Moncef Zarrouk and Anders Gottsäter
Biomolecules 2024, 14(7), 844; https://doi.org/10.3390/biom14070844 - 13 Jul 2024
Viewed by 569
Abstract
Introduction: The potential utility of inflammatory and hemodynamic plasma biomarkers for the prediction of incident lower extremity arterial disease (LEAD), carotid artery stenosis (CAS), isolated atherosclerotic disease without concomitant abdominal aortic aneurysm (AAA), and isolated AAA without concomitant atherosclerotic disease has not yet [...] Read more.
Introduction: The potential utility of inflammatory and hemodynamic plasma biomarkers for the prediction of incident lower extremity arterial disease (LEAD), carotid artery stenosis (CAS), isolated atherosclerotic disease without concomitant abdominal aortic aneurysm (AAA), and isolated AAA without concomitant atherosclerotic disease has not yet been integrated in clinical practice. The main objective of this prospective study was to find predictive plasma biomarkers for cardiovascular disease and to evaluate differences in plasma biomarker profiles between asymptomatic and symptomatic CAS, as well as between isolated atherosclerotic disease and isolated AAA. Methods: Blood samples collected at baseline from participants in the prospective Malmö Diet and Cancer study (MDCS) cardiovascular cohort (n = 5550 middle-aged individuals; baseline 1991–1994) were used for plasma biomarker analysis. Validation of each incident cardiovascular diagnosis was performed by random sampling. Cox regression analysis was used to calculate hazard ratios (HRs) per one standard deviation increment of each respective log-transformed plasma biomarker with 95% confidence intervals (CI). Results: Adjusted lipoprotein-associated phospholipase A2 (Lp-PLA2) activity (HR 1.33; CI 1.17–1.52) and mass (HR 1.20; CI 1.05–1.37), C-reactive protein (CRP) (HR 1.55; CI 1.36–1.76), copeptin (HR 1.46; CI 1.19–1.80), N-terminal pro-B-type natriuretic peptide (N-BNP) (HR 1.28; 1.11–1.48), and cystatin C (HR 1.19; 95% 1.10–1.29) were associated with incident symptomatic LEAD. Adjusted N-BNP (HR 1.59; CI 1.20–2.11), mid-regional proadrenomedullin (HR 1.40; CI 1.13–1.73), cystatin C (HR 1.21; CI 1.02–1.43), and CRP (HR 1.53; CI 1.13–1.73) were associated with incident symptomatic but not asymptomatic CAS. Adjusted HR was higher for Lp-PLA2 (mass) for incident isolated AAA compared to for isolated atherosclerotic disease. Conclusions: Plasma biomarker profile data support that subclinical vascular inflammation and cardiovascular stress seem to be relevant for the development of atherosclerotic disease and AAA. Full article
(This article belongs to the Special Issue Emerging Biomarkers Discovery for Molecular Diagnostics)
Show Figures

Figure 1

14 pages, 12506 KiB  
Article
Mannose-Binding Lectin Deposition in Membranous Nephropathy and Differentiation of Primary from Secondary Forms
by Irina Zdravkova, Eduard Tilkiyan and Desislava Bozhkova
Int. J. Mol. Sci. 2024, 25(14), 7659; https://doi.org/10.3390/ijms25147659 - 12 Jul 2024
Viewed by 490
Abstract
The differentiation between primary and secondary forms of membranous nephropathy (MN) is a cornerstone that is necessary for adequate decision making regarding the treatment options and behavior of each specific case. Kidney biopsy and antibody results can be controversial, and a unique biomarker [...] Read more.
The differentiation between primary and secondary forms of membranous nephropathy (MN) is a cornerstone that is necessary for adequate decision making regarding the treatment options and behavior of each specific case. Kidney biopsy and antibody results can be controversial, and a unique biomarker has still not been found. Background and Objectives: We investigated the lack of mannose-binding lectin (MBL) deposition in patients with secondary MNs (sMNs) with the presence of IgG4 deposition in relation to the presence of MBL deposition in patients with primary MNs (pMNs). We also established a connection between the stage of MN and MBL deposition. Materials and Methods: Materials from 72 renal biopsies with proven MN were used for immunohistochemistry staining (IHC) for the phospholipase A2 receptor (PLA2R), immunoglobulin subtype IgG4, and MBL. Patients were separated into one of the following three groups: primary MN (pMN), idiopathic MN (iMN), and secondary MN (sMN). Serum antibodies for PLA2R and thrombospondin type-I-domain-containing 7A (THSD7A) were also used for the precise evaluation of the type of MN, as well as for detecting positivity for PLA2R using IHC. Which stage of MN was present in relation to the deposition of MBL was evaluated. Results: In total, 50 patients were positive for IgG4, 34 with pMN, 12 with iMN, and 4 with sMN. A total of 20 patients were positive for MBL, 14 with pMN and 6 with iMN; no MBL deposits were found in patients with sMN. MBL positivity was predominantly present in the first two stages of MN, with a gradual reduction in the later stages. Conclusions: The activation of the lectin–complement pathway occurs in the early stages of the disease and is associated with the deposition of IgG4; IgG4 deposition is present in sMN, but there is no MBL deposition. IgG4 cannot be used for the differentiation of primary from secondary MNs, but the lack of MBL can be used as a marker for sMN in the early stages of the disease. Full article
Show Figures

Figure 1

18 pages, 3594 KiB  
Article
Proteomics and Its Combined Analysis with Transcriptomics: Liver Fat-Lowering Effect of Taurine in High-Fat Fed Grouper (Epinephelus coioides)
by Yu Zhou, Fakai Bai, Ruyi Xiao, Mingfan Chen, Yunzhang Sun and Jidan Ye
Animals 2024, 14(14), 2039; https://doi.org/10.3390/ani14142039 - 11 Jul 2024
Viewed by 491
Abstract
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) [...] Read more.
In order to understand the intervention effect of taurine on liver fat deposition induced by high fat intake in the orange-spotted grouper (Epinephelus coioides), we performed proteomic analysis and association analysis with previously obtained transcriptomic data. Three isoproteic (47% crude protein) diets were designed to contain two levels of fat and were named as the 10% fat diet (10F), 15% fat diet (15F), and 15% fat with 1% taurine (15FT). The 10F diet was used as the control diet. After 8 weeks of feeding, the 15F diet exhibited comparable weight gain, feed conversion ratio, and hepatosomatic index as the 10F diet, but the former increased liver fat content vs. the latter. Feeding with the 15FT diet resulted in an improvement in weight gain and a reduction in feed conversion ratio, hepatosomatic index, and liver fat content compared with feeding the 15F diet. When comparing liver proteomic data between the 15F and 15FT groups, a total of 133 differentially expressed proteins (DEPs) were identified, of which 51 were upregulated DEPs and 82 were downregulated DEPs. Among these DEPs, cholesterol 27-hydroxylase, phosphatidate phosphatase LPIN, phosphatidylinositol phospholipase C, and 6-phosphofructo-2-kinase were further screened out and were involved in primary bile acid biosynthesis, glycerolipid metabolism, the phosphatidylinositol signaling system, and the AMPK signaling pathway as key DEPs in terms of alleviating liver fat deposition of taurine in high-fat fed fish. With the association analysis of transcriptomic and proteomic data through KEGG, three differentially expressed genes (atp1a, arf1_2, and plcd) and four DEPs (CYP27α1, LPIN, PLCD, and PTK2B) were co-enriched into five pathways related to fat metabolism including primary bile acid synthesis, bile secretion, glycerolipid metabolism, phospholipid D signaling, or/and phosphatidylinositol signaling. The results showed that dietary taurine intervention could trigger activation of bile acid biosynthesis and inhibition of triglyceride biosynthesis, thereby mediating the liver fat-lowering effects in high-fat fed orange-spotted grouper. The present study contributes some novel insight into the liver fat-lowering effects of dietary taurine in high-fat fed groupers. Full article
(This article belongs to the Special Issue Novel Insights into Lipid Metabolism in Aquatic Animals)
Show Figures

Figure 1

18 pages, 3234 KiB  
Article
Melanocortin-4 Receptor PLC Activation Is Modulated by an Interaction with the Monocarboxylate Transporter 8
by Larissa Anthofer, Philipp Gmach, Zeynep Cansu Uretmen Kagiali, Gunnar Kleinau, Jonas Rotter, Robert Opitz, Patrick Scheerer, Annette G. Beck-Sickinger, Philipp Wolf, Heike Biebermann, Ingo Bechmann, Peter Kühnen, Heiko Krude and Sarah Paisdzior
Int. J. Mol. Sci. 2024, 25(14), 7565; https://doi.org/10.3390/ijms25147565 - 10 Jul 2024
Viewed by 594
Abstract
The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin–melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like [...] Read more.
The melanocortin-4 receptor (MC4R) is a key player in the hypothalamic leptin–melanocortin pathway that regulates satiety and hunger. MC4R belongs to the G protein-coupled receptors (GPCRs), which are known to form heterodimers with other membrane proteins, potentially modulating receptor function or characteristics. Like MC4R, thyroid hormones (TH) are also essential for energy homeostasis control. TH transport across membranes is facilitated by the monocarboxylate transporter 8 (MCT8), which is also known to form heterodimers with GPCRs. Based on the finding in single-cell RNA-sequencing data that both proteins are simultaneously expressed in hypothalamic neurons, we investigated a putative interplay between MC4R and MCT8. We developed a novel staining protocol utilizing a fluorophore-labeled MC4R ligand and demonstrated a co-localization of MC4R and MCT8 in human brain tissue. Using in vitro assays such as BRET, IP1, and cAMP determination, we found that MCT8 modulates MC4R-mediated phospholipase C activation but not cAMP formation via a direct interaction, an effect that does not require a functional MCT8 as it was not altered by a specific MCT8 inhibitor. This suggests an extended functional spectrum of MCT8 as a GPCR signaling modulator and argues for the investigation of further GPCR-protein interactions with hitherto underrepresented physiological functions. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 5754 KiB  
Article
Isolation of a Virulent Clostridium perfringens Strain from Elaphurus davidianus and Characterization by Whole-Genome Sequence Analysis
by Zhao Zhang, Xiao Wang, Siyuan Li, Yuhang Fu, Yan Li, Shah Nawaz, Jing Chen, Guoxiang Yang, Jiakui Li and Daoliang Shi
Curr. Issues Mol. Biol. 2024, 46(7), 7169-7186; https://doi.org/10.3390/cimb46070427 - 8 Jul 2024
Viewed by 634
Abstract
Clostridium perfringens (C. perfringens) is an important veterinary pathogen and a noteworthy threat to human and animal health. Recently, there has been a significant rise in the number of moose fatalities caused by this rare, endemic species in China. Currently, there [...] Read more.
Clostridium perfringens (C. perfringens) is an important veterinary pathogen and a noteworthy threat to human and animal health. Recently, there has been a significant rise in the number of moose fatalities caused by this rare, endemic species in China. Currently, there is an increasing trend in conducting whole-genome analysis of C. perfringens strains originating from pigs and chickens, whereas fewer studies have been undertaken on Elaphurus davidianus-originating strains at the whole-genome level. Our laboratory has identified and isolated five C. perfringens type A from affected Elaphurus davidianus. The current study identified the most potent strain of C. perfringens, which originated from Elaphurus davidianus, and sequenced its genome to reveal virulence genes and pathogenicity. Our findings show that strain CX1-4 exhibits the highest levels of phospholipase activity, hemolytic activity, and mouse toxicity compared to the other four isolated C. perfringens type A strains. The chromosome sequence length of the CX1-4 strain was found to be 3,355,389 bp by complete genome sequencing. The current study unveils the genomic characteristics of C. perfringens type A originating from Elaphurus davidianus. It provides a core foundation for further investigation regarding the prevention and treatment of such infectious diseases in Elaphurus davidianus. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop